

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2014110	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	$4V \sim 6V$
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f84-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1 PIC16F8X FAMILY OF DEVICES

		PIC16F83	PIC16CR83	PIC16F84	PIC16CR84
Clock	Maximum Frequency of Operation (MHz)	10	10	10	10
	Flash Program Memory	512	—	1K	—
	EEPROM Program Memory	—	—	—	—
Memory	ROM Program Memory	—	512	—	1K
	Data Memory (bytes)	36	36	68	68
	Data EEPROM (bytes)	64	64	64	64
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	TMR0
	Interrupt Sources	4	4	4	4
	I/O Pins	13	13	13	13
Features	Voltage Range (Volts)	2.0-6.0	2.0-6.0	2.0-6.0	2.0-6.0
	Packages	18-pin DIP, SOIC	18-pin DIP, SOIC	18-pin DIP, SOIC	18-pin DIP, SOIC

All PIC[®] Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16F8X Family devices use serial programming with clock pin RB6 and data pin RB7.

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture. This architecture has the program and data accessed from separate memories. So the device has a program memory bus and a data memory bus. This improves bandwidth over traditional von Neumann architecture where program and data are fetched from the same memory (accesses over the same bus). Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. PIC16CXX opcodes are 14-bits wide, enabling single word instructions. The full 14-bit wide program memory bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions execute in a single cycle except for program branches.

The PIC16F83 and PIC16CR83 address 512 x 14 of program memory, and the PIC16F84 and PIC16CR84 address 1K x 14 program memory. All program memory is internal.

The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers including the program counter are mapped in the data memory. An orthogonal (symmetrical) instruction set makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16CXX simple yet efficient. In addition, the learning curve is reduced significantly.

Pin Name	DIP No.	SOIC No.	l/O/P Type	Buffer Type	Description
OSC1/CLKIN	16	16	Ι	ST/CMOS (3)	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	15	0		Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR	4	4	I/P	ST	Master clear (reset) input/programming voltage input. This pin is an active low reset to the device.
					PORTA is a bi-directional I/O port.
RA0	17	17	I/O	TTL	
RA1	18	18	I/O	TTL	
RA2	1	1	I/O	TTL	
RA3	2	2	I/O	TTL	
RA4/T0CKI	3	3	I/O	ST	Can also be selected to be the clock input to the TMR0 timer/ counter. Output is open drain type.
					PORTB is a bi-directional I/O port. PORTB can be software pro- grammed for internal weak pull-up on all inputs.
RB0/INT	6	6	I/O	TTL/ST ⁽¹⁾	RB0/INT can also be selected as an external interrupt pin.
RB1	7	7	I/O	TTL	
RB2	8	8	I/O	TTL	
RB3	9	9	I/O	TTL	
RB4	10	10	I/O	TTL	Interrupt on change pin.
RB5	11	11	I/O	TTL	Interrupt on change pin.
RB6	12	12	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.
RB7	13	13	I/O	TTL/ST (2)	Interrupt on change pin. Serial programming data.
Vss	5	5	Р	—	Ground reference for logic and I/O pins.
Vdd	14	14	Р	—	Positive supply for logic and I/O pins.
Legend: I= input	0 = 0 — = N	utput lot used		/O = Input/Out	•

TABLE 3-1 PIC16F8X PINOUT DESCRIPTION

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

4.2.2.2 OPTION_REG REGISTER

The OPTION_REG register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external INT interrupt, TMR0, and the weak pull-ups on PORTB.

FIGURE 4-1: OPTION_REG REGISTER (ADDRESS 81h)

Note: When the prescaler is assigned to the WDT (PSA = '1'), TMR0 has a 1:1 prescaler assignment.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	R = Readable bit			
bit7							bit0	W = Writable bit			
								U = Unimplemented bit, read as '0'			
								- n = Value at POR reset			
bit 7:	RBPU : PORTB Pull-up Enable bit										
Dit 7.	1 = PORTB pull-ups are disabled										
	0 = PORTB pull-ups are enabled (by individual port latch values)										
bit 6:	INTEDG:				·		,				
bit 0.	1 = Interru	•	•		nin						
	0 = Interru										
bit 5:	TOCS: TM				F.						
Dit J.	1 = Transit										
	0 = Interna			•	OUT)						
bit 4:	TOSE: TM		•								
DIL 4.					on RA4/T00						
					on RA4/T00						
bit 3:	PSA: Pres		•			p					
DIL 3.	1 = Presca										
	0 = Presca										
hit 2 0.	PS2:PS0:	•									
bit <u>∠</u> -0.											
	Bit Value	TMR0 Ra	te WD	Γ Rate							
	000	1:2	1 :								
	001	1:4	1:								
	010 011	1:8		: 4 : 8							
	100	1 : 16 1 : 32		16							
	101	1:64		32							
	110	1 : 128		64							
	111	1 : 256	1:	128							

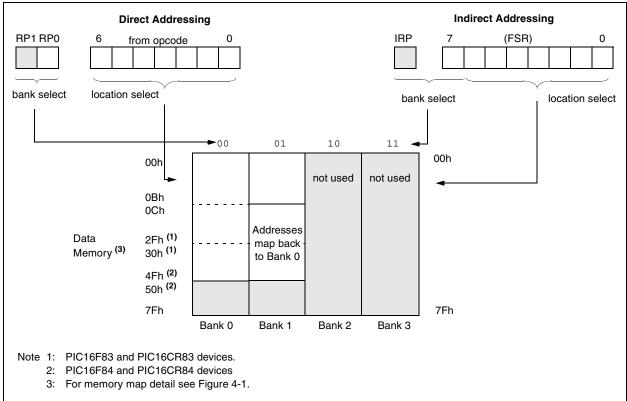
4.5 Indirect Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 4-1: INDIRECT ADDRESSING

- Register file 05 contains the value 10h
- Register file 06 contains the value 0Ah
- Load the value 05 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 06)
- A read of the INDF register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).


FIGURE 4-1: DIRECT/INDIRECT ADDRESSING

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

	movlw	0x20	;initialize pointer
	movwf	FSR	; to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-1. However, IRP is not used in the PIC16F8X.

5.3 I/O Programming Considerations

5.3.1 BI-DIRECTIONAL I/O PORTS

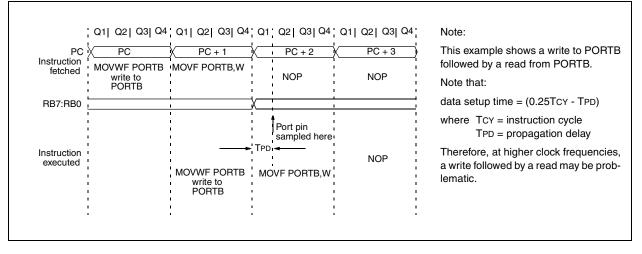
Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (i.e., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch is unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (i.e., BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output current may damage the chip.

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-5). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such that the pin voltage stabilizes (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.


Example 5-1 shows the effect of two sequential read-modify-write instructions (e.g., ${\tt BCF}\,,\,\,{\tt BSF},\, etc.)$ on an I/O port.

EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings: PORTB<7:4> Inputs ; PORTB<3:0> Outputs ;PORTB<7:6> have external pull-ups and are ;not connected to other circuitry

'								
;					PORT	latch	PORT	pins
;								
	BCF	PORTB,	7	;	01pp	ppp	11pp	ppp
	BCF	PORTB,	6	;	10pp	ppp	11pp	ppp
	BSF	STATUS	, RPO	;				
	BCF	TRISB,	7	;	10pp	ppp	11pp	ppp
	BCF	TRISB,	6	;	10pp	ppp	10pp	ppp
:								

;Note that the user may have expected the ;pin values to be 00pp ppp. The 2nd BCF ;caused RB7 to be latched as the pin value ;(high).

FIGURE 5-5: SUCCESSIVE I/O OPERATION

7.2 EECON1 and EECON2 Registers

EECON1 is the control register with five low order bits physically implemented. The upper-three bits are nonexistent and read as '0's.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a $\overline{\text{MCLR}}$ reset or a WDT time-out reset during normal operation. In these situations, following reset, the user can check the WRERR bit and rewrite the location. The data and address will be unchanged in the EEDATA and EEADR registers.

Interrupt flag bit EEIF is set when write is complete. It must be cleared in software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the Data EEPROM write sequence.

7.3 Reading the EEPROM Data Memory

To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1<0>). The data is available, in the very next cycle, in the EEDATA register; therefore it can be read in the next instruction. EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

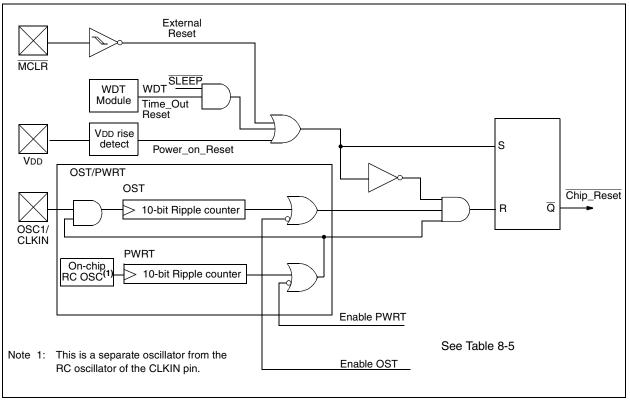
EXAMPLE 7-1: DATA EEPROM READ

BCF	STATUS, RPO	; Bank 0
MOVLW	CONFIG_ADDR	;
MOVWF	EEADR	; Address to read
BSF	STATUS, RPO	; Bank 1
BSF	EECON1, RD	; EE Read
BCF	STATUS, RPO	; Bank 0
MOVF	EEDATA, W	; W = EEDATA

7.4 Writing to the EEPROM Data Memory

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte.

EXAMPLE 7-1: DATA EEPROM WRITE


	BSF BCF	STATUS, RPO INTCON, GIE	'	Bank 1 Disable INTs.
	BSF	EECON1, WREN	;	Enable Write
	MOVLW	55h	;	
	MOVWF	EECON2	;	Write 55h
p e	MOVLW	AAh	;	
lequired equence	MOVWF	EECON2	;	Write AAh
ng ng	BSF	EECON1,WR	;	Set WR bit
Se			;	begin write
	BSF	INTCON, GIE	;	Enable INTs.

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

FIGURE 8-8: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

8.4 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, just tie the \overline{MCLR} pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A minimum rise time for VDD must be met for this to operate properly. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be meet to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting.*"

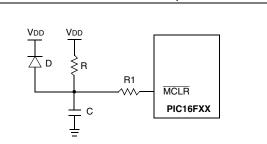
The POR circuit does not produce an internal reset when VDD declines.

8.5 Power-up Timer (PWRT)

The Power-up Timer (PWRT) provides a fixed 72 ms nominal time-out (TPWRT) from POR (Figure 8-10, Figure 8-11, Figure 8-12 and Figure 8-13). The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level (Possible exception shown in Figure 8-13).

A configuration bit, PWRTE, can enable/disable the PWRT. See either Figure 8-1 or Figure 8-2 for the operation of the PWRTE bit for a particular device.

The power-up time delay TPWRT will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.


8.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle delay (from OSC1 input) after the PWRT delay ends (Figure 8-10, Figure 8-11, Figure 8-12 and Figure 8-13). This ensures the crystal oscillator or resonator has started and stabilized.

The OST time-out (TOST) is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

When VDD rises very slowly, it is possible that the TPWRT time-out and TOST time-out will expire before VDD has reached its final value. In this case (Figure 8-13), an external power-on reset circuit may be necessary (Figure 8-9).

FIGURE 8-9: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- Note 1: External Power-on Reset circuit is required only if VDD power-up rate is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - R < 40 kΩ is recommended to make sure that voltage drop across R does not exceed 0.2V (max leakage current spec on MCLR pin is 5 μA). A larger voltage drop will degrade VIH level on the MCLR pin.
 - 3: R1 = 100Ω to 1 k Ω will limit any current flowing into MCLR from external capacitor C in the event of an MCLR pin breakdown due to ESD or EOS.

8.7 <u>Time-out Sequence and Power-down</u> Status Bits (TO/PD)

On power-up (Figure 8-10, Figure 8-11, Figure 8-12 and Figure 8-13) the time-out sequence is as follows: First PWRT time-out is invoked after a POR has expired. Then the OST is activated. The total time-out will vary based on oscillator configuration and PWRTE configuration bit status. For example, in RC mode with the PWRT disabled, there will be no time-out at all.

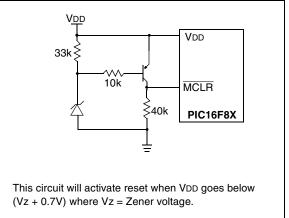
TABLE 8-5TIME-OUT IN VARIOUSSITUATIONS

Oscillator	Powe	Wake-up	
Configuration	PWRT Enabled	PWRT Disabled	from SLEEP
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024Tosc
RC	72 ms	_	_

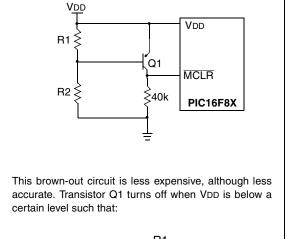
Since the time-outs occur from the POR reset pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high, execution will begin immediately (Figure 8-10). This is useful for testing purposes or to synchronize more than one PIC16F8X device when operating in parallel.

Table 8-6 shows the significance of the $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits. Table 8-3 lists the reset conditions for some special registers, while Table 8-4 lists the reset conditions for all the registers.

TABLE 8-6STATUS BITS AND THEIRSIGNIFICANCE


то	PD	Condition					
1	1	Power-on Reset					
0	x	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$					
x	0	Illegal, PD is set on POR					
0	1	WDT Reset (during normal operation)					
0	0	WDT Wake-up					
1	1	MCLR Reset during normal operation					
1	0	MCLR Reset during SLEEP or interrupt					
		wake-up from SLEEP					

8.8 Reset on Brown-Out


A brown-out is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be reset in the event of a brown-out.

To reset a PIC16F8X device when a brown-out occurs, external brown-out protection circuits may be built, as shown in Figure 8-14 and Figure 8-15.

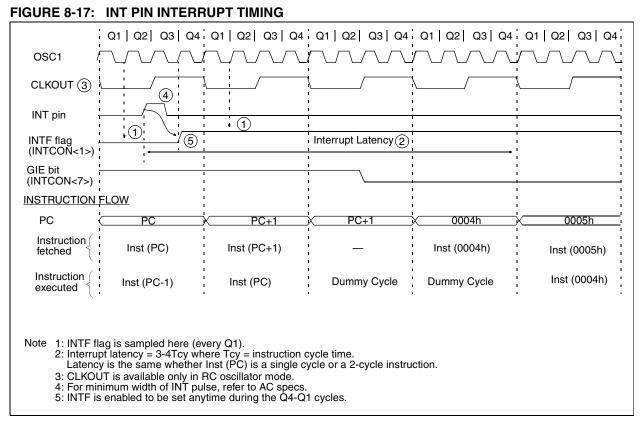

FIGURE 8-14: BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 8-15: BROWN-OUT PROTECTION CIRCUIT 2

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

8.9.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if INTEDG bit (OPTION_REG<6>) is set, or falling, if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing control bit INTE (INTCON<4>). Flag bit INTF must be cleared in software via the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake the processor from SLEEP (Section 8.12) only if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether the processor branches to the interrupt vector following wake-up.

8.9.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in TMR0 will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>) (Section 6.0).

8.9.3 PORT RB INTERRUPT

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<3>) (Section 5.2).

Note 1: For a change on the I/O pin to be recognized, the pulse width must be at least TCY wide.

Mnemonic,		Description	Cycles		14-Bit	Opcode	Э	Status	Notes
Operan	ds			MSb			LSb	Affected	
BYTE-ORIENTED FILE REGISTER OPERATIONS									
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
		BIT-ORIENTED FILE REGIS	TER OPER	RATIO	NS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CONTRO	L OPERAT	IONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	レレレレ	kkkk	Z	

TABLE 9-2 PIC16FXX INSTRUCTION SET

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

BTFSS	Bit Test f, Skip if Set		CALL	Call Sub	proutine					
Syntax:	[<i>label</i>] BTFSS f,b				Syntax:	[<i>label</i>] CALL k				
Operands:	$0 \le f \le 127$			Operands:	$0 \le k \le 2$	$0 \le k \le 2047$				
	0 ≤ b < 7				Operation:	(PC)+ 1-	→ TOS,			
Operation:	skip if (f)	-) = 1				$k \rightarrow PC <$,	50 /0		
Status Affected:	None				.	,	1<4:3>) -	→ PC<12	:11>	
Encoding:	01 1	11bb	bfff	ffff	Status Affected:	None			1 1	
Description:	If bit 'b' in regi			ne next	Encoding:	10	0kkk	kkkk	kkkk	
Words:	instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2TCY instruction.				Description:	(PC+1) is eleven bit into PC bi the PC ar	pushed or immediate ts <10:0>. e loaded fr	st, return a nto the stace address i The upper com PCLAT	ck. The s loaded r bits of	
Cycles:	1(2)						ycle instru	ction.		
Q Cycle Activity:	Q1	Q2	Q3	Q4	Words:	1				
		Read	Process	No-Operat	Cycles:	2	0.0		<u>.</u>	
	re	egister 'f'	data	ion	Q Cycle Activity:	Q1	Q2	Q3	Q4	
If Skip:	(2nd Cycle))			1st Cycle	Decode	Read literal 'k',	Process data	Write to PC	
	Q1	Q2	Q3	Q4			Push PC to Stack			
	No-Operat ion	o-Operati on	No-Opera tion	No-Operat ion	2nd Cycle	No-Opera tion	No-Opera tion	No-Opera tion	No-Operat ion	
Example			FLAG,1 PROCESS	CODE	Example	HERE	CALL	THERE		
	TRUE •	•	-	_		Before Ir	nstruction			
	•	•				After Ins	-	ddress HE	RE	
	Before Instru	ruction						ddress TH	IERE	
	PC = address HERE After Instruction					TOS = A	ddress HE	IRE+1		
	if Fl PC	FLAG<1> C = a	= 0, address F#	ALSE						
	if Fl	-LAG<1>								
	PC	C = 6	address TI	RUE						

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC MCU. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

10.11 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC MCU series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

10.12 <u>C Compiler (MPLAB-C17)</u>

The MPLAB-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC17CXXX family of microcontrollers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display.

10.13 <u>Fuzzy Logic Development System</u> (*fuzzy*TECH-MP)

*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, Edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

10.14 <u>MP-DriveWay™ – Application Code</u> <u>Generator</u>

MP-DriveWay is an easy-to-use Windows-based Application Code Generator. With MP-DriveWay you can visually configure all the peripherals in a PIC device and, with a click of the mouse, generate all the initialization and many functional code modules in C language. The output is fully compatible with Microchip's MPLAB-C C compiler. The code produced is highly modular and allows easy integration of your own code. MP-DriveWay is intelligent enough to maintain your code through subsequent code generation.

10.15 <u>SEEVAL[®] Evaluation and</u> <u>Programming System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in trade-off analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

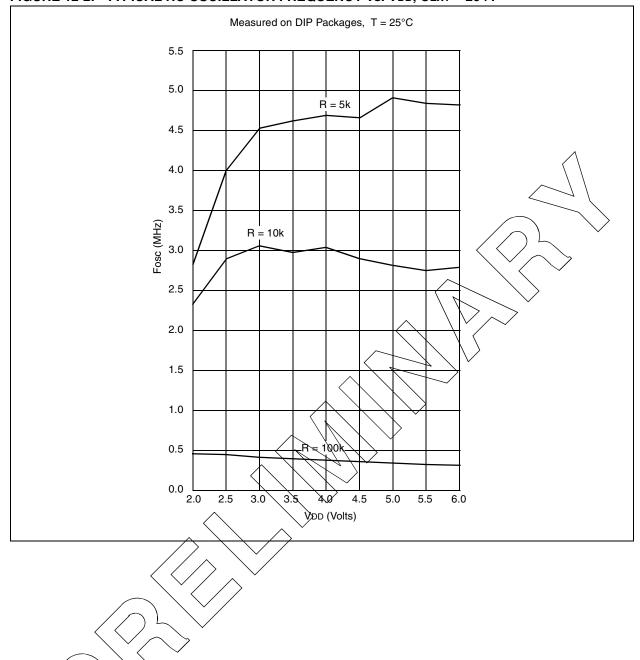
10.16 <u>KEELOQ[®] Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

TABLE 10-1CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

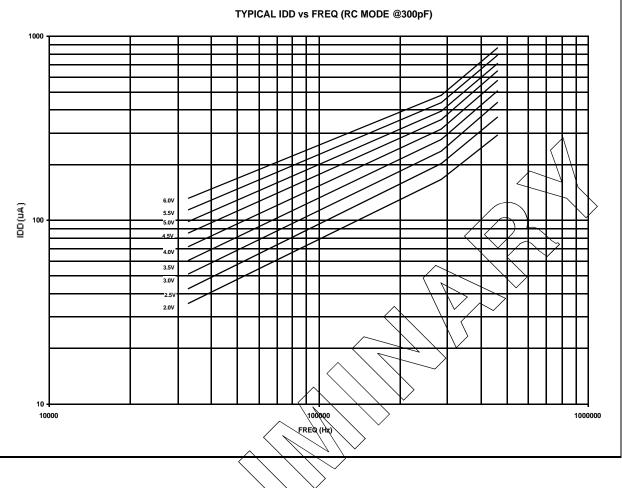
OSC	PIC16F84-04 PIC16F83-04	PIC16F84-10 PIC16F83-10	PIC16LF84-04 PIC16LF83-04	
RC	VDD: 4.0V to 6.0V IDD: 4.5 mA max. at 5.5V IPD: 14 μA max. at 4V WDT dis Freq: 4.0 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 5.5V WDT dis Freq: 40 MHz max.	VDD: 2.0V to 6.0V IDD: 4.5 mA max. at 5.5V IPD: 7.0 μA max. at 2V WDT dis Freq: 2.0 MHz max.	
XT	VDD: 4.0V to 6.0V IDD: 4.5 mA max. at 5.5V IPD: 14 μA max. at 4V WDT dis Freq: 4.0 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 5.5V WDT dis Freq: 4.0 MHz max.	VDD: 2.0V to 6.0V IDD: 4.5 mA max. at 555V IPD: 7.0 μA max. at 2V WDT dis Freq: 2.0 MHz max.	
HS	VDD: 4.5V to 5.5V IDD: 4.5 mA typ. at 5.5V IPD: 1.0 μA typ. at 4.5V WDT dis Freq: 4.0 MHz max.	VDD: 4.5V to 5.5V IDD: 10 mA max. at 5.5V typ. IPD: 1.0 μA typ. at 4.5V WDT dis Freq: 10 MHz max.	Do not use in HS mode	
LP	VDD: 4.0V to 6.0V IDD: 48 μA typ. at 32 kHz, 2.0V IPD: 0.6 μA typ. at 3.0V WDT dis Freq: 200 kHz max.	Do not use in LP mode	VDD: 2.0V to 6.0V IDD: 45 μA max. at 32 kHz, 2.0V IRD: 7 μA max, at 2.0V WDT dis Freq: 200 kHz max.	

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.


10.4 DC CHARACTERISTICS: PIC16F84, PIC16F83 (Commercial, Industrial) PIC16LF84, PIC16F83 (Commercial, Industrial)

DC Characteristics All Pins Except Power Supply Pins		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
D100	Cosc2	Capacitive Loading Specs on Output Pins OSC2 pin	_	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	Сю	All I/O pins and OSC2 (RC mode)	—	_	50	рF	
		Data EEPROM Memory					$\langle \vee \rangle \rangle$
D120	ED	Endurance	1M	10M	—	EAV	25°C at 5V
D121	Vdrw	VDD for read/write	VMIN	—	6.0	V	VMIN = Minimum operating
D122	TDEW	Erase/Write cycle time		10	2 0*	miş∖	
		Program Flash Memory		~			
D130	Eр	Endurance	100	1000		ÈXW	/
D131	Vpr	VDD for read	VMIN	$\langle \rangle$	6.0	V	VMIN = Minimum operating voltage
D132	VPEW	VDD for erase/write	4.5	$\langle - \rangle$	5.5	V	
D133	TPEW	Erase/Write cycle time	$ - \rangle$	10	\searrow	ms	

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

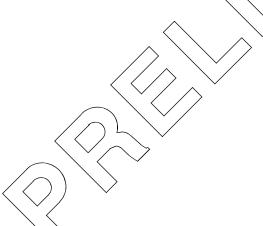

DS30430D-page 11-80

FIGURE 12-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 20 PF

FIGURE 12-12: TYPICAL IDD vs. FREQUENCY (RC MODE @300PF, 25°C)

APPENDIX C: WHAT'S NEW IN THIS DATA SHEET

Here's what's new in this data sheet:

- 1. DC & AC Characteristics Graphs/Tables section for PIC16F8X devices has been added.
- 2. An appendix on conversion considerations has been added. This explains differences for customers wanting to go from PIC16C84 to PIC16F84 or similar device.

APPENDIX D: WHAT'S CHANGED IN THIS DATA SHEET

Here's what's changed in this data sheet:

- 1. Errata information has been included.
- Option register name has been changed from OPTION to OPTION_REG. This is consistant with other data sheets and header files, and resolves the conflict between the OPTION command and OPTION register.
- 3. Errors have been fixed.
- 4. The appendix containing PIC16/17 microcontrollers has been removed.

Revision D (January 2013)

Added a note to each package drawing.

Ρ

Paging, Program Memory
PCL
PCLATH
PD
PICDEM-1 Low-Cost PIC MCU Demo Board70
PICDEM-2 Low-Cost PIC16CXX Demo Board70
PICDEM-3 Low-Cost PIC16CXXX Demo Board70
PICMASTER® In-Circuit Emulator69
PICSTART® Plus Entry Level Development System 69
Pinout Descriptions9
POR
Oscillator Start-up Timer (OST)
Power-on Reset (POR)
Power-up Timer (PWRT)
Time-out Sequence46
Time-out Sequence on Power-up44
TO
Port RB Interrupt
PORTA
PORTB
Power-down Mode (SLEEP)51
Prescaler
PRO MATE® II Universal Programmer
Product Identification System

R

RBIF bit	
RC Oscillator	
Read-Modify-Write	
Register File	
Reset	
Reset on Brown-Out	

S

Saving W Register and STATUS in RAM	
SEEVAL® Evaluation and Programming System	
SLEEP	
Software Simulator (MPLAB-SIM)	
Special Features of the CPU	
Special Function Registers	
Stack	-
Overflows	
Underflows	
STATUS	7, 15, 42
т	
time-out	42
Timer0	
Switching Prescaler Assignment	31
T0IF	
Timer0 Module	27
TMR0 Interrupt	
TMR0 with External Clock	29
Timing Diagrams	
Time-out Sequence	
Timing Diagrams and Specifications	
TRISA	
TRISB	
W	
W	
Wake-up from SLEEP	
Watchdog Timer (WDT)37	
WDT	
Period	

Programming Considerations Time-out	
x	
ХТ	46
Z	
Zero bit	7