

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	68 × 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f84-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	DIP No.	SOIC No.	l/O/P Type	Buffer Type	Description				
OSC1/CLKIN	16	16	Ι	ST/CMOS (3)	Oscillator crystal input/external clock source input.				
OSC2/CLKOUT	15	15	0		Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.				
MCLR	4	4	I/P	ST	Master clear (reset) input/programming voltage input. This pin is an active low reset to the device.				
					PORTA is a bi-directional I/O port.				
RA0	17	17	I/O	TTL					
RA1	18	18	I/O	TTL					
RA2	1	1	I/O	TTL					
RA3	2	2	I/O	TTL					
RA4/T0CKI	3	3	I/O	ST	Can also be selected to be the clock input to the TMR0 timer/ counter. Output is open drain type.				
					PORTB is a bi-directional I/O port. PORTB can be software pro- grammed for internal weak pull-up on all inputs.				
RB0/INT	6	6	I/O	TTL/ST ⁽¹⁾	RB0/INT can also be selected as an external interrupt pin.				
RB1	7	7	I/O	TTL					
RB2	8	8	I/O	TTL					
RB3	9	9	I/O	TTL					
RB4	10	10	I/O	TTL	Interrupt on change pin.				
RB5	11	11	I/O	TTL	Interrupt on change pin.				
RB6	12	12	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.				
RB7	13	13	I/O	TTL/ST (2)	Interrupt on change pin. Serial programming data.				
Vss	5	5	Р	—	Ground reference for logic and I/O pins.				
Vdd	14	14	Р	—	Positive supply for logic and I/O pins.				
Legend: I= input	0 = 0 — = N	utput lot used		/O = Input/Out					

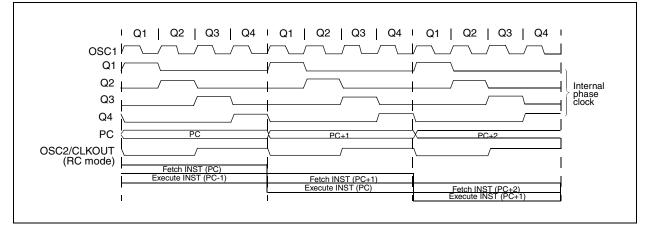
TABLE 3-1 PIC16F8X PINOUT DESCRIPTION

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

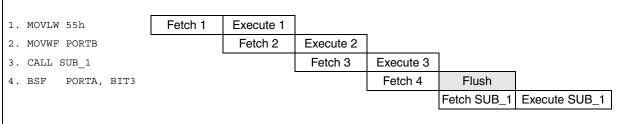
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

3.1 <u>Clocking Scheme/Instruction Cycle</u>

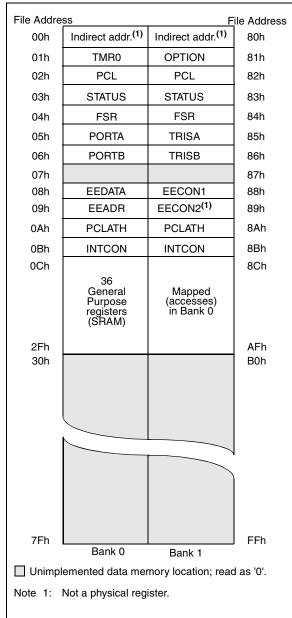

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2 Instruction Flow/Pipelining

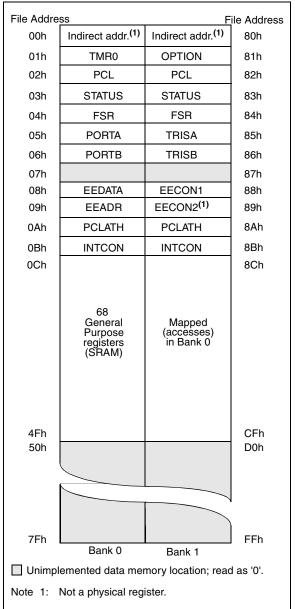
An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the Program Counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).


FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW



All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

FIGURE 4-1: REGISTER FILE MAP -PIC16F83/CR83

FIGURE 4-2: REGISTER FILE MAP -PIC16F84/CR84

TABLE 4-1 REGISTER FILE SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note3)
Bank 0					•						•
00h	INDF	Uses co	ntents of F	SR to addre	ess data memor	y (not a phys	sical registe	r)			
01h	TMR0	8-bit rea	I-time clock	/counter						XXXX XXXX	uuuu uuuu
02h	PCL	Low ord	er 8 bits of	the Program	m Counter (PC)					0000 0000	0000 0000
03h	STATUS ⁽²⁾	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR	Indirect	data memo	ry address	pointer 0					xxxx xxxx	uuuu uuuu
05h	PORTA	—	—	_	RA4/T0CKI	RA3	RA2	RA1	RA0	x xxxx	u uuuu
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0/INT	XXXX XXXX	uuuu uuuu
07h		Unimple	mented loc	ation, read	as '0'			•	•		
08h	EEDATA	EEPRO	V data regi	ster						XXXX XXXX	uuuu uuuu
09h	EEADR	EEPRO	M address	register						XXXX XXXX	uuuu uuuu
0Ah	PCLATH	_		_	Write buffer for	r upper 5 bit	s of the PC	(1)		0 0000	0 0000
0Bh	INTCON	GIE	EEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
Bank 1											
80h	INDF	Uses co	ntents of F	SR to addre	ess data memor	y (not a phys	sical registe	r)			
81h	OPTION_ REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h	PCL	Low ord	er 8 bits of	Program C	ounter (PC)			•	•	0000 0000	0000 0000
83h	STATUS (2)	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h	FSR	Indirect	data memo	ry address	pointer 0					xxxx xxxx	uuuu uuuu
85h	TRISA	—	—	—	PORTA data d	irection regis	ster			1 1111	1 1111
86h	TRISB	PORTB data direction register							1111 1111	1111 1111	
87h		Unimplemented location, read as '0'									
88h	EECON1	—	—	_	EEIF	WRERR	WREN	WR	RD	0 x000	0 q000
89h	EECON2	EEPRO	V control re	gister 2 (no	ot a physical reg	ister)	-				
0Ah	PCLATH	_	_	_	Write buffer for upper 5 bits of the PC ⁽¹⁾ 0 0000 0 0000						
0Bh	INTCON	GIE	EEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u

Legend: x = unknown, u = unchanged. - = unimplemented read as '0', q = value depends on condition.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a slave register for PC<12:8>. The contents of PCLATH can be transferred to the upper byte of the program counter, but the contents of PC<12:8> is never transferred to PCLATH.

2: The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ status bits in the STATUS register are not affected by a $\overline{\text{MCLR}}$ reset.

3: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

4.2.2.3 INTCON REGISTER

The INTCON register is a readable and writable register which contains the various enable bits for all interrupt sources.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

FIGURE 4-1: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE	EEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	R = Readable bit
bit7							bitO	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset
bit 7:	GIE: Glob 1 = Enabl 0 = Disab	es all un-r	nasked inf					
	Note: For	the opera	tion of the	interrupt	structure, p	lease refe	r to Section	8.5.
bit 6:	EEIE : EE 1 = Enabl 0 = Disab	es the EE	write com	plete inter	rupt			
bit 5:	TOIE : TMI 1 = Enabl 0 = Disab	es the TM	R0 interru	pt	bit			
bit 4:	INTE: RB 1 = Enabl 0 = Disab	es the RB	0/INT inte	rrupt				
bit 3:	RBIE : RB 1 = Enabl 0 = Disab	es the RB	port char	ge interru	pt			
bit 2:	TOIF : TMF 1 = TMR0 0 = TMR0	has over	flowed (m		ared in softw	vare)		
bit 1:	INTF: RB 1 = The R 0 = The R	B0/INT in	terrupt oc	curred				
bit 0:		at least o	ne of the l	RB7:RB4			nust be clea	ared in software)

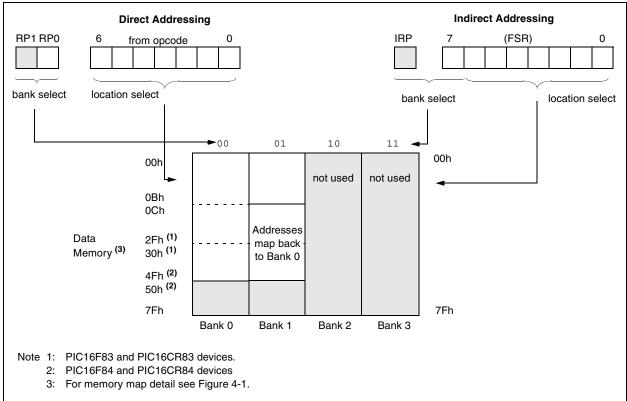
4.5 Indirect Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 4-1: INDIRECT ADDRESSING

- Register file 05 contains the value 10h
- Register file 06 contains the value 0Ah
- Load the value 05 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 06)
- A read of the INDF register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).


FIGURE 4-1: DIRECT/INDIRECT ADDRESSING

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

	movlw	0x20	;initialize pointer
	movwf	FSR	; to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-1. However, IRP is not used in the PIC16F8X.

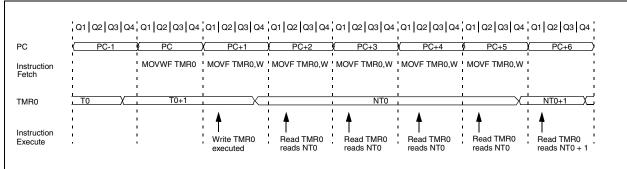
EXAMPLE 5-1: INITIALIZING PORTB

	-		
CLRF	PORTB	;	Initialize PORTB by
		;	setting output
		;	data latches
BSF	STATUS, RPO	;	Select Bank 1
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs

TABLE 5-3 PORTB FUNCTIONS

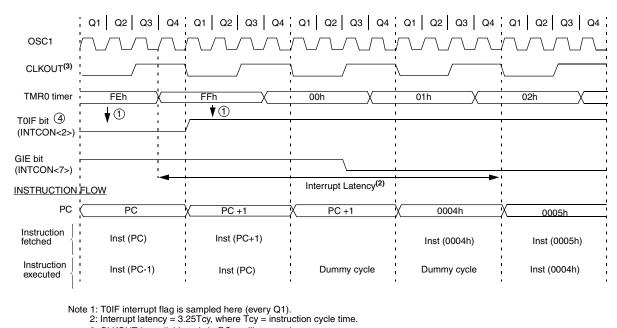
Name	Bit	Buffer Type	I/O Consistency Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger.


Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 5-4 SUMMARY OF REGISTERS ASSOCIATED WITH PORTB


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0/INT	XXXX XXXX	uuuu uuuu
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h	OPTION_ REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

FIGURE 6-3: TMR0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

FIGURE 6-4: TMR0 INTERRUPT TIMING

3: CLKOUT is available only in RC oscillator mode.

4: The timer clock (after the synchronizer circuit) which increments the timer from FFh to 00h immediately sets the T0IF bit. The TMR0 register will roll over 3 Tosc cycles later.

6.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution).

Note: To avoid an unintended device RESET, the following instruction sequence (Example 6-1) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be taken even if the WDT is disabled. To change prescaler from the WDT to the Timer0 module use the sequence shown in Example 6-2.

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0→WDT)

	•	,
BCF	STATUS, RPO	;Bank 0
CLRF	TMR0	;Clear TMR0
		; and Prescaler
BSF	STATUS, RPO	;Bank 1
CLRWDT		;Clears WDT
MOVLW	b'xxxx1xxx'	;Select new
MOVWF	OPTION_REG	; prescale value
BCF	STATUS, RPO	;Bank 0

EXAMPLE 6-2: CHANGING PRESCALER (WDT→TIMER0)

	(=.	/ · · · · · · · · · · · · · · · · · · ·
CLRWDT		;Clear WDT and
		; prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	b'xxxx0xxx'	;Select TMR0, new
		; prescale value
		' and clock source
MOVWF	OPTION_REG	;
BCF	STATUS, RPO	;Bank 0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
01h	TMR0				Timer0 modu	le's register				xxxx xxxx	uuuu uuuu
0Bh	INTCON	GIE	EEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 0000
81h	OPTION_ REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_	_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

TABLE 6-1 REGISTERS ASSOCIATED WITH TIMER0

Legend: x = unknown, u = unchanged. - = unimplemented read as '0'. Shaded cells are not associated with Timer0.

7.2 EECON1 and EECON2 Registers

EECON1 is the control register with five low order bits physically implemented. The upper-three bits are nonexistent and read as '0's.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a $\overline{\text{MCLR}}$ reset or a WDT time-out reset during normal operation. In these situations, following reset, the user can check the WRERR bit and rewrite the location. The data and address will be unchanged in the EEDATA and EEADR registers.

Interrupt flag bit EEIF is set when write is complete. It must be cleared in software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the Data EEPROM write sequence.

7.3 Reading the EEPROM Data Memory

To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1<0>). The data is available, in the very next cycle, in the EEDATA register; therefore it can be read in the next instruction. EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 7-1: DATA EEPROM READ

BCF	STATUS, RPO	; Bank 0
MOVLW	CONFIG_ADDR	;
MOVWF	EEADR	; Address to read
BSF	STATUS, RPO	; Bank 1
BSF	EECON1, RD	; EE Read
BCF	STATUS, RPO	; Bank 0
MOVF	EEDATA, W	; W = EEDATA

7.4 Writing to the EEPROM Data Memory

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte.

EXAMPLE 7-1: DATA EEPROM WRITE

	BSF BCF	STATUS, RPO INTCON, GIE	'	Bank 1 Disable INTs.
	BSF	EECON1, WREN	;	Enable Write
	MOVLW	55h	;	
	MOVWF	EECON2	;	Write 55h
p e	MOVLW	AAh	;	
lequired equence	MOVWF	EECON2	;	Write AAh
ng ng	BSF	EECON1,WR	;	Set WR bit
Se			;	begin write
	BSF	INTCON, GIE	;	Enable INTs.

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware

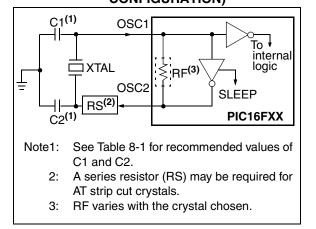
After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

FIGURE 8-2: CONFIGURATION WORD - PIC16F83 AND PIC16F84

							R/P-u		R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	
CP	CP	CP	CP	CP	CP	CP	CP	CP	CP	PWRTE	WDTE	FOSC1	FOSC0	
bit13													bit0	
												R = Rea	adable bit	
													grammable	
													ue at POR	
		<u> </u>										u =	unchange	a
bit 13:4														
		-	rotectio			ما								
			nory is	-										
bit 3			ower-u			e bit								
	1 = I	Power-	up time	er is dis	abled									
	0 = I	Power-	up time	er is en	abled									
bit 2	WD	re: Wa	tchdog	Timer	Enable	e bit								
		NDT ei	•											
	0 = \	WDT di	isabled											
bit 1:0	FOS		SC0: (Scillat	or Sele	ction h	ite							
511 1.0			scillator				10							
			cillator											
			cillator											
			cillator											

8.2 Oscillator Configurations


8.2.1 OSCILLATOR TYPES

The PIC16F8X can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor
- 8.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 8-3).

FIGURE 8-3: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

The PIC16F8X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/CLKIN pin (Figure 8-4).

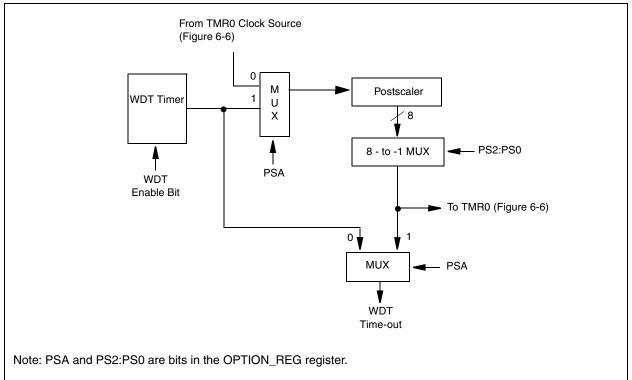
8.11 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation a WDT time-out generates a device RESET. If the device is in SLEEP mode, a WDT Wake-up causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming configuration bit WDTE as a '0' (Section 8.1).

8.11.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to

FIGURE 8-18: WATCHDOG TIMER BLOCK DIAGRAM


part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION_REG register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler (if assigned to the WDT) and prevent it from timing out and generating a device RESET condition.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a WDT time-out.

8.11.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken into account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

TABLE 8-7 SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
2007h	Config. bits	(2)	(2)	(2)	(2)	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0	(2)	
81h	OPTION_ REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown. Shaded cells are not used by the WDT.

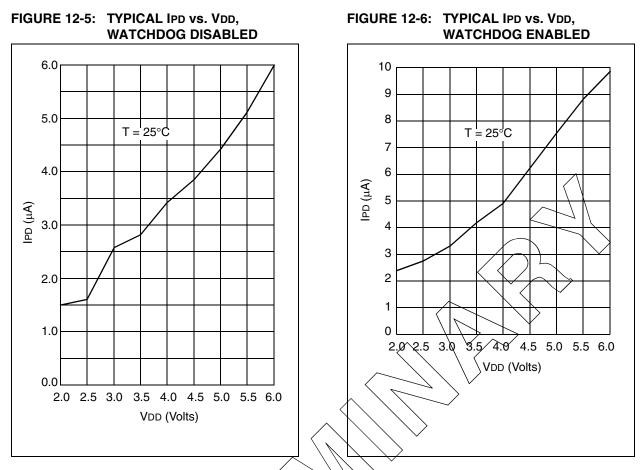
Note 1: See Figure 8-1 and Figure 8-2 for operation of the PWRTE bit.

2: See Figure 8-1, Figure 8-2 and Section 8.13 for operation of the Code and Data protection bits.

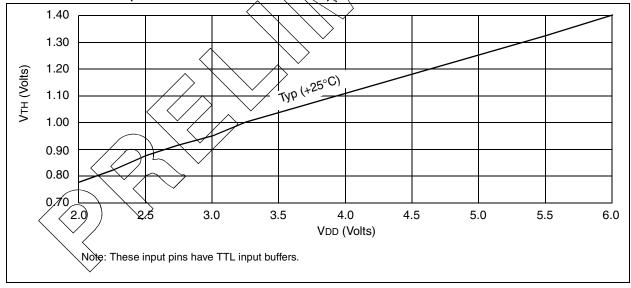
BTFSS	Bit Test f, S	Skip if S	Set		CALL	Call Sub	oroutine			
Syntax:	[<i>label</i>] BTFS	SS f,b			Syntax:	[label]	[<i>label</i>] CALL k			
Operands:	$0 \le f \le 127$			Operands:	$0 \le k \le 2047$					
	0 ≤ b < 7				Operation:	(PC)+ 1-	→ TOS,			
Operation:	skip if (f)	•) = 1				$k \rightarrow PC <$,			
Status Affected:	None				0	,	1<4:3>) -	→ PC<12	:11>	
Encoding:	01 13	L1bb	bfff	ffff	Status Affected:	None			1	
Description:	If bit 'b' in regi			ne next	Encoding:	10	0kkk	kkkk	kkkk	
Words:	If bit 'b' is '1', t discarded and instead, makir	then the	next instruis execute	ed	Description:	(PC+1) is eleven bit into PC bi the PC are	pushed or immediate ts <10:0>. e loaded fr	st, return ag nto the stag address i The upper rom PCLAT	ck. The s loaded r bits of	
Cycles:	1(2)					is a two cy	cle instru	ction.		
Q Cycle Activity:	Q1	Q2	Q3	Q4	Words:	1				
		Read	Process	No-Operat	Cycles:	2	0.0	0.0	~ /	
	reș	egister 'f'	data	ion	Q Cycle Activity:	Q1	Q2	Q3	Q4	
If Skip:	(2nd Cycle))			1st Cycle	Decode	Read literal 'k',	Process data	Write to PC	
	Q1	Q2	Q3	Q4			Push PC to Stack			
	No-Operat ion	o-Operati on	No-Opera tion	No-Operat ion	2nd Cycle	No-Opera tion	No-Opera tion	No-Opera tion	No-Operat ion	
Example			FLAG,1 PROCESS	CODE	Example	HERE	CALL	THERE		
	TRUE •	ı.	-	_		Before Ir	struction			
	•	•				After Ins	-	ddress HE	RE	
	Before Instru	ruction					PC = A	ddress TH		
			ddress H	ERE			TOS = A	ddress HE	RE+1	
	After Instruc		0							
	PC	FLAG<1> C= a	= 0, address F7	ALSE						
	if Fl	LAG<1>	= 1,							
	PC	C = 6	address TH	RUE						

PIC16F8X

ff
n the d
s
' is
truc-
Q 4
ite to ination
Q 4
Operati on


PIC16F8X

NOP	No Oper	ation		
Syntax:	[label]	NOP		
Operands:	None			
Operation:	No opera	tion		
Status Affected:	None			
Encoding:	00	0000	0xx0	0000
Description:	No operati	on.		
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	No-Opera tion	No-Opera tion	No-Operat ion
Example	NOP			


RETFIE	Return fi	rom Inter	rupt			
Syntax:	[label]	RETFIE				
Operands:	None					
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$					
Status Affected:	None					
Encoding:	0 0	0000	0000	1001		
Description:	Return fro and Top of PC. Interru Global Inte (INTCON< instruction	Stack (TC upts are er errupt Ena 7>). This	DS) is load habled by s ble bit, GIE	ed in the setting E		
Words:	1					
Cycles:	2					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
1st Cycle	Decode	No-Opera tion	Set the GIE bit	Pop from the Stack		
2nd Cycle	No-Operat ion	No-Opera tion	No-Opera tion	No-Operat ion		
Example	RETFIE					

After Interrupt PC = TOS GIE = 1

OPTION	Load Option Register
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \rightarrow OPTION$
Status Affected:	None
Encoding:	00 0000 0110 0010
Description:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code com- patibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it.
Words:	1
Cycles:	1
Example	
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.

PIC16F8X

NOTES:

APPENDIX E: CONVERSION CONSIDERATIONS - PIC16C84 TO PIC16F83/F84 AND PIC16CR83/CR84

Considerations for converting from the PIC16C84 to the PIC16F84 are listed in the table below. These considerations apply to converting from the PIC16C84 to the PIC16F83 (same as PIC16F84 except for program and data RAM memory sizes) and the PIC16CR84 and PIC16CR83 (ROM versions of Flash devices). Development Systems support is available for all of the PIC16X8X devices.

Difference	PIC16C84	PIC16F84
The polarity of the PWRTE bit has been reversed. Ensure that the pro- grammer has this bit correctly set before programming.	PWRTE	PWRTE
The PIC16F84 (and PIC16CR84) have larger RAM sizes. Ensure that this does not cause an issue with your program.	RAM = 36 bytes	RAM = 68 bytes
The MCLR pin now has an on-chip filter. The input signal on the MCLR pin will require a longer low pulse to generate an interrupt.	$\label{eq:mcLR} \begin{array}{l} \hline \text{MCLR} \text{ pulse width (low)} \\ = 350\text{ns}; \ 2.0\text{V} \leq \text{V}\text{DD} \leq 3.0\text{V} \\ = 150\text{ns}; \ 3.0\text{V} \leq \text{V}\text{DD} \leq 6.0\text{V} \\ \end{array}$	$\frac{MCLR}{MCLR}$ pulse width (low) = 1000ns; 2.0V \leq VDD \leq 6.0V
Some electrical specifications have been improved (see IPD example). Compare the electrical specifica- tions of the two devices to ensure that this will not cause a compatibil- ity issue.	IPD (typ @ 2V) = 26μA IPD (max @ 4V, WDT disabled) =100μA (PIC16C84) =100μA (PIC16LC84)	IPD (typ @ 2V) < 1μA IPD (max @ 4V, WDT disabled) =14μA (PIC16F84) =7μA (PIC16LF84)
PORTA and crystal oscillator values less than 500kHz	For crystal oscillator configurations operating below 500kHz, the device may generate a spurious internal Q-clock when PORTA<0> switches state.	N/A
RB0/INT pin	TTL	TTL/ST* (* This buffer is a Schmitt Trigger input when configured as the exter- nal interrupt.)
EEADR<7:6> and IDD	It is recommended that the EEADR<7:6> bits be cleared. When either of these bits is set, the maximum IDD for the device is higher than when both are cleared.	N/A
Code Protect	1 CP bit	9 CP bits
Recommended value of REXT for RC oscillator circuits	Rext = 3kΩ - 100kΩ	Rext = 5kΩ - 100kΩ
GIE bit unintentional enable	If an interrupt occurs while the Global Interrupt Enable (GIE) bit is being cleared, the GIE bit may unin- tentionally be re-enabled by the user's Interrupt Service Routine (the RETFIE instruction).	N/A

NOTES:

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.futureone.com/pub/microchip

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- Listing of seminars and events