

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f84-04i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.3 Program Counter: PCL and PCLATH

The Program Counter (PC) is 13-bits wide. The low byte is the PCL register, which is a readable and writable register. The high byte of the PC (PC<12:8>) is not directly readable nor writable and comes from the PCLATH register. The PCLATH (PC latch high) register is a holding register for PC<12:8>. The contents of PCLATH are transferred to the upper byte of the program counter when the PC is loaded with a new value. This occurs during a CALL, GOTO or a write to PCL. The high bits of PC are loaded from PCLATH as shown in Figure 4-1.

FIGURE 4-1: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 word block). Refer to the application note *"Implementing a Table Read"* (AN556).

4.3.2 PROGRAM MEMORY PAGING

The PIC16F83 and PIC16CR83 have 512 words of program memory. The PIC16F84 and PIC16CR84 have 1K of program memory. The CALL and GOTO instructions have an 11-bit address range. This 11-bit address range allows a branch within a 2K program memory page size. For future PIC16F8X program memory expansion, there must be another two bits to specify the program memory page. These paging bits come from the PCLATH<4:3> bits (Figure 4-1). When doing a CALL or a GOTO instruction, the user must ensure that these page bits (PCLATH<4:3>) are programmed to the desired program memory page. If a CALL instruction (or interrupt) is executed, the entire 13-bit PC is "pushed" onto the stack (see next section). Therefore, manipulation of the PCLATH<4:3> is not required for the return instructions (which "pops" the PC from the stack).

Note:	The PIC16F8X ignores the PCLATH<4:3>					
	bits, which are used for program memory					
	pages 1, 2 and 3 (0800h - 1FFFh). The					
	use of PCLATH<4:3> as general purpose					
	R/W bits is not recommended since this					
	may affect upward compatibility with					
	future products.					

4.4 Stack

The PIC16FXX has an 8 deep x 13-bit wide hardware stack (Figure 4-1). The stack space is not part of either program or data space and the stack pointer is not readable or writable.

The entire 13-bit PC is "pushed" onto the stack when a CALL instruction is executed or an interrupt is acknowledged. The stack is "popped" in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a push or a pop operation.

Note:	There are no instruction mnemonics
	called push or pop. These are actions that
	occur from the execution of the CALL,
	RETURN, RETLW, and RETFIE instruc-
	tions, or the vectoring to an interrupt
	address.

The stack operates as a circular buffer. That is, after the stack has been pushed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

If the stack is effectively popped nine times, the PC value is the same as the value from the first pop.

Note: There are no status bits to indicate stack overflow or stack underflow conditions.

5.2 PORTB and TRISB Registers

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. A '1' on any bit in the TRISB register puts the corresponding output driver in a hi-impedance mode. A '0' on any bit in the TRISB register puts the contents of the output latch on the selected pin(s).

Each of the PORTB pins have a weak internal pull-up. A single control bit can turn on all the pull-ups. This is done by clearing the RBPU (OPTION_REG<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The pins value in input mode are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of the pins are OR'ed together to generate the RB port change interrupt.

FIGURE 5-3: BLOCK DIAGRAM OF PINS RB7:RB4

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Read (or write) PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set the RBIF bit. Reading PORTB will end the mismatch condition, and allow the RBIF bit to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a key pad and make it possible for wake-up on key-depression (see AN552 in the Embedded Control Handbook).

Note 1: For a change on the I/O pin to be recognized, the pulse width must be at least TcY (4/fosc) wide.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

FIGURE 5-4: BLOCK DIAGRAM OF PINS RB3:RB0

7.2 EECON1 and EECON2 Registers

EECON1 is the control register with five low order bits physically implemented. The upper-three bits are nonexistent and read as '0's.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a $\overline{\text{MCLR}}$ reset or a WDT time-out reset during normal operation. In these situations, following reset, the user can check the WRERR bit and rewrite the location. The data and address will be unchanged in the EEDATA and EEADR registers.

Interrupt flag bit EEIF is set when write is complete. It must be cleared in software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the Data EEPROM write sequence.

7.3 Reading the EEPROM Data Memory

To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1<0>). The data is available, in the very next cycle, in the EEDATA register; therefore it can be read in the next instruction. EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 7-1: DATA EEPROM READ

BCF	STATUS, RPO	; Bank 0
MOVLW	CONFIG_ADDR	;
MOVWF	EEADR	; Address to read
BSF	STATUS, RPO	; Bank 1
BSF	EECON1, RD	; EE Read
BCF	STATUS, RPO	; Bank 0
MOVF	EEDATA, W	; W = EEDATA

7.4 Writing to the EEPROM Data Memory

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte.

EXAMPLE 7-1: DATA EEPROM WRITE

	BSF BCF BSF MOVLW	STATUS, RPO INTCON, GIE EECON1, WREN 55h	;;;;;	Bank 1 Disable INTs. Enable Write
Required Sequence	MOVWF MOVLW MOVWF BSF BSE	EECON2 AAh EECON2 EECON1,WR	;;;;;	Write 55h Write AAh Set WR bit begin write Enable INTs

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

TABLE 8-3 RESET CONDITION FOR PROGRAM COUNTER AND THE STATUS REGISTER

Condition	Program Counter	STATUS Register
Power-on Reset	000h	0001 1xxx
MCLR Reset during normal operation	000h	000u uuuu
MCLR Reset during SLEEP	000h	0001 0uuu
WDT Reset (during normal operation)	000h	0000 luuu
WDT Wake-up	PC + 1	uuu0 0uuu
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul 0uuu

Legend: u = unchanged, x = unknown.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

Register	Address	Power-on Reset	MCLR Reset during: – normal operation – SLEEP WDT Reset during nor- mal operation	Wake-up from SLEEP: – through interrupt – through WDT Time-out
W		xxxx xxxx	սսսս սսսս	սսսս սսսս
INDF	00h			
TMR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h	0000h	0000h	PC + 1 ⁽²⁾
STATUS	03h	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	04h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	05h	x xxxx	u uuuu	u uuuu
PORTB	06h	xxxx xxxx	uuuu uuuu	uuuu uuuu
EEDATA	08h	xxxx xxxx	uuuu uuuu	uuuu uuuu
EEADR	09h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCLATH	0Ah	0 0000	0 0000	u uuuu
INTCON	0Bh	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾
INDF	80h			
OPTION_REG	81h	1111 1111	1111 1111	uuuu uuuu
PCL	82h	0000h	0000h	PC + 1
STATUS	83h	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	84h	xxxx xxxx	uuuu uuuu	uuuu uuuu
TRISA	85h	1 1111	1 1111	u uuuu
TRISB	86h	1111 1111	1111 1111	uuuu uuuu
EECON1	88h	0 x000	0 q000	0 uuuu
EECON2	89h			
PCLATH	8Ah	0 0000	0 0000	u uuuu
INTCON	8Bh	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾

TABLE 8-4 RESET CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0',

q = value depends on condition.

Note 1: One or more bits in INTCON will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: Table 8-3 lists the reset value for each specific condition.

8.7 <u>Time-out Sequence and Power-down</u> Status Bits (TO/PD)

On power-up (Figure 8-10, Figure 8-11, Figure 8-12 and Figure 8-13) the time-out sequence is as follows: First PWRT time-out is invoked after a POR has expired. Then the OST is activated. The total time-out will vary based on oscillator configuration and PWRTE configuration bit status. For example, in RC mode with the PWRT disabled, there will be no time-out at all.

TABLE 8-5TIME-OUT IN VARIOUSSITUATIONS

Oscillator	Powe	Wake-up	
Configuration	PWRT Enabled	PWRT Disabled	from SLEEP
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024Tosc
RC	72 ms	—	_

Since the time-outs occur from the POR reset pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high, execution will begin immediately (Figure 8-10). This is useful for testing purposes or to synchronize more than one PIC16F8X device when operating in parallel.

Table 8-6 shows the significance of the $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits. Table 8-3 lists the reset conditions for some special registers, while Table 8-4 lists the reset conditions for all the registers.

TABLE 8-6STATUS BITS AND THEIR
SIGNIFICANCE

то	PD	Condition
1	1	Power-on Reset
0	x	Illegal, TO is set on POR
x	0	Illegal, PD is set on POR
0	1	WDT Reset (during normal operation)
0	0	WDT Wake-up
1	1	MCLR Reset during normal operation
1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

8.8 Reset on Brown-Out

A brown-out is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be reset in the event of a brown-out.

To reset a PIC16F8X device when a brown-out occurs, external brown-out protection circuits may be built, as shown in Figure 8-14 and Figure 8-15.

FIGURE 8-14: BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 8-15: BROWN-OUT PROTECTION CIRCUIT 2

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

PIC16F8X

BCF	Bit Clear	f			B	
Syntax:	[<i>label</i>] BC	[<i>label</i>] BCF f,b				
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ 0 \leq b \leq 7 \end{array}$	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$				
Operation:	$0 \rightarrow (f < b)$	>)			O	
Status Affected:	None				St	
Encoding:	01	00bb	bfff	ffff	Er	
Description:	Bit 'b' in re	gister 'f' is	s cleared.	•	De	
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process data	Write register 'f'	W C	
Example	BCF	FLAG_	REG, 7		Q	
	Before In After Inst	struction FLAG_RE ruction FLAG_RE	EG = 0xC7 EG = 0x47	,		

BTFSC	Bit Test,	Skip if Cl	ear	
Syntax:	[<i>label</i>] BT	FSC f,b		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	skip if (f<	b>) = 0		
Status Affected:	None			
Encoding:	01	10bb	bfff	ffff
Description:	If bit 'b' in register 'f' is '1' then the next instruction is executed. If bit 'b', in register 'f', is '0' then the next instruction is discarded, and a NOP is executed instead, making this a 2TcY instruction.			
Words:	1			
Cycles:	1(2)			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	No-Operat ion
If Skip:	(2nd Cyc	le)		
	Q1	Q2	Q3	Q4
	No-Operat ion	No-Operati on	No-Opera tion	No-Operat ion
Example	HERE FALSE TRUE	BTFSC GOTO •	FLAG,1 PROCESS_	_CODE
	Before Instruction PC = address HERE After Instruction if FLAG<1> = 0, PC = address TRUE if FLAG<1>=1, PC = address FALSE			

BSF	Bit Set f			
Syntax:	[<i>label</i>] BS	SF f,b		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$1 \rightarrow (f < b;$	>)		
Status Affected:	None			
Encoding:	01	01bb	bfff	ffff
Description:	Bit 'b' in re	gister 'f' is	s set.	
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write register 'f'
Example	BSF	FLAG_F	REG, 7	
	Before Instruction FLAG_REG = 0x0A			
	After Instruction FLAG_REG = 0x8A			

BTFSS	Bit Test	f, Skip if S	Set		CALL	Call Sub	oroutine		
Syntax:	[<i>label</i>] B⁻	FFSS f,b			Syntax:	[label]	CALL 4	K	
Operands:	$0 \le f \le 12$	27			Operands:	$0 \le k \le 2$	047		
	0 ≤ b < 7				Operation:	(PC)+ 1-	→ TOS,		
Operation:	skip if (f<	:b>) = 1				$k \rightarrow PC <$	<10:0>,	DO 40	
Status Affected:	None		-			(PCLAIF	1<4:3>) -	\rightarrow PC<12	:11>
Encoding:	01	11bb	bfff	ffff	Status Affected:	None	1		
Description:	If bit 'b' in	register 'f' is	s '0' then t	he next	Encoding:	10	0kkk	kkkk	kkkk
	If bit 'b' is discarded instead, m	'1', then the and a NOP aking this a	a. e next instr is execut a 2TCY ins	uction is ed truction.	Description:	Call Subre (PC+1) is eleven bit into PC bit	putine. First pushed or immediate ts <10:0>.	st, return ag nto the stag address i The upper	ddress ck. The s loaded r bits of
Words:	1					is a two c	ycle instru	ction.	TI. CALL
Cycles:	1(2)				Words:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4	Cycles:	2			
	Decode	Read register 'f'	Process data	No-Operat ion	Q Cycle Activity:	Q1	Q2	Q3	Q4
If Skip:	(2nd Cyc	cle)			1st Cycle	Decode	Read literal 'k',	Process data	Write to PC
	Q1	Q2	Q3	Q4	1		Push PC to Stack		
	No-Operat ion	No-Operati on	No-Opera tion	No-Operat ion	2nd Cycle	No-Opera tion	No-Opera tion	No-Opera tion	No-Operat ion
Example	HERE	BTFSC	FLAG,1	CODE	Example	HERE	CALL	THERE	
	TRUE	•	1110 0200	_0022		Before Ir	nstructior	ı	
		•				Aftor Inc	PC = A	ddress HE	RE
	Before In	etruction				Aller IIIS	PC = A	ddress TH	IERE
	Delore II	PC = a	ddress I	HERE			TOS = A	ddress HE	RE+1
	After Inst	truction							
		if FLAG<1>	> = 0,						
		if FLAG<1>	auoress F. > = 1.	ALSE					
		PC =	address T	RUE					

PIC16F8X

RLF	Rotate L	eft f thro	ough Cai	rry	RRF	Rotate R	light f th	rough C	arry
Syntax:	[label]		RLF f,	d	Syntax:	[label]	RRF f,	d	
Operands:	$0 \le f \le 12$ $d \in [0,1]$	27			Operands:	$0 \le f \le 12$ $d \in [0,1]$	27		
Operation:	See desc	ription b	elow		Operation:	See desc	cription b	elow	
Status Affected:	С				Status Affected:	С			
Encoding:	00	1101	dfff	ffff	Encoding:	0 0	1100	dfff	ffff
Description:	The conte one bit to Flag. If 'd' W register back in reg	nts of reg the left the is 0 the re . If 'd' is 1 gister 'f'.	ister 'f' are rough the esult is plac the result Register f	e rotated Carry ced in the is stored	Description:	The conte one bit to Flag. If 'd' W register back in re	nts of reg the right t is 0 the re r. If 'd' is 1 gister 'f'. $C \rightarrow $	ister 'f' are hrough the esult is pla the result Register f	e rotated e Carry ced in the is placed
Words:	1				Words:	1			
Cycles:	1				Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4	Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to destination		Decode	Read register 'f'	Process data	Write to destination
Example	RLF	REC	G1,0		Example	RRF		REG1,0	
	Before In	struction	1			Before In	structior	ı	
		REG1	= 111	0 0110			REG1	= 111	0 0110
	After Inst	ruction	= 0			After Inst	C truction	= 0	
		REG1	= 111	0 0110			REG1	= 111	0 0110
		C	= 110	0 1100			vv C	= 011	1 0011

PIC16F8X

SUBWF	Subtract	W from f							
Syntax:	[label]	SUBWF	f,d						
Operands:	$\begin{array}{l} 0\leq f\leq 12\\ d\in [0,1] \end{array}$	7							
Operation:	(f) - (W) \rightarrow (destination)								
Status Affected:	C, DC, Z								
Encoding:	00	0010	dfff	ffff					
Description:	Subtract (2 ister from r stored in th result is sto	's complen egister 'f'. I ne W regist pred back i	nent metho f 'd' is 0 the er. If 'd' is 1 n register 'f	d) W reg- e result is the '.					
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process data	Write to destination					
Example 1:	SUBWF		REG1,1						
	Before Instruction								
	REG1 W C Z	= = =	3 2 ? ?						
	After Instr	uction							
	REG1 W C Z	= = =	1 2 1; result is 0	positive					
Example 2:	Before Ins	struction							
	REG1 W C Z	= = =	2 2 ? ?						
	After Instr	uction							
	REG1 W C Z	= = =	0 2 1; result is 1	zero					
Example 3:	Before Ins	struction							
	REG1 W C Z	= = =	1 2 ? ?						
	After Instr	ruction							
	REG1 W C Z	= = =	0xFF 2 0; result is 0	negative					

SWAPF	Swap Nibbles in f									
Syntax:	[label] SWAPF f,d									
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$									
Operation:	(f<3:0>) - (f<7:4>) -	ightarrow (destin $ ightarrow$ (destin	ation- ation-	<7:4 <3:0	↓>),)>)					
Status Affected:	None									
Encoding:	00	1110	dff	f	ffff					
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.									
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q	3	Q4					
	Decode	Read register 'f'	Proce dat	ess a	Write to destination					
Example	SWAPF	REG,	0							
	Before Instruction									
		REG1	=	0xA	\ 5					
	After Inst	ruction								
		REG1 W	= =	0xA 0x5	A5 5A					

TRIS	Load TRIS Register							
Syntax:	[<i>label</i>] TRIS f							
Operands:	$5 \leq f \leq 7$							
Operation:	(W) \rightarrow TRIS register f;							
Status Affected:	None							
Encoding:	00 0000 0110 0fff							
Description:	The instruction is supported for code compatibility with the PIC16C5X prod- ucts. Since TRIS registers are read- able and writable, the user can directly address them							
Words:	1							
Cycles:	1							
Example								
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.							

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC MCU. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

10.11 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC MCU series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

10.12 <u>C Compiler (MPLAB-C17)</u>

The MPLAB-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC17CXXX family of microcontrollers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display.

10.13 <u>Fuzzy Logic Development System</u> (*fuzzy*TECH-MP)

*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, Edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

10.14 <u>MP-DriveWay™ – Application Code</u> <u>Generator</u>

MP-DriveWay is an easy-to-use Windows-based Application Code Generator. With MP-DriveWay you can visually configure all the peripherals in a PIC device and, with a click of the mouse, generate all the initialization and many functional code modules in C language. The output is fully compatible with Microchip's MPLAB-C C compiler. The code produced is highly modular and allows easy integration of your own code. MP-DriveWay is intelligent enough to maintain your code through subsequent code generation.

10.15 <u>SEEVAL[®] Evaluation and</u> <u>Programming System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in trade-off analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

10.16 <u>KEELOQ[®] Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

10.0 ELECTRICAL CHARACTERISTICS FOR PIC16F83 AND PIC16F84

Absolute Maximum Ratings †

Ambient temperature under bias	55°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to VSS	-0.3 to +7.5V
Voltage on MCLR with respect to Vss ⁽²⁾	0.3 to +14V
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.6V to (VDD + 0.6V)
Total power dissipation ⁽¹⁾	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Ιικ (Vi < 0 or Vi > VDD)	
Output clamp current, Iок (Vo < 0 or Vo > VDD)	
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	
Maximum current sunk by PORTA	
Maximum current sourced by PORTA	
Maximum current sunk by PORTB	
Maximum current sourced by PORTB	٠
Note 1: Power dissipation is calculated as follows: Pdis = VDD \times {IDD - Σ }	$\mathbb{R}^{+} \times \Sigma $ {(VDD-VOH) x IOH} + Σ (VOI x IOL)

Note 2: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

© 1996-2013 Microchip Technology Inc.

10.3 DC CHARACTERISTICS:

PIC16F84, PIC16F83 (Commercial, Industrial) PIC16I F84 PIC16I F83 (Commercial Industrial)

DC Chara	cteristi	cs	Standard Operating	Standard Operating Conditions (unless otherwise stated) Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial)					
All Pins E Power Su	pply Pir	าร	$-40^{\circ}C \le IA \le +85^{\circ}C$ (industrial) Operating voltage VDD range as described in DC spec Section 10.1 and Section 10.2.						
Parame-									
ter No.	Sym	Characteristic	Min	Typt	Max	Units	Conditions		
		Input Low Voltage					Δ		
	VIL	I/O ports					$\langle \rangle$		
D030		, with TTL buffer	Vss	_	0.8	V	$4.5 V \le VOD \le 5.5 V^{(4)}$		
D030A			Vss	_	0.16VDD	V	entire range ⁽⁴⁾		
D031		with Schmitt Trigger buffer	Vss	_	0.2Vdd	V	entire range		
D032		MCLR, RA4/T0CKI	Vss	_	0.2Vdd	V			
D033		OSC1 (XT, HS and LP modes) ⁽¹⁾	Vss	_	0.3Vdd	v <	$\langle \rangle \rangle$		
D034		OSC1 (RC mode)	Vss	_	0.1Vdd	V	$\langle \langle \cdot \rangle$		
		Input High Voltage				$\overline{)}$			
	Vін	I/O ports		—	\backslash	\sum	\searrow		
D040		with TTL buffer	2.4	_			$4.5 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}^{(4)}$		
D040A		with Sohmitt Trigger buffer		\sim		$\langle \rangle$	entire range		
D041			0.45700	$ $ $\langle \rangle$,		\sum_{v}	entile range		
D042		(RC mode)			VER	V			
D043		OSC1 (XT, HS and LP modes) ⁽¹⁾	0.7 Vpd		Vpb	V			
D050	VHYS	Hysteresis of Schmitt Trigger inputs	TBD		> -	V			
D070	IPURB	PORTB weak pull-up current	50*	250*	400*	μA	VDD = 5.0V, VPIN = VSS		
		Input Leakage Current ^(2,3)	$\langle \rangle \rangle$	\rangle					
D060	lı∟	I/O ports))	—	±1	μA	$Vss \le VPIN \le VDD,$ Pin at hi-impedance		
D061		MCLR, RA4/TOCK	> -	—	±5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$		
D063		OSC1	—	_	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration		
		Output Low Voltage							
D080	Vol	I/O ports	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5 V		
D083	/	OSC2/CLKQUT/	_	—	0.6	V	IOL = 1.6 mA, VDD = 4.5 V		
		Output High Voltage							
D090	VOH	WØ ports ⁽³⁾ >	VDD-0.7	—	—	V	IOH = -3.0 mA, VDD = 4.5V		
D092 /	\frown	QŚQ2/CLŘOUT	VDD-0.7	_		V	IOH = -1.3 mA, VDD = 4.5V		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. Do not drive the PIC16F8X with an external clock while the device is in RC mode, or chip damage may result.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- **3:** Negative current is defined as coming out of the pin.
- 4: The user may choose the better of the two specs.

10.4 DC CHARACTERISTICS: PIC16F84, PIC16F83 (Commercial, Industrial) PIC16LF84, PIC16F83 (Commercial, Industrial)

DC Charao All Pins Ex Power Sup	s s	Standa Operati Operati Section	rd Operati ng tempera ng voltage 10.1 and S	ng Cond ature 0° -40° VDD rang Section 1	$\begin{array}{ll} \begin{array}{ll} \left \textbf{itions} \right \\ \mathbf{C} &\leq \mathbf{T} \\ \mathbf{C} &\leq \mathbf{T} \\ \mathbf{c} &\leq \mathbf{R} \\ \textbf{ge as de } \\ 0.2. \end{array}$	(unless otherwise stated) $A \le +70^{\circ}C$ (commercial) $A \le +85^{\circ}C$ (industrial) escribed in DC spec	
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D100	Cosc2	Capacitive Loading Specs on Output Pins OSC2 pin	_	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	Cio	All I/O pins and OSC2 (RC mode)	—	—	50	pF	$\langle \rangle$
		Data EEPROM Memory					$\left \left\langle \vee \right\rangle \right\rangle$
D120	ED	Endurance	1M	10M	—	EAV	25°C at 5V
D121	Vdrw	VDD for read/write	VMIN	-	6.0	V	VMIN = Minimum operating
D122	TDEW	Erase/Write cycle time	—	10	20*	miş `	
		Program Flash Memory		~		\setminus	\rangle
D130	Eр	Endurance	100	1000		ÈXW	
D131	Vpr	VDD for read	VMIN		6.0	V.	VMIN = Minimum operating voltage
D132	VPEW	VDD for erase/write	4.5	$\backslash - \rangle$	5.5	V	
D133	TPEW	Erase/Write cycle time	$\lfloor - \rangle$	<u>/ 76 /</u>	\searrow	ms	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

DS30430D-page 11-80

Timing Diagrams and Specifications 11.5

TABLE 11-3 EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Ge	onditions
	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	2	MHz	XT. RC osc	PIC16LCR8X-04
			DC	_	4	MHz	XT, RC osc	RICT6CR8X-04
			DC	_	10	,MHz	HS osc	PIC16CR8X-10
			DC	_	200	kĦz	LE OSC	PIC16LCR8X-04
		Oscillator Frequency ⁽¹⁾	DC	_	2	MHz	RC osc	PIC16LCR8X-04
			DC	—	4	MHz,	RC osc	PIC16CR8X-04
			0.1	-~	2	MHz	XT osc	PIC16LCR8X-04
			0.1	\prec	4	MHZ	XT osc	PIC16CR8X-04
			1.0	\sim	10	MHz	HS osc	PIC16CR8X-10
			DÇ	<u> </u>	200	kHz	LP osc	PIC16LCR8X-04
1	Tosc	External CLKIN Period ⁽¹⁾	500	$\langle - \rangle$	\searrow	ns	XT, RC osc	PIC16LCR8X-04
		\sim	250	$/ \neq)$	\checkmark -	ns	XT, RC osc	PIC16CR8X-04
		$\langle \cdot \rangle$	100	$\langle - \rangle$	—	ns	HS osc	PIC16CR8X-10
		$ \land \land$	5.0	<u> </u>	—	μs	LP osc	PIC16LCR8X-04
		Oscillator Period ⁽¹⁾	500	<u> </u>	—	ns	RC osc	PIC16LCR8X-04
			250	—	—	ns	RC osc	PIC16CR8X-04
			500	—	10,000	ns	XT osc	PIC16LCR8X-04
		$\land \land \land \land$	250	—	10,000	ns	XT osc	PIC16CR8X-04
			100	—	1,000	ns	HS osc	PIC16CR8X-10
			5.0	—	—	μS	LP osc	PIC16LCR8X-04
2	Тсү	Instruction Cycle Time ⁽¹⁾	0.4	4/Fosc	DC	μS		
3	TosL,	Clock in (QSC1) High or Low	60 *	—	—	ns	XT osc	PIC16LCR8X-04
	TosH	Time	50 *	_	—	ns	XT osc	PIC16CR8X-04
	$\langle \langle \rangle$	$\langle \frown \rangle$	2.0 *	_	—	μs	LP osc	PIC16LCR8X-04
		$ \langle \rangle$	35 *	_		ns	HS osc	PIC16CR8X-10
4	JosP,	Clock in (OSC1) Rise or Fall Time	25 *	—	—	ns	XT osc	PIC16CR8X-04
	losF		50 *	—	—	ns	LP osc	PIC16LCR8X-04
\square	\langle		15 *	—	—	ns	HS osc	PIC16CR8X-10

These parameters are characterized but not tested.

Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only + and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1 pin.

When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Parameter			$\langle \rangle$	\rightarrow			
No.	Sym	Characteristic	Min	۳ Typ†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	1000*	_	_	ns	$2.0V \leq V\text{DD} \leq 6.0V$
31	Twdt	Watchdog Timer Time-out Period (No Prescater)	7*	18	33 *	ms	VDD = 5.0V
32	Tost	Oscillation Start-up Timer Period		1024Tosc		ms	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28 *	72	132 *	ms	VDD = 5.0V
34	Tioz	I/O Hi-impedance from MCLR Low or reset	-	—	100 *	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 50, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested

VDD (Volts)

FIGURE 12-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 100 PF

FIGURE 12-9: VIH, VIL OF MCLR, TOCKI AND OSC1 (IN RC MODE) vs. VDD

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units			INCHES*		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX	
Pitch	р		0.050			1.27		
Number of Pins	n		18			18		
Overall Pack. Height	А	0.093	0.099	0.104	2.36	2.50	2.64	
Shoulder Height	A1	0.048	0.058	0.068	1.22	1.47	1.73	
Standoff	A2	0.004	0.008	0.011	0.10	0.19	0.28	
Molded Package Length	D [‡]	0.450	0.456	0.462	11.43	11.58	11.73	
Molded Package Width	E [‡]	0.292	0.296	0.299	7.42	7.51	7.59	
Outside Dimension	E1	0.394	0.407	0.419	10.01	10.33	10.64	
Chamfer Distance	Х	0.010	0.020	0.029	0.25	0.50	0.74	
Shoulder Radius	R1	0.005	0.005	0.010	0.13	0.13	0.25	
Gull Wing Radius	R2	0.005	0.005	0.010	0.13	0.13	0.25	
Foot Length	L	0.011	0.016	0.021	0.28	0.41	0.53	
Foot Angle	φ	0	4	8	0	4	8	
Radius Centerline	L1	0.010	0.015	0.020	0.25	0.38	0.51	
Lead Thickness	с	0.009	0.011	0.012	0.23	0.27	0.30	
Lower Lead Width	B [†]	0.014	0.017	0.019	0.36	0.42	0.48	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	

Controlling Parameter.

[†] Dimension "B" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B."

[‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."