

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	36 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f83-10-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

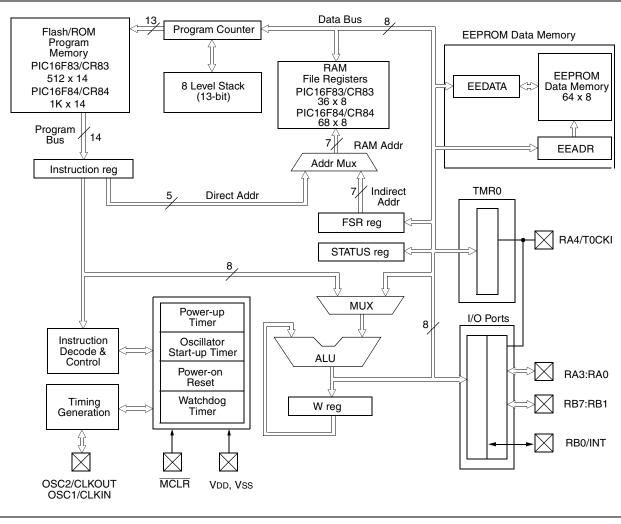
Table of Contents

1.0	.0 General Description	
2.0	2.0 PIC16F8X Device Varieties	5
3.0	3.0 Architectural Overview	7
4.0	I.0 Memory Organization	
5.0	5.0 I/O Ports	
6.0		
7.0		
8.0		
9.0	· · · · · · · · · · · · · · · · · · ·	
10.0		
11.0		-
13.0		
	4.0 Packaging Information	
Appe	Appendix A: Feature Improvements - From PIC16C5X To PIC16F8X	
Appe	Appendix B: Code Compatibility - from PIC16C5X to PIC16F8X	
Appe	Appendix C: What's New In This Data Sheet	
Appe	Appendix D: What's Changed In This Data Sheet	
Appe	Appendix E: Conversion Considerations - PIC16C84 to PIC16F83/F84 And PIC16CR83/CR84	115
Index	ndex	
On-L	Dn-Line Support	119
Read	Reader Response	120
	PIC16F8X Product Identification System	
Sales	Sales and Support	

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

PIC16CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.


The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register), and the other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

A simplified block diagram for the PIC16F8X is shown in Figure 3-1, its corresponding pin description is shown in Table 3-1.

4.2.2.2 OPTION_REG REGISTER

The OPTION_REG register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external INT interrupt, TMR0, and the weak pull-ups on PORTB.

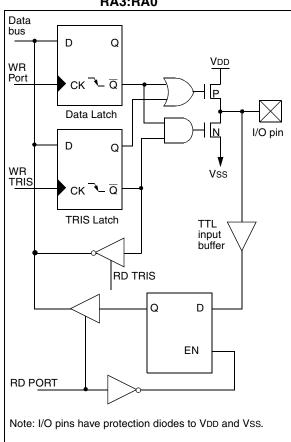
FIGURE 4-1: OPTION_REG REGISTER (ADDRESS 81h)

Note: When the prescaler is assigned to the WDT (PSA = '1'), TMR0 has a 1:1 prescaler assignment.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	R = Readable bit
bit7							bit0	W = Writable bit
								U = Unimplemented bit, read as '0'
								- n = Value at POR reset
bit 7:	RBPU: PC		ın Enabl	a hit				
Dit 7.	1 = PORTI							
					dividual por	t latch valı	ues)	
bit 6:	INTEDG:						,	
bit 0.	1 = Interru	•	•		nin			
	0 = Interru							
bit 5:	TOCS: TM				F.			
Dit J.	1 = Transit							
	0 = Interna			•	OUT)			
bit 4:	TOSE: TM		•					
DIL 4.					on RA4/T00			
					on RA4/T00			
bit 3:	PSA: Pres		•			P		
DIL 3.	1 = Presca							
	0 = Presca							
hit 2 0.	PS2:PS0:	•						
bit <u>∠</u> -0.								
	Bit Value	TMR0 Ra	te WD	Γ Rate				
	000	1:2	1 :					
	001	1:4	1:					
	010 011	1:8		: 4 : 8				
	100	1 : 16 1 : 32		16				
	101	1:64		32				
	110	1 : 128		64				
	111	1 : 256	1:	128				

5.0 I/O PORTS

The PIC16F8X has two ports, PORTA and PORTB. Some port pins are multiplexed with an alternate function for other features on the device.


5.1 PORTA and TRISA Registers

PORTA is a 5-bit wide latch. RA4 is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

Setting a TRISA bit (=1) will make the corresponding PORTA pin an input, i.e., put the corresponding output driver in a hi-impedance mode. Clearing a TRISA bit (=0) will make the corresponding PORTA pin an output, i.e., put the contents of the output latch on the selected pin.

Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

The RA4 pin is multiplexed with the TMR0 clock input.

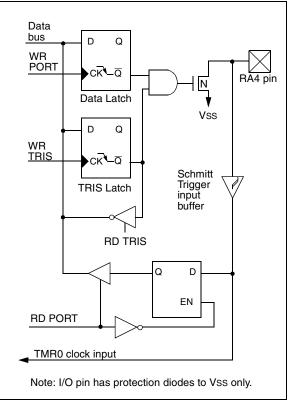


FIGURE 5-1: BLOCK DIAGRAM OF PINS RA3:RA0

EXAMPLE 5-1: INITIALIZING PORTA

CLRF	PORTA	; Initialize PORTA by
		; setting output
		; data latches
BSF	STATUS, RPO	; Select Bank 1
MOVLW	0x0F	; Value used to
		; initialize data
		; direction
MOVWF	TRISA	; Set RA<3:0> as inputs
		; RA4 as outputs
		; TRISA<7:5> are always
		; read as '0'.

FIGURE 5-2: BLOCK DIAGRAM OF PIN RA4

EXAMPLE 5-1: INITIALIZING PORTB

	-		
CLRF	PORTB	;	Initialize PORTB by
		;	setting output
		;	data latches
BSF	STATUS, RPO	;	Select Bank 1
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs

TABLE 5-3 PORTB FUNCTIONS

Name	Bit	Buffer Type	I/O Consistency Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger.

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 5-4 SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0/INT	XXXX XXXX	uuuu uuuu
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h	OPTION_ REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

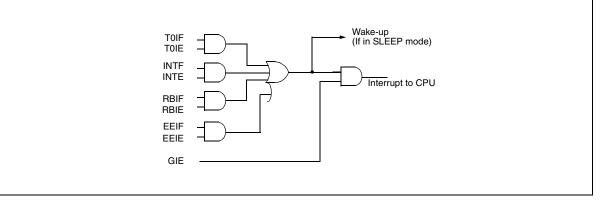
8.9 <u>Interrupts</u>

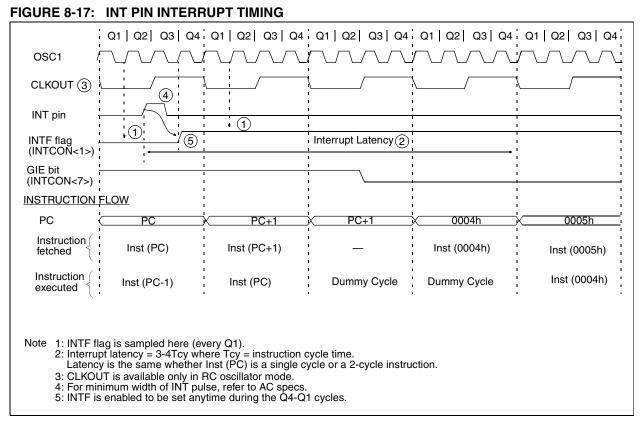
The PIC16F8X has 4 sources of interrupt:

- External interrupt RB0/INT pin
- TMR0 overflow interrupt
- PORTB change interrupts (pins RB7:RB4)
- Data EEPROM write complete interrupt

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also contains the individual and global interrupt enable bits.

The global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in INTCON register. Bit GIE is cleared on reset.


The "return from interrupt" instruction, RETFIE, exits interrupt routine as well as sets the GIE bit, which re-enable interrupts.


FIGURE 8-16: INTERRUPT LOGIC

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

When an interrupt is responded to; the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. For external interrupt events, such as the RB0/INT pin or PORTB change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 8-17). The latency is the same for both one and two cycle instructions. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid infinite interrupt requests.

Note 1: Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

8.9.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if INTEDG bit (OPTION_REG<6>) is set, or falling, if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing control bit INTE (INTCON<4>). Flag bit INTF must be cleared in software via the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake the processor from SLEEP (Section 8.12) only if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether the processor branches to the interrupt vector following wake-up.

8.9.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in TMR0 will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>) (Section 6.0).

8.9.3 PORT RB INTERRUPT

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<3>) (Section 5.2).

Note 1: For a change on the I/O pin to be recognized, the pulse width must be at least TCY wide.

8.12.3 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

8.13 Program Verification/Code Protection

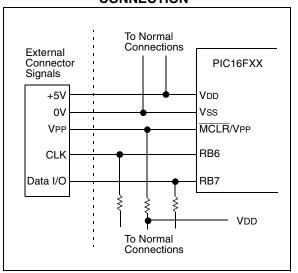
If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip does not recommend code pro-
	tecting widowed devices.

8.14 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations to store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable only during program/verify. Only the 4 least significant bits of ID location are usable.

For ROM devices, these values are submitted along with the ROM code.


8.15 In-Circuit Serial Programming

PIC16F8X microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. Customers can manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product, allowing the most recent firmware or custom firmware to be programmed.

The device is placed into a program/verify mode by holding the RB6 and RB7 pins low, while raising the MCLR pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After reset, to place the device into programming/verify mode, the program counter (PC) points to location 00h. A 6-bit command is then supplied to the device, 14-bits of program data is then supplied to or from the device, using load or read-type instructions. For complete details of serial programming, please refer to the PIC16CXX Programming Specifications (Literature #DS30189).

FIGURE 8-20: TYPICAL IN-SYSTEM SERIAL PROGRAMMING CONNECTION

For ROM devices, both the program memory and Data EEPROM memory may be read, but only the Data EEPROM memory may be programmed.

PIC16F8X

BCF	Bit Clear	f			BT
Syntax:	[<i>label</i>] BC	CF f,b			Syn
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ 0 \leq b \leq 7 \end{array}$	7			Ope
Operation:	$0 \rightarrow (f < b;$	>)			Ope
Status Affected:	None				Stat
Encoding:	01	00bb	bfff	ffff	Enc
Description:	Bit 'b' in re	gister 'f' is	s cleared.	•	Des
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read register 'f'	Process data	Write register 'f'	Woi Cyc
Example	BCF	FLAG_	REG, 7		QC
	Before Instruction FLAG_REG = 0xC7 After Instruction FLAG_REG = 0x47				

BTFSC	Bit Test,	Skip if Cl	ear			
Syntax:	[<i>label</i>] BT	FSC f,b				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$					
Operation:	skip if (f<	b>) = 0				
Status Affected:	None					
Encoding:	01	10bb	bfff	ffff		
Description:	If bit 'b' in register 'f' is '1' then the next instruction is executed. If bit 'b', in register 'f', is '0' then the next instruction is discarded, and a NOP is executed instead, making this a 2Tcy instruction.					
Words:	1					
Cycles:	1(2)					
Q Cycle Activity:	Q1	Q4				
	Decode	Read register 'f'	Process data	No-Operat ion		
If Skip:	(2nd Cyc	le)				
	Q1	Q2	Q3	Q4		
	No-Operat ion	No-Operati on	No-Opera tion	No-Operat ion		
Example	HERE FALSE TRUE		FLAG,1 PROCESS_	_CODE		
	$\begin{array}{rcl} \text{Before Instruction} & \text{PC} &= & \text{address} & \text{HERE} \\ \text{After Instruction} & & \text{if FLAG<1>=0,} & \\ & \text{PC} &= & \text{address} & \text{TRUE} \\ & & \text{if FLAG<1>=1,} & \\ & \text{PC} &= & \text{address FALSE} \end{array}$					

BSF	Bit Set f					
Syntax:	[<i>label</i>] BS	SF f,b				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$					
Operation:	$1 \rightarrow (f < b >$	>)				
Status Affected:	None					
Encoding:	01	01bb	bfff	ffff		
Description:	Bit 'b' in re	gister 'f' is	s set.			
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process data	Write register 'f'		
Example	BSF	FLAG_F	REG, 7			
	Before Instruction FLAG_REG = 0x0A After Instruction FLAG_REG = 0x8A					

PIC16F8X

NOP	No Operation					
Syntax:	[label]	NOP				
Operands:	None					
Operation:	No opera	ition				
Status Affected:	None					
Encoding:	00	0000	0xx0	0000		
Description:	No operati	ion.				
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	No-Opera tion	No-Opera tion	No-Operat ion		
Example	NOP					

RETFIE	Return fi	rom Inter	rupt				
Syntax:	[label]	RETFIE					
Operands:	None						
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$						
Status Affected:	None						
Encoding:	0 0	0000	0000	1001			
Description:	Return fro and Top of PC. Interru Global Inte (INTCON< instruction	Stack (TC upts are er errupt Ena 7>). This	DS) is load habled by s ble bit, GIE	ed in the setting E			
Words:	1						
Cycles:	2						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
1st Cycle	Decode	No-Opera tion	Set the GIE bit	Pop from the Stack			
2nd Cycle	No-Operat ion	No-Opera tion	No-Opera tion	No-Operat ion			
Example	RETFIE						

After Interrupt PC = TOS GIE = 1

OPTION	Load Option Register
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \rightarrow OPTION$
Status Affected:	None
Encoding:	00 0000 0110 0010
Description:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code com- patibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it.
Words:	1
Cycles:	1
Example	
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.

PIC16F8X

XORLW	Exclusive OR Literal with W	XORWF	Exclusive OR W with f
Syntax:	[<i>label</i>] XORLW k	Syntax:	[<i>label</i>] XORWF f,d
Operands:	$0 \le k \le 255$	Operands:	0 ≤ f ≤ 127 d ∈ [0,1]
Operation: Status Affected: Encoding: Description:	(W) .XOR. $k \rightarrow$ (W) Z 11 1010 kkkk kkkk The contents of the W register are	Operation: Status Affected: Encoding:	(W) .XOR. (f) \rightarrow (destination) Z
	XOR'ed with the eight bit literal 'k'. The result is placed in the W regis- ter.	Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1	Words:	1
Cycles: Q Cycle Activity:	1 Q1 Q2 Q3 Q4	Cycles: Q Cycle Activity:	1 Q1 Q2 Q3 Q4
	Decode Read Process Write to literal 'k' data W		Decode Read Process Write to destination
Example:	XORLW 0xAF		
	Before Instruction	Example	XORWF REG 1
	W = 0xB5		Before Instruction
	After Instruction W = 0x1A		$\begin{array}{rcl} REG &=& 0xAF \\ W &=& 0xB5 \end{array}$
			After Instruction
			REG = 0x1A W = 0xB5

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC MCU. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

10.11 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC MCU series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

10.12 <u>C Compiler (MPLAB-C17)</u>

The MPLAB-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC17CXXX family of microcontrollers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display.

10.13 <u>Fuzzy Logic Development System</u> (*fuzzy*TECH-MP)

*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, Edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

10.14 <u>MP-DriveWay™ – Application Code</u> <u>Generator</u>

MP-DriveWay is an easy-to-use Windows-based Application Code Generator. With MP-DriveWay you can visually configure all the peripherals in a PIC device and, with a click of the mouse, generate all the initialization and many functional code modules in C language. The output is fully compatible with Microchip's MPLAB-C C compiler. The code produced is highly modular and allows easy integration of your own code. MP-DriveWay is intelligent enough to maintain your code through subsequent code generation.

10.15 <u>SEEVAL[®] Evaluation and</u> <u>Programming System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in trade-off analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

10.16 <u>KEELOQ[®] Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

10.3 DC CHARACTERISTICS:

PIC16F84, PIC16F83 (Commercial, Industrial) PIC16I F84 PIC16I F83 (Commercial Industrial)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PIC16LF84, PIC16LF83 (Commercial, Industrial)							
-40°C \leq TA \leq +85°C (industrial)Porential operating voltage VDD range as described in DC spec Section 10.1 and Section 10.2.Parameter ter No.SymCharacteristicMinTyptMaxUnitsConditionsD030Input Low Voltage I/O portsInput Low Voltage I/O portsVil.Input Low Voltage I/O portsVil.Vil.ConditionsD030with TTL buffer With CLR, RA4/T0CKIVss-0.8V4.5 V \leq Vpb \leq 5.5 V(4)D031 D033with Schmitt Trigger buffer VII.Vss-0.2 VbpVentire Tange(4)D033 D034OSC1 (XT, HS and LP modes)(1)Vss-0.3 VbpVentire Tange(4)D040 D040AVIHInput High Voltage I/O portsVbpVD041 D042With TTL buffer (RC mode)2.4-VppVD043 D050OSC1 (XT, HS and LP modes)(1) (RC mode)0.4 SVbp VppVppVentire range(4)D044 D044with Schmitt Trigger buffer (RC mode)0.4 SVbp VppVppVentire range(4)D043 D050VHYS Hysteresis of Schmitt Trigger inputs-VppVVbpsD060 D061IIL I/O portsInput Leakage Current(2/3) OSC1±1µA VSs \leq VPIN \leq VDD VSs \leq VPIN \leq VDD VSS $-±1µAVSS \leq VPIN \leq VDDVSS VppVppD060IILI/O ports±1$	Standard Operating Conditions (unless otherwise stated DC Characteristics $0^{\circ}C_{1} < T_{2} < 10^{\circ}C_{1}$ (commercial)							
Operating voltage VDD range as described in DC spec Section 10.1 and Section 10.2.Parameter No.SymCharacteristicMinTyptMaxUnitsConditionsD030Input Low Voltage I/O portsInput Low Voltage 								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Section	0.1 and	d Section	10.2.	
No.SymCharacteristicMinTyp†MaxUnitsConditionsD030Input Low VoltageI/O portsInput Low VoltageInput Low VoltageInput Low VoltageInput Low VoltageD030With TTL bufferVss-0.8V4.5 V \leq VBB \leq 5.5 V ⁽⁴⁾ D031with Schmitt Trigger bufferVss-0.16VDDVD032MCLR, RA4/T0CKIVss-0.2VDDVD033OSC1 (XT, HS and LP modes) ⁽¹⁾ Vss-0.3VDDVD034OSC1 (RC mode)Vss-0.1VDDVD040with Schmitt Trigger buffer0.48VDD-VDDVD041with Schmitt Trigger buffer0.48VDD-VbDVentre range ⁽⁴⁾ D042MCLR, RA4/T0CKI, OSC10.85Ventre rangeVentre rangeVentre rangeD043OSC1 (XT, HS and LP modes) ⁽¹⁾ 0.7VDDVVentire rangeD044With Schmitt Trigger buffer0.45VDDVbDVentire rangeD043OSC1 (XT, HS and LP modes) ⁽¹⁾ 0.7VDDVVDDSchmitt Trigger inputsD050VHYSHysteresis of Schmitt Trigger inputsTBD-VD060IILI/O ports- \pm 1 μ AVss \leq VPIN \leq VDD, Pin at hi-impedanceD061MCLR, RA4/T0CRI \pm 5 μ AVss \leq VPIN \leq VDD, VIN \leq VDDD063OSC1MCLR, RA4/T0CRI \pm 1 μ A </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Sym	Characteristic	Min	Typt	Мах	Units	Conditions
VILI/O ports with TTL bufferVss-0.8V4.5 V \leq VBb \leq 5.5 V ⁽⁴⁾ entire range ⁽⁴⁾ entire range ⁽⁴⁾ D031with Schmitt Trigger bufferVss-0.16VDDVD032MCLR, RA4/T0CKIVss-0.2VDDVD033OSC1 (XT, HS and LP modes) ⁽¹⁾ Vss-0.3VDDVD034OSC1 (RC mode)Vss-0.16VDDVD040OSC1 (RC mode)Vss-0.1VDDVD044With TTL buffer2.4-VDDVD040with Schmitt Trigger buffer0.48VDD-VDDVD041with Schmitt Trigger buffer0.45VDDVbDVentire range ⁽⁴⁾ D042MCLR, RA4/T0CKI, OSC10.85VDDVDDVD043OSC1 (XT, HS and LP modes) ⁽¹⁾ 0.7VpDVpDVD050VHYSHysteresis of Schmitt Trigger inputsTBD-VD070IPURBPORTB weak pull-up current50250*400*µAD060IILI/O ports-±1µAVss ≤ VPIN ≤ VDD, Pin at hi-impedanceD061MCLR, RA4/T0CKI±5µAVss ≤ VPIN ≤ VDD, Vin ≤ VDD, Pin at hi-impedance		-						4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		VIL						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D030		•	Vss	_	0.8	v	$4.5 V \le VDD \le 5.5 V^{(4)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D030A			Vss	_	0.16VDD	V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D031		with Schmitt Trigger buffer	Vss	_	0.2VDD	V	entire range
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D032		MCLR, RA4/T0CKI	Vss	—	0.2VDD	V	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D033		OSC1 (XT, HS and LP modes) ⁽¹⁾	Vss	—	0.3VDD	v <	$\langle \rangle \land \rangle$
VIHI/O ports-D040with TTL buffer2.4-D040Awith Schmitt Trigger buffer0.48VDD-D041with Schmitt Trigger buffer0.45VDDVbDD042MCLR, RA4/TOCKI, OSC10.85VbDD043OSC1 (XT, HS and LP modes) ⁽¹⁾ 0.7VDDVpDD050VHYSHysteresis of Schmitt Trigger inputsTBD-D070IPURBPORTB weak pull-up current50*250*D060IILI/O ports- ± 1 D061MCLR, RA4/TOCKI ± 5 D063OSC1 ± 5	D034		OSC1 (RC mode)	Vss	—	0.1VDD	V	\backslash \langle \checkmark
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Viн	I/O ports		—		$\left \right\rangle$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			with TTL buffer		—		\	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					~		$\langle \mathbf{v} \rangle$	U
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-				$\left \left\langle \cdot\right\rangle \right\rangle$			entire range
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D042				$\overline{}$	ADD	V	
Schmitt Trigger inputsD070IPURBPORTB weak pull-up current 50^{*} 250^{*} 400^{*} μA $VDD = 5.0V, VPIN = VSS$ D060IILI/O ports $ \pm 1$ μA $Vss \leq VPIN \leq VDD,$ Pin at hi-impedanceD061 \overline{MCLR} , RA4/T0CKI $ \pm 5$ μA $Vss \leq VPIN \leq VDD,$ Pin at hi-impedanceD063 $OSC1$ $ \pm 5$ μA $Vss \leq VPIN \leq VDD,$ VDD	D043		OSC1 (XT, HS and LP modes) ⁽¹⁾	0.7 Vpd	$\langle - \rangle$	VDD	V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D050	VHYS	5	TBD	Ĺ	\geq –	V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D070	Ιοιιοο		50*	250*	400*		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0070	IFUND		1 201	×90	400	μΛ	VDD = 3.0V, VFIN = V33
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D060	Iu	\ \ \	$\backslash \nearrow$	[+1	ΠА	Vss < Vpin < Vdd
D063 OSC1 $ \pm 5$ μ A Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration	2000					<u> </u>	μ	
and LP osc configuration	D061		MCLR, RA4/TOCK	> -	—	±5	μA	$Vss \leq V PIN \leq V DD$
	D063		OSC1	—	—	±5	μA	$Vss \leq VPIN \leq VDD, XT, HS$
								and LP osc conliguration
	080	Voi		_	_	0.6	v	IOL = 8.5 mA, VDD = 4.5V
		VOL		_	_		-	IOL = 0.5 mA, VDD = 4.5 V IOL = 1.6 mA, VDD = 4.5 V
Output-High Voltage	2000					0.0		102 - 1.0 Hint, VDD - 4.0V
	D090	VOH		VDD-0.7	_	_	v	ІОН = -3.0 mA, VDD = 4.5V
				-	_	_		IOH = -1.3 mA, VDD = 4.5 V

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. Do not drive the PIC16F8X with an external clock while the device is in RC mode, or chip damage may result.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- **3:** Negative current is defined as coming out of the pin.
- 4: The user may choose the better of the two specs.

11.3 DC CHARACTERISTICS:

PIC16CR84, PIC16CR83 (Commercial, Industrial) PIC16LCR84, PIC16LCR83 (Commercial, Industrial)

DC Characteristics All Pins Except Power Supply Pins				Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial)Operating voltage VDD range as described in DC specSection 11.1 and Section 11.2.				
Parame- ter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
		Input Low Voltage					\wedge	
	VIL	I/O ports					$\langle \rangle$	
D030		with TTL buffer	Vss	_	0.8	V	4.5 V ≤ V dd ≤ 5 5 V ⁽⁴⁾	
D030A			Vss	_	0.16VDD	V	entire range ⁽⁴⁾	
D031		with Schmitt Trigger buffer	Vss	_	0.2VDD	V	entire range	
D032		MCLR, RA4/T0CKI	Vss	_	0.2Vdd	٧ <		
D033		OSC1 (XT, HS and LP modes) ⁽¹⁾	Vss	—	0.3Vdd	v		
D034		OSC1 (RC mode)	Vss	—	0.1VDD	V.		
		Input High Voltage				N	\searrow	
	VIH	I/O ports		—	\land	$\backslash \vee$	\sim	
D040 D040A		with TTL buffer	2.4 0.48Vdd	-		V	4.5 V \leq VDD \leq 5.5V ⁽⁴⁾ entire range ⁽⁴⁾	
D041		with Schmitt Trigger buffer	0.45VDD	7 '	VOD	\geq	entire range	
D042		MCLR, RA4/T0CKI, OSC1 (RC mode)	0.85 VDQ	$\left\langle -\right\rangle$	VOD	V		
D043		OSC1 (XT, HS and LP modes) ⁽¹⁾	0.7 YDD	Ĺ		V		
D050	VHYS	Hysteresis of Schmitt Trigger inputs	TBD))	—	V		
D070	IPURB	PORTB weak pull-up current	50*~/	250*	400*	μA	VDD = 5.0V, VPIN = VSS	
		Input Leakage Current ^(2,3)	\sim					
D060	lı∟	I/O ports	> -	—	±1	μA	$\label{eq:VSS} \begin{split} \text{Vss} &\leq \text{VPIN} \leq \text{VDD}, \\ \text{Pin at hi-impedance} \end{split}$	
D061		MCLR, BA4/70CKI	—	_	±5	μA	$Vss \leq V PIN \leq V DD$	
D063		OSC1	—	—	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration	
		Output Low Voltage						
D080	Vol	1/O ports	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5 V	
D083		OSC2/CLKOUT	—	_	0.6	V	IOL = 1.6 mA, VDD = 4.5 V	
		Qutput High Voltage						
D090 <	VQH)	I/O ports ⁽³⁾	Vdd-0.7	—	—	V	IOH = -3.0 mA, VDD = 4.5V	
D092	\sim	OSC2/CLKOUT	VDD-0.7	—	—	V	IOH = -1.3 mA, VDD = 4.5V	

These parameters are characterized but not tested.

† Data not tested. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. Do not drive the PIC16CR8X with an external clock while the device is in RC mode, or chip damage may result.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

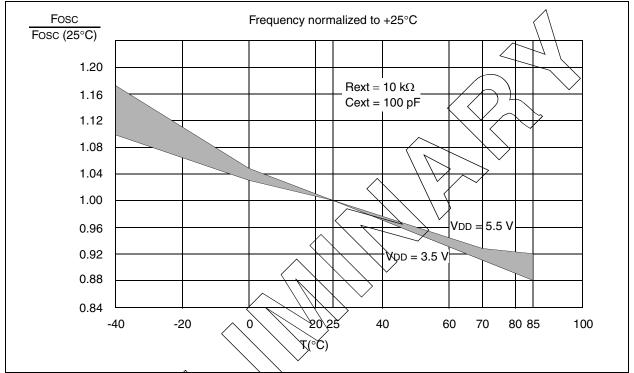
4: The user may choose the better of the two specs.

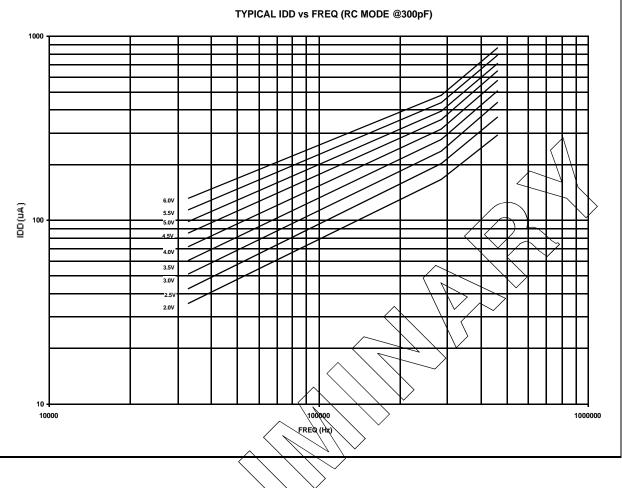
12.0 DC & AC CHARACTERISTICS GRAPHS/TABLES

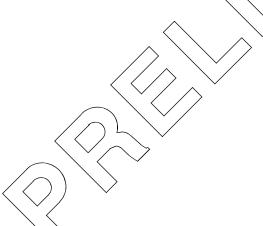
The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are guaranteed to operate properly only within the specified range.

The data presented in this section is a **statistical summary** of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at 25° C, while 'max' or 'min' represents (mean + 3σ) and (mean - 3σ) respectively, where σ is standard deviation.

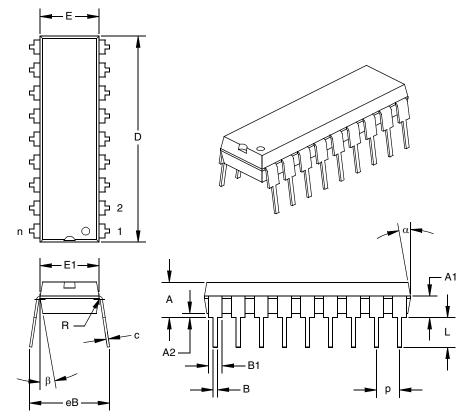



FIGURE 12-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE


	RC OSCILLATOR	
TABLE 12-1	RC OSCILLAI OR	FREQUENCIES

Cext	Rext	Average Fosc @ 5V, 25°C		
			Part to Part Variation	
20 pF	5 k	4.61 MHz	± 25%	
	~ 10 к	2.66 MHz	± 24%	
	100 k	311 kHz	\pm 39%	
	5 k	1.34 MHz	± 21%	
$\langle \langle \rangle \rangle$	10 k	756 kHz	± 18%	
\square	100 k	82.8 kHz	± 28%	
300 pF	5 k	428 kHz	± 13%	
\sim	10 k	243 kHz	± 13%	
	100 k	26.2 kHz	± 23%	

* Measured on DIP packages. The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation indicated is ±3 standard deviation from average value for full VDD range.


FIGURE 12-12: TYPICAL IDD vs. FREQUENCY (RC MODE @300PF, 25°C)

Package Type: K04-007 18-Lead Plastic Dual In-line (P) – 300 mil

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units			INCHES*		М	ILLIMETER	S
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
PCB Row Spacing			0.300			7.62	
Number of Pins	n		18			18	
Pitch	р		0.100			2.54	
Lower Lead Width	В	0.013	0.018	0.023	0.33	0.46	0.58
Upper Lead Width	B1 [†]	0.055	0.060	0.065	1.40	1.52	1.65
Shoulder Radius	R	0.000	0.005	0.010	0.00	0.13	0.25
Lead Thickness	С	0.005	0.010	0.015	0.13	0.25	0.38
Top to Seating Plane	А	0.110	0.155	0.155	2.79	3.94	3.94
Top of Lead to Seating Plane	A1	0.075	0.095	0.115	1.91	2.41	2.92
Base to Seating Plane	A2	0.000	0.020	0.020	0.00	0.51	0.51
Tip to Seating Plane	L	0.125	0.130	0.135	3.18	3.30	3.43
Package Length	D‡	0.890	0.895	0.900	22.61	22.73	22.86
Molded Package Width	E‡	0.245	0.255	0.265	6.22	6.48	6.73
Radius to Radius Width	E1	0.230	0.250	0.270	5.84	6.35	6.86
Overall Row Spacing	eB	0.310	0.349	0.387	7.87	8.85	9.83
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter.

[†] Dimension "B1" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B1."

[‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."

NOTES:

Ρ

Paging, Program Memory
PCL
PCLATH
PD
PICDEM-1 Low-Cost PIC MCU Demo Board70
PICDEM-2 Low-Cost PIC16CXX Demo Board70
PICDEM-3 Low-Cost PIC16CXXX Demo Board70
PICMASTER® In-Circuit Emulator69
PICSTART® Plus Entry Level Development System 69
Pinout Descriptions9
POR
Oscillator Start-up Timer (OST)
Power-on Reset (POR)
Power-up Timer (PWRT)
Time-out Sequence46
Time-out Sequence on Power-up44
TO
Port RB Interrupt
PORTA
PORTB
Power-down Mode (SLEEP)
Prescaler
PRO MATE® II Universal Programmer
Product Identification System

R

RBIF bit	
RC Oscillator	
Read-Modify-Write	
Register File	
Reset	
Reset on Brown-Out	

S

Saving W Register and STATUS in RAM	
SEEVAL® Evaluation and Programming System	
SLEEP	
Software Simulator (MPLAB-SIM)	
Special Features of the CPU	
Special Function Registers	
Stack	-
Overflows	
Underflows	
STATUS	7, 15, 42
т	
time-out	42
Timer0	
Switching Prescaler Assignment	31
T0IF	
Timer0 Module	27
TMR0 Interrupt	
TMR0 with External Clock	29
Timing Diagrams	
Time-out Sequence	
Timing Diagrams and Specifications	
TRISA	21
TRISB	
W	
W	
Wake-up from SLEEP	
Watchdog Timer (WDT)37	
WDT	
Period	

Programming Considerations Time-out	
x	
ХТ	46
Z	
Zero bit	7

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager Total Pages Sent
RE:	Reader Response
From	n: Name
	Company
	Address
	City / State / ZIP / Country
٨٥٥	Telephone: () FAX: () lication (optional): FAX: ()
• •	
vvou	Ild you like a reply?YN
Devi	ice: PIC16F8X Literature Number: DS30430D
Questions:	
1. \	What are the best features of this document?
-	
2. 1	How does this document meet your hardware and software development needs?
-	
-	
3.	Do you find the organization of this data sheet easy to follow? If not, why?
-	
4.	What additions to the data sheet do you think would enhance the structure and subject?
-	
5.	What deletions from the data sheet could be made without affecting the overall usefulness?
0.	
-	
6. I	Is there any incorrect or misleading information (what and where)?
-	
7. I	How would you improve this document?
-	
-	
8. I	How would you improve our software, systems, and silicon products?