

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	36 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f83-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 GENERAL DESCRIPTION

The PIC16F8X is a group in the PIC16CXX family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers. This group contains the following devices:

- PIC16F83
- PIC16F84
- PIC16CR83
- PIC16CR84

All PIC[®] microcontrollers employ an advanced RISC architecture. PIC16F8X devices have enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with a separate 8-bit wide data bus. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set is used to achieve a very high performance level.

PIC16F8X microcontrollers typically achieve a 2:1 code compression and up to a 4:1 speed improvement (at 20 MHz) over other 8-bit microcontrollers in their class.

The PIC16F8X has up to 68 bytes of RAM, 64 bytes of Data EEPROM memory, and 13 I/O pins. A timer/counter is also available.

The PIC16CXX family has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) mode offers power saving. The user can wake the chip from sleep through several external and internal interrupts and resets.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup.

The devices with Flash program memory allow the same device package to be used for prototyping and production. In-circuit reprogrammability allows the code to be updated without the device being removed from the end application. This is useful in the development of many applications where the device may not be easily accessible, but the prototypes may require code updates. This is also useful for remote applications where the code may need to be updated (such as rate information). Table 1-1 lists the features of the PIC16F8X. A simplified block diagram of the PIC16F8X is shown in Figure 3-1.

The PIC16F8X fits perfectly in applications ranging from high speed automotive and appliance motor control to low-power remote sensors, electronic locks, security devices and smart cards. The Flash/EEPROM technology makes customization of application programs (transmitter codes, motor speeds, receiver frequencies, security codes, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low-cost, low-power, high performance, ease-of-use and I/O flexibility make the PIC16F8X very versatile even in areas where no microcontroller use has been considered before (e.g., timer functions; serial communication; capture, compare and PWM functions; and co-processor applications).

The serial in-system programming feature (via two pins) offers flexibility of customizing the product after complete assembly and testing. This feature can be used to serialize a product, store calibration data, or program the device with the current firmware before shipping.

1.1 Family and Upward Compatibility

Those users familiar with the PIC16C5X family of microcontrollers will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for PIC16C5X devices can be easily ported to PIC16F8X devices (Appendix B).

1.2 <u>Development Support</u>

The PIC16CXX family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low-cost development programmer and a full-featured programmer. A "C" compiler and fuzzy logic support tools are also available.

TABLE 4-1 REGISTER FILE SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note3)
Bank 0					•						•
00h	INDF	Uses co	ntents of F	SR to addre	ess data memor	y (not a phys	sical registe	r)			
01h	TMR0	8-bit rea	I-time clock	/counter						xxxx xxxx	uuuu uuuu
02h	PCL	Low ord	er 8 bits of	the Program	m Counter (PC)					0000 0000	0000 0000
03h	STATUS ⁽²⁾	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR	Indirect	data memo	ry address	pointer 0					xxxx xxxx	uuuu uuuu
05h	PORTA	—	—	_	RA4/T0CKI	RA3	RA2	RA1	RA0	x xxxx	u uuuu
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0/INT	XXXX XXXX	uuuu uuuu
07h		Unimple	mented loc	ation, read	as '0'			•	•		
08h	EEDATA	EEPRO	V data regi	ster						XXXX XXXX	uuuu uuuu
09h	EEADR	EEPROI	M address	register						XXXX XXXX	uuuu uuuu
0Ah	PCLATH	_		_	Write buffer for	r upper 5 bit	s of the PC	(1)		0 0000	0 0000
0Bh	INTCON	GIE	EEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
Bank 1											
80h	INDF	Uses co	ntents of F	SR to addre	ess data memor	y (not a phys	sical registe	r)			
81h	OPTION_ REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h	PCL	Low ord	er 8 bits of	Program C	ounter (PC)			•	•	0000 0000	0000 0000
83h	STATUS (2)	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h	FSR	Indirect	data memo	ry address	pointer 0					xxxx xxxx	uuuu uuuu
85h	TRISA	—	—	—	PORTA data d	irection regis	ster			1 1111	1 1111
86h	TRISB	PORTB	data directi	on register	•					1111 1111	1111 1111
87h		Unimple	mented loc	ation, read	as '0'						
88h	EECON1	—	_	_	EEIF	WRERR	WREN	WR	RD	0 x000	0 q000
89h	EECON2	EEPRO	V control re	gister 2 (no	ot a physical reg	ister)	-				
0Ah	PCLATH	_	_	_	Write buffer for	r upper 5 bit	s of the PC	(1)		0 0000	0 0000
0Bh	INTCON	GIE	EEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u

Legend: x = unknown, u = unchanged. - = unimplemented read as '0', q = value depends on condition.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a slave register for PC<12:8>. The contents of PCLATH can be transferred to the upper byte of the program counter, but the contents of PC<12:8> is never transferred to PCLATH.

2: The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ status bits in the STATUS register are not affected by a $\overline{\text{MCLR}}$ reset.

3: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

4.2.2.2 OPTION_REG REGISTER

The OPTION_REG register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external INT interrupt, TMR0, and the weak pull-ups on PORTB.

FIGURE 4-1: OPTION_REG REGISTER (ADDRESS 81h)

Note: When the prescaler is assigned to the WDT (PSA = '1'), TMR0 has a 1:1 prescaler assignment.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	R = Readable bit
bit7							bit0	W = Writable bit
								U = Unimplemented bit, read as '0'
								- n = Value at POR reset
bit 7:	RBPU: PC		ın Enabl	a hit				
Dit 7.	1 = PORTI							
					dividual por	t latch valı	ues)	
bit 6:	INTEDG:				·		,	
bit 0.	1 = Interru	•	•		nin			
	0 = Interru							
bit 5:	TOCS: TM				F.			
Dit J.	1 = Transit							
	0 = Interna			•	OUT)			
bit 4:	TOSE: TM		•					
DIL 4.					on RA4/T00			
					on RA4/T00			
bit 3:	PSA: Pres		•			p		
DIL 3.	1 = Presca							
	0 = Presca							
hit 2 0.	PS2:PS0:	•						
bit <u>∠</u> -0.								
	Bit Value	TMR0 Ra	te WD	Γ Rate				
	000	1:2	1 :					
	001	1:4	1:					
	010 011	1:8		: 4 : 8				
	100	1 : 16 1 : 32		16				
	101	1:64		32				
	110	1 : 128		64				
	111	1 : 256	1:	128				

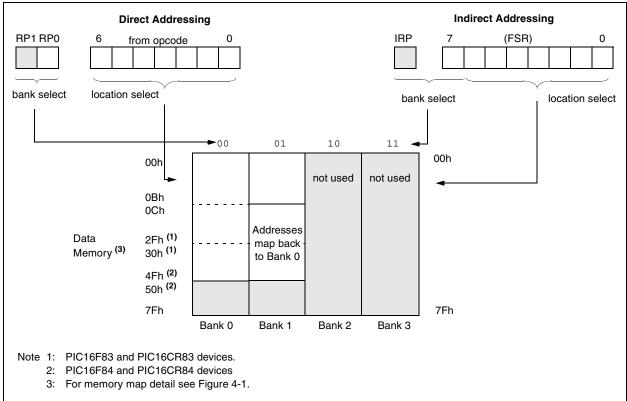
4.5 Indirect Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 4-1: INDIRECT ADDRESSING

- Register file 05 contains the value 10h
- Register file 06 contains the value 0Ah
- Load the value 05 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 06)
- A read of the INDF register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).


FIGURE 4-1: DIRECT/INDIRECT ADDRESSING

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

	movlw	0x20	;initialize pointer
	movwf	FSR	; to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-1. However, IRP is not used in the PIC16F8X.

TABLE 5-1 PORTA FUNCTIONS

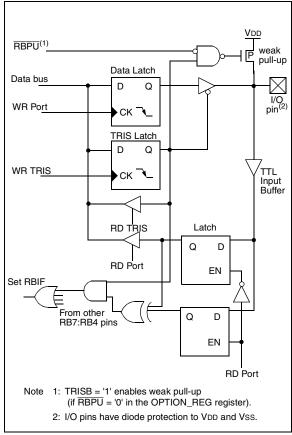
Name	Bit0	Buffer Type	Function
RA0	bit0	TTL	Input/output
RA1	bit1	TTL	Input/output
RA2	bit2	TTL	Input/output
RA3	bit3	TTL	Input/output
RA4/T0CKI	bit4	ST	Input/output or external clock input for TMR0. Output is open drain type.

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 5-2 SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
05h	PORTA	—	—	—	RA4/T0CKI	RA3	RA2	RA1	RA0	x xxxx	u uuuu
85h	TRISA	-	—	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are unimplemented, read as '0'


5.2 **PORTB and TRISB Registers**

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. A '1' on any bit in the TRISB register puts the corresponding output driver in a hi-impedance mode. A '0' on any bit in the TRISB register puts the contents of the output latch on the selected pin(s).

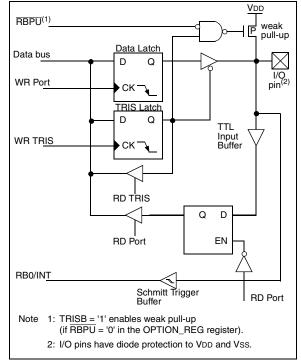
Each of the PORTB pins have a weak internal pull-up. A single control bit can turn on all the pull-ups. This is done by clearing the RBPU (OPTION_REG<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The pins value in input mode are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of the pins are OR'ed together to generate the RB port change interrupt.

FIGURE 5-3: BLOCK DIAGRAM OF PINS RB7:RB4

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Read (or write) PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.


A mismatch condition will continue to set the RBIF bit. Reading PORTB will end the mismatch condition, and allow the RBIF bit to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a key pad and make it possible for wake-up on key-depression (see AN552 in the Embedded Control Handbook).

Note 1: For a change on the I/O pin to be recognized, the pulse width must be at least TcY (4/fosc) wide.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

FIGURE 5-4: BLOCK DIAGRAM OF PINS RB3:RB0

8.1 <u>Configuration Bits</u>

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

Address 2007h is beyond the user program memory space and it belongs to the special test/configuration memory space (2000h - 3FFFh). This space can only be accessed during programming.

To find out how to program the PIC16C84, refer to *PIC16C84 EEPROM Memory Programming Specifica-tion* (DS30189).

FIGURE 8-1: CONFIGURATION WORD - PIC16CR83 AND PIC16CR84

D	D	Π	D	D	D	D/D	D	D	D	D	D	D	D	
R-u CP	R-u CP	R-u CP	R-u CP	R-u CP	R-u CP	R/P-u DP	R-u CP	R-u CP	R-u CP	R-u PWRTE	R-u WDTE	R-u FOSC1	R-u FOSC0	
bit13		01	01				01		01			R = Rea P = Prog - n = Valu	bit0 adable bit grammable bit ie at POR reset	t
bit 13:8	1 = 0	Program Code pro Program	tection	off			it					u = unch	langeu	
bit 7	1 = 0	Data Me Code pro Data mer	tection	off										
bit 6:4	1 = 0	Program Code pro Program	tection	off			it							
bit 3	1 = F	RTE: Pov Power-up Power-up	timer	is disal	oled	bit								
bit 2	1 = V	E: Wato VDT ena VDT disa	abled	imer E	nable I	oit								
bit 1:0	11 = 10 = 01 =	C1:FOS RC osc HS osc XT osci LP osci	illator illator llator	cillator	Selec	tion bits								

8.7 <u>Time-out Sequence and Power-down</u> Status Bits (TO/PD)

On power-up (Figure 8-10, Figure 8-11, Figure 8-12 and Figure 8-13) the time-out sequence is as follows: First PWRT time-out is invoked after a POR has expired. Then the OST is activated. The total time-out will vary based on oscillator configuration and PWRTE configuration bit status. For example, in RC mode with the PWRT disabled, there will be no time-out at all.

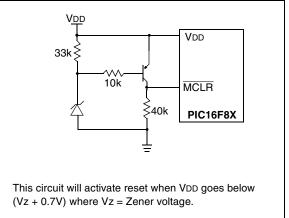
TABLE 8-5TIME-OUT IN VARIOUSSITUATIONS

Oscillator	Powe	er-up	Wake-up
Configuration	PWRT Enabled	PWRT Disabled	from SLEEP
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024Tosc
RC	72 ms	_	_

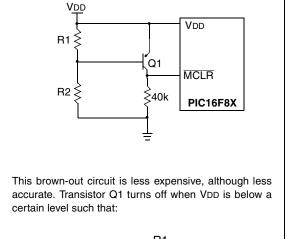
Since the time-outs occur from the POR reset pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high, execution will begin immediately (Figure 8-10). This is useful for testing purposes or to synchronize more than one PIC16F8X device when operating in parallel.

Table 8-6 shows the significance of the $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits. Table 8-3 lists the reset conditions for some special registers, while Table 8-4 lists the reset conditions for all the registers.

TABLE 8-6STATUS BITS AND THEIR
SIGNIFICANCE


то	PD	Condition
1	1	Power-on Reset
0	x	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$
x	0	Illegal, PD is set on POR
0	1	WDT Reset (during normal operation)
0	0	WDT Wake-up
1	1	MCLR Reset during normal operation
1	0	MCLR Reset during SLEEP or interrupt
		wake-up from SLEEP

8.8 Reset on Brown-Out


A brown-out is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be reset in the event of a brown-out.

To reset a PIC16F8X device when a brown-out occurs, external brown-out protection circuits may be built, as shown in Figure 8-14 and Figure 8-15.

FIGURE 8-14: BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 8-15: BROWN-OUT PROTECTION CIRCUIT 2

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

8.12 Power-down Mode (SLEEP)

A device may be powered down (SLEEP) and later powered up (Wake-up from SLEEP).

8.12.1 SLEEP

The Power-down mode is entered by executing the SLEEP instruction.

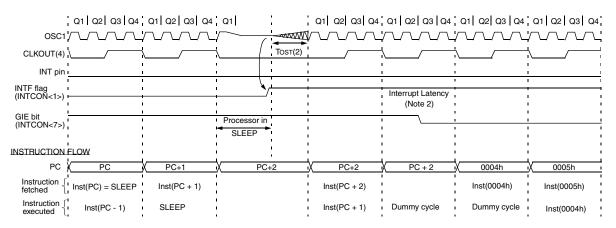
If enabled, the Watchdog Timer is cleared (but keeps running), the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} bit (STATUS<4>) is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For the lowest current consumption in SLEEP mode, place all I/O pins at either at VDD or VSS, with no external circuitry drawing current from the I/O pins, and disable external clocks. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

It should be noted that a RESET generated by a WDT time-out does not drive the MCLR pin low.

8.12.2 WAKE-UP FROM SLEEP


The device can wake-up from SLEEP through one of the following events:

- 1. External reset input on MCLR pin.
- 2. WDT Wake-up (if WDT was enabled).
- 3. Interrupt from RB0/INT pin, RB port change, or data EEPROM write complete.

Peripherals cannot generate interrupts during SLEEP, since no on-chip Q clocks are present.

The first event ($\overline{\text{MCLR}}$ reset) will cause a device reset. The two latter events are considered a continuation of program execution. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits can be used to determine the cause of a device reset. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

While the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up occurs regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the state of the substant of the instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

FIGURE 8-19: WAKE-UP FROM SLEEP THROUGH INTERRUPT

Note 1: XT, HS or LP oscillator mode assumed.

2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.

3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

9.1 Instruction Descriptions

ADDLW	Add Lite	ral and V	W	
Syntax:	[<i>label</i>] Al	DDLW	k	
Operands:	$0 \le k \le 2\xi$	55		
Operation:	(W) + k –	→ (W)		
Status Affected:	C, DC, Z			
Encoding:	11	111x	kkkk	kkkk
Description:	The conter added to the result is play	ne eight b	it literal 'k'	and the
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read literal 'k'	Process data	Write to W
Example:	ADDLW	0x15		
	Before In	struction W =	0x10	
	After Inst	ruction W =	0x25	

ADDWF	Add W a	nd f		
Syntax:	[<i>label</i>] A	DDWF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$	7		
Operation:	(W) + (f)	ightarrow (desti	nation)	
Status Affected:	C, DC, Z			
Encoding:	00	0111	dfff	ffff
Description:	Add the co register 'f'. in the W re stored bac	If 'd' is 0 egister. If	the result i d' is 1 the	is stored
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to destination
Example	ADDWF	FSR,	0	
	Before In	struction	I	
		W = FSR =	0x17 0xC2	
	After Inst		UNOL	
		W = FSR =	0xD9 0xC2	

ANDLW	AND Lite		W	
Syntax:	[<i>label</i>] A	NDLW	k	
Operands:	$0 \le k \le 28$	55		
Operation:	(W) .ANE	D. (k) \rightarrow ((W)	
Status Affected:	Z			
Encoding:	11	1001	kkkk	kkkk
Description:	The conte AND'ed wi result is pl	ith the eig		l 'k'. The
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read literal "k"	Process data	Write to W
Example	ANDLW	0x5F		
	Before In	struction	l	
		W =	0xA3	
	After Inst	W =	0x03	
ANDWF	AND W v	vith f		
-				
Syntax:	[<i>label</i>] A		f,d	
Syntax: Operands:	[<i>label</i>] A 0 ≤ f ≤ 12 d ∈ [0,1]		f,d	
-	0 ≤ f ≤ 12	27		n)
Operands:	0 ≤ f ≤ 12 d ∈ [0,1]	27		n)
Operands: Operation:	0 ≤ f ≤ 12 d ∈ [0,1] (W) .ANE	27		n) ffff
Operands: Operation: Status Affected:	0 ≤ f ≤ 12 d ∈ [0,1] (W) .ANE Z	27 D. (f) \rightarrow (f) 0101 V register sult is stor 1 the res	destinatio dfff with regist red in the V	ffff er 'f'. If 'd' <i>N</i> regis-
Operands: Operation: Status Affected: Encoding:	$0 \le f \le 12$ $d \in [0,1]$ (W) .ANE Z 00 AND the V is 0 the rester. If 'd' is	27 D. (f) \rightarrow (f) 0101 V register sult is stor 1 the res	destinatio dfff with regist red in the V	ffff er 'f'. If 'd' <i>N</i> regis-
Operands: Operation: Status Affected: Encoding: Description: Words:	$0 \le f \le 12$ $d \in [0,1]$ (W) .ANE Z 00 AND the V is 0 the reater. If 'd' is register 'f'.	27 D. (f) \rightarrow (f) 0101 V register sult is stor 1 the res	destinatio dfff with regist red in the V	ffff er 'f'. If 'd' <i>N</i> regis-
Operands: Operation: Status Affected: Encoding: Description:	$0 \le f \le 12$ $d \in [0,1]$ (W) .ANE Z 00 AND the V is 0 the reater. If 'd' is register 'f'. 1	27 D. (f) \rightarrow (f) 0101 V register sult is stor 1 the res	destinatio dfff with regist red in the V	ffff er 'f'. If 'd' <i>N</i> regis-
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$0 \le f \le 12$ $d \in [0,1]$ (W) .ANE Z 00 AND the V is 0 the reater. If 'd' is register 'f'. 1 1	2.7 D. (f) \rightarrow (f) 0101 V register sult is stored 1 the res	destination dfff with regist red in the V ult is store	ffff er 'f'. If 'd' <i>N</i> regis- d back in
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$0 \le f \le 12$ $d \in [0,1]$ (W) .ANE Z 00 AND the V is 0 the re- ter. If 'd' is register 'f'. 1 1 Q1	27 D. (f) → (f) 0101 V register sult is stored 1 the res Q2 Read register	destination dfff with regist red in the V ult is store Q3 Process	ffff er 'f'. If 'd' <i>N</i> regis- d back in Q4 Write to
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	$0 \le f \le 12$ $d \in [0,1]$ (W) .ANE Z 00 AND the V is 0 the re- ter. If 'd' is register 'f'. 1 1 Q1 Decode	27 D. (f) \rightarrow (f) 0101 V register sult is stou 1 the res Q2 Read register ff FSR,	destination dfff with regist red in the V ult is store Q3 Process data 1	ffff er 'f'. If 'd' <i>N</i> regis- d back in Q4 Write to
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	$0 \le f \le 12$ $d \in [0,1]$ (W) .ANE Z 00 AND the V is 0 the rester. If 'd' is register 'f'. 1 1 Q1 Decode ANDWF Before In	27 D. (f) → (f) 0101 V register sult is stou 1 the res Q2 Read register f' FSR, struction W =	destination dfff with regist red in the V ult is store Q3 Process data 1 0x17	ffff er 'f'. If 'd' <i>N</i> regis- d back in Q4 Write to
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	$0 \le f \le 12$ $d \in [0,1]$ (W) .ANE Z 00 AND the V is 0 the rester. If 'd' is register 'f'. 1 1 Q1 Decode ANDWF Before In	27 D. (f) → (f) 0101 V register sult is stol 1 the res Q2 Read register f' FSR, struction W = FSR =	destination dfff with regist red in the V ult is store Q3 Process data 1	ffff er 'f'. If 'd' <i>N</i> regis- d back in Q4 Write to
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	$0 \le f \le 12$ $d \in [0,1]$ (W) .ANE Z 00 AND the V is 0 the rester. If 'd' is register 'f'. 1 1 Q1 Decode ANDWF Before In After Inst	27 D. (f) → (f) 0101 V register sult is stol 1 the res Q2 Read register f' FSR, struction W = FSR =	destination dfff with regist red in the V ult is store Q3 Process data 1 0x17	ffff er 'f'. If 'd' <i>N</i> regis- d back in Q4 Write to

BTFSS	Bit Test f, S	Skip if S	Set		CALL	Call Sub	proutine			
Syntax:	[<i>label</i>] BTFS	SS f,b			Syntax:	[<i>label</i>] CALL k				
Operands:	$0 \le f \le 127$			Operands:	$0 \le k \le 2$	$0 \le k \le 2047$				
	0 ≤ b < 7				Operation:	(PC)+ 1-	→ TOS,			
Operation:	skip if (f) = 1				$k \rightarrow PC <$,	50 /0			
Status Affected:	None				.	,	1<4:3>) -	→ PC<12	:11>	
Encoding:	01 13	L1bb	bfff	ffff	Status Affected:	None			1 1	
Description:	If bit 'b' in regi			ne next	Encoding:	10	0kkk	kkkk	kkkk	
Words:	If bit 'b' is '1', t discarded and	instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2TCY instruction.			Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL				
Cycles:	1(2)						ycle instru	ction.		
Q Cycle Activity:	Q1	Q2	Q3	Q4	Words:	1				
		Read	Process	No-Operat	Cycles:	2	0.0		<u>.</u>	
	reș	egister 'f'	data	ion	Q Cycle Activity:	Q1	Q2	Q3	Q4	
If Skip:	(2nd Cycle))			1st Cycle	Decode	Read literal 'k',	Process data	Write to PC	
	Q1	Q2	Q3	Q4			Push PC to Stack			
	No-Operat ion	o-Operati on	No-Opera tion	No-Operat ion	2nd Cycle	No-Opera tion	No-Opera tion	No-Opera tion	No-Operat ion	
Example			FLAG,1 PROCESS	CODE	Example	HERE	CALL	THERE		
	TRUE •	•	-	_		Before Ir	nstruction			
	•	•				After Ins	-	ddress HE	RE	
	Before Instru	ruction					PC = A	ddress TH		
			ddress H	IERE			TOS = A	ddress HE	RE+1	
	After Instruc		0							
	PC	FLAG<1> C = a	= 0, address F7	ALSE						
	if Fl	LAG<1>	= 1,							
	PC	C = 6	address TH	RUE						

PIC16F8X

INCFSZ	Increment f, Skip if 0	IORLW	Inclusive OR Literal with W
Syntax:	[label] INCFSZ f,d	Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \le f \le 127$	Operands:	$0 \le k \le 255$
	d ∈ [0,1]	Operation:	(W) .OR. $k \rightarrow$ (W)
Operation:	(f) + 1 \rightarrow (destination),	Status Affected:	Z
	skip if result = 0	Encoding:	11 1000 kkkk kkkk
Status Affected:	None	Description:	The contents of the W register is
Encoding:	00 1111 dfff ffff		OR'ed with the eight bit literal 'k'. The result is placed in the W register.
Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in	Words:	1
	the W register. If 'd' is 1 the result is placed back in register 'f'.	Cycles:	1
	If the result is 1, the next instruction is executed. If the result is 0, a NOP is exe- cuted instead making it a 2TCY instruc-	-	
	cuted instead making it a 2Tcy instruc- tion.	Q Cycle Activity:	Q1 Q2 Q3 Q4 Decode Read Process Write to
Words:	1		Decode Read Process Write to literal 'k' data W
Cycles:	1(2)		
Q Cycle Activity:	Q1 Q2 Q3 Q4	Example	IORLW 0x35
,	Decode Read Process Write to		Before Instruction W = 0x9A
	register 'f' data destination		After Instruction
If Skip:	(2nd Cycle)		W = 0xBF $Z = 1$
	Q1 Q2 Q3 Q4		Z = 1
	No-Operat ion No-Operat tion tion on		
Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •		
	Before Instruction PC = address HERE After Instruction CNT = CNT + 1 if CNT= 0, PC = address CONTINUE if CNT \neq 0, PC = address HERE +1		

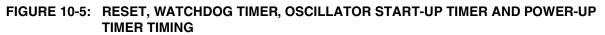
TABLE 10-1CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

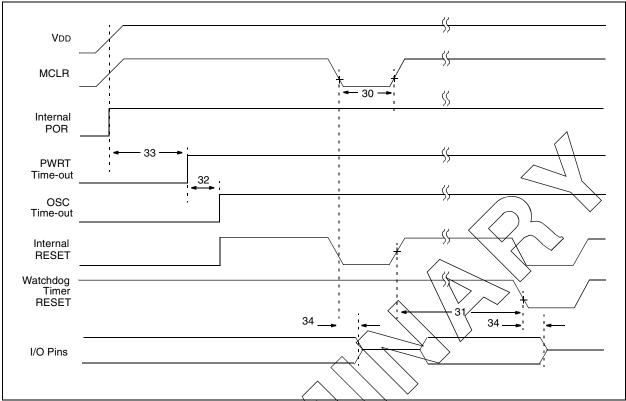
OSC	PIC16F84-04 PIC16F83-04	PIC16F84-10 PIC16F83-10	PIC16LF84-04 PIC16LF83-04		
RC	VDD: 4.0V to 6.0V IDD: 4.5 mA max. at 5.5V IPD: 14 μA max. at 4V WDT dis Freq: 4.0 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 5.5V WDT dis Freq: 40 MHz max.	VDD: 2.0V to 6.0V IDD: 4.5 mA max. at 5.5V IPD: 7.0 μA max. at 2V WDT dis Freq: 2.0 MHz max.		
XT	VDD: 4.0V to 6.0V IDD: 4.5 mA max. at 5.5V IPD: 14 μA max. at 4V WDT dis Freq: 4.0 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 5.5V WDT dis Freq: 4.0 MHz max.	VDD: 2.0V to 6.0V IDD: 4.5 mA max. at 555V IPD: 7.0 μA max. at 2V WDT dis Freq: 2.0 MHz max.		
HS	VDD: 4.5V to 5.5V IDD: 4.5 mA typ. at 5.5V IPD: 1.0 μA typ. at 4.5V WDT dis Freq: 4.0 MHz max.	VDD: 4.5V to 5.5V IDD: 10 mA max. at 5.5V typ. IPD: 1.0 μA typ. at 4.5V WDT dis Freq: 10 MHz max.	Do not use in HS mode		
LP	VDD: 4.0V to 6.0V IDD: 48 μA typ. at 32 kHz, 2.0V IPD: 0.6 μA typ. at 3.0V WDT dis Freq: 200 kHz max.	Do not use in LP mode	VDD: 2.0V to 6.0V IDD: 45 μA max. at 32 kHz, 2.0V IRD: 7 μA max, at 2.0V WDT dis Freq: 200 kHz max.		

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

10.3 DC CHARACTERISTICS:

PIC16F84, PIC16F83 (Commercial, Industrial) PIC16I F84 PIC16I F83 (Commercial Industrial)


PIC16LF84, PIC16LF83 (Commercial, Industrial)								
DC Characteristics			Standard Operating Conditions (unless otherwise stated) Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial)					
All Pins Except			-40°C \leq TA \leq +85°C (industrial)					
	Power Supply Pins			Operating voltage VDD range as described in DC spec				
-			Section 10.1 and Section 10.2.					
Parame-								
ter No.	Sym	Characteristic	Min	Typt	Мах	Units	Conditions	
		Input Low Voltage					4	
	VIL	I/O ports						
D030		with TTL buffer	Vss	_	0.8	v	$4.5 V \le V_{OD} \le 5.5 V^{(4)}$	
D030A			Vss	_	0.16VDD	V	entire range ⁽⁴⁾	
D031		with Schmitt Trigger buffer	Vss	_	0.2VDD	V	entire range	
D032		MCLR, RA4/T0CKI	Vss	_	0.2VDD	V		
D033		OSC1 (XT, HS and LP modes) ⁽¹⁾	Vss	_	0.3VDD	v <	$\langle \rangle \land \rangle$	
D034		OSC1 (RC mode)	Vss	—	0.1VDD	V	\backslash \langle \checkmark	
		Input High Voltage						
	Viн	I/O ports		_		$\left \right\rangle$		
D040		with TTL buffer	2.4	—		∖∛∕	$4.5 V \le VDD \le 5.5 V^{(4)}$	
D040A			0.48VDD	~	VDR	$\langle \mathbf{V} \rangle$	entire range ⁽⁴⁾	
D041		with Schmitt Trigger buffer	0.45VDD	$\left \left\langle \cdot\right\rangle \right\rangle$	VDQ	\bigvee	entire range	
D042		MCLR, RA4/T0CKI, OSC1 (RC mode)	0.85 VDD	$\overline{}$	YDD	V		
D043		OSC1 (XT, HS and LP modes) ⁽¹⁾	0.7 Vpd	$\langle - \rangle$	VDD	V		
D050	VHYS	Hysteresis of	TBD	Ĺ	\geq –	V		
D070	IPURB	Schmitt Trigger inputs	50*	250*	400*	μA	VDD = 5.0V, VPIN = VSS	
0070	IPURD	Input Leakage Current ^(2,3)	1 201	¥90	400	μΑ	VDD = 5.0V, $VPIN = V55$	
D060	lı∟	I/O ports	$\backslash \nearrow$	Í	±1	μA	$Vss \leq VPIN \leq VDD,$	
0000					±1	μη	Pin at hi-impedance	
D061		MCLR, RA4/TOCK	> -	_	±5	μA	$Vss \le VPIN \le VDD$	
D063		OSC1	_	_	±5	μA	$Vss \le VPIN \le VDD, XT, HS$	
							and LP osc configuration	
		Output Low Voltage						
D080	Vol	I/O ports	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V	
D083	/		—	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V	
Daac		Output High Voltage						
D090	VOH	WØ ports ⁽³⁾	VDD-0.7	_	_	V	IOH = -3.0 mA, VDD = 4.5 V	
D092 🦯		QŚĘ2/CLŘOUT	VDD-0.7	—	_	V	IOH = -1.3 mA, VDD = 4.5V	


These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. Do not drive the PIC16F8X with an external clock while the device is in RC mode, or chip damage may result.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- **3:** Negative current is defined as coming out of the pin.
- 4: The user may choose the better of the two specs.

Parameter			$\langle \ \rangle$	\searrow			
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	1000*	_		ns	$2.0V \leq V\text{DD} \leq 6.0V$
31	Twdt	Watchdog Timer Time-out Period (No Prescater)	7*	18	33 *	ms	VDD = 5.0V
32	Tost	Oscillation Start-up Timer Period		1024Tosc		ms	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28 *	72	132 *	ms	VDD = 5.0V
34	Tioz	I/O Hi-impedance from MCLR Low	_	_	100 *	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 50, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested

TABLE 11-1CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16CR84-04 PIC16CR83-04	PIC16CR84-10 PIC16CR83-10	PIC16LCR84-04 PIC16LCR83-04
RC	VDD: 4.0V to 6.0V IDD: 4.5 mA max. at 5.5V IPD: 14 μA max. at 4V WDT dis Freq: 4.0 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 5.5V WDT dis Freq: 40 MHz max.	VDD: 2.0V to 6.0V IDD: 4.5 mA max. at 5.5V IPD: 5 μA max. at 2V WDT dis Freq: 2.0 MHz max.
ХТ	VDD: 4.0V to 6.0V IDD: 4.5 mA max. at 5.5V IPD: 14 μA max. at 4V WDT dis Freq: 4.0 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 5.5V WDT dis Freq: 4.0 MHz max.	VDD: 2.0V to 6.0V IDD: 4.5 mA max. at 5.5V IPD: 5 μA max. at 2V WDT dis Freq: 2.0 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 4.5 mA typ. at 5.5V IPD: 1.0 μA typ. at 4.5V WDT dis Freq: 4.0 MHz max.	VDD: 4.5V to 5.5V IDD: 10 mA max. at 5.5V typ. IPD: 1.0 μA typ. at 4.5V WDT dis Freq: 10 MHz max.	Do not use in THS mode
LP	VDD: 4.0V to 6.0V IDD: 48 μA typ. at 32 kHz, 2.0V IPD: 0.6 μA typ. at 3.0V WDT dis Freq: 200 kHz max.	Do not use in LP mode	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

11.1 DC CHARACTERISTICS:

PIC16CR84, PIC16CR83 (Commercial, Industrial)

DC Characteristics Power Supply Pins			Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial)				
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D001 D001A	Vdd	Supply Voltage	4.0 4.5	_	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5*	—	—	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	—	Vss	—	V	See section on Power-on Reset for details
D004	Svdd	VDD rise rate to ensure internal Power-on Reset signal	0.05*	—	—	V/ms	See section on Power-on Reset for details
D010 D010A	IDD	Supply Current ⁽²⁾		1.8 7.3	4.5 10	mA mA	RC and XT ose configuration ⁽⁴⁾ Fosc = 4.0 MHz, VDD = 5.5V Fosc = 4.0 MHz, VDD = 5.5V (During EERROM programming) HS ose configuration (PIC16CR84-10)
D013		(0)		5	10	mA<	Fosc = 10 MHz, VDD = 5.5V
D020 D021 D021A	IPD	Power-down Current ⁽³⁾		7.0 1.0 1.0	28 14 16	μΑ μΑ μΑ	$V_{DD} = 4.0V$, WDT enabled, industrial $V_{DD} = 4.0V$, WDT disabled, commercial $V_{DD} = 4.0V$, WDT disabled, industrial

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1=external square wave, from rail to rail, all I/O pins tristated, pulled to VDD, T0CKI = VDD, $\overline{MCLR} = VDD$; WDT applied displayed as approximate

MCLR = VDD; WDT enabled/disabled as specified.

3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula IB = VpD/2Rext (mA) with Rext in kOhm.

PIC16F8X

NOTES:

NOTES: