

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

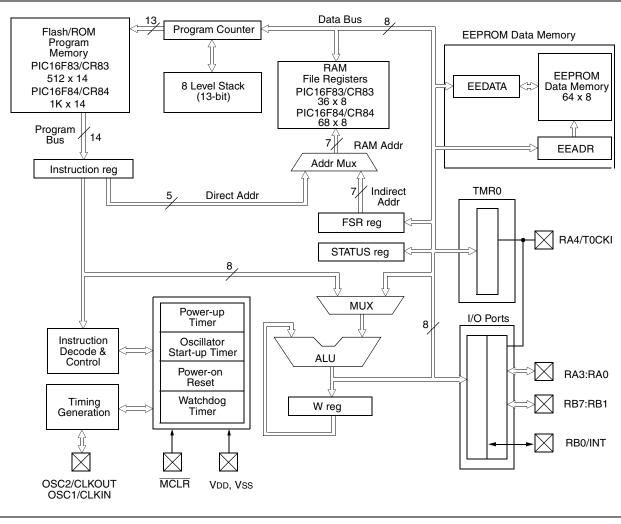
Details

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f84-10i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.


The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register), and the other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

A simplified block diagram for the PIC16F8X is shown in Figure 3-1, its corresponding pin description is shown in Table 3-1.

Pin Name	DIP No.	SOIC No.	l/O/P Type	Buffer Type	Description
OSC1/CLKIN	16	16	Ι	ST/CMOS (3)	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	15	0		Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR	4	4	I/P	ST	Master clear (reset) input/programming voltage input. This pin is an active low reset to the device.
					PORTA is a bi-directional I/O port.
RA0	17	17	I/O	TTL	
RA1	18	18	I/O	TTL	
RA2	1	1	I/O	TTL	
RA3	2	2	I/O	TTL	
RA4/T0CKI	3	3	I/O	ST	Can also be selected to be the clock input to the TMR0 timer/ counter. Output is open drain type.
					PORTB is a bi-directional I/O port. PORTB can be software pro- grammed for internal weak pull-up on all inputs.
RB0/INT	6	6	I/O	TTL/ST ⁽¹⁾	RB0/INT can also be selected as an external interrupt pin.
RB1	7	7	I/O	TTL	
RB2	8	8	I/O	TTL	
RB3	9	9	I/O	TTL	
RB4	10	10	I/O	TTL	Interrupt on change pin.
RB5	11	11	I/O	TTL	Interrupt on change pin.
RB6	12	12	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.
RB7	13	13	I/O	TTL/ST (2)	Interrupt on change pin. Serial programming data.
Vss	5	5	Р	—	Ground reference for logic and I/O pins.
Vdd	14	14	Р	—	Positive supply for logic and I/O pins.
Legend: I= input	0 = 0 — = N	utput lot used		/O = Input/Out	•

TABLE 3-1 PIC16F8X PINOUT DESCRIPTION

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

4.2.2.2 OPTION_REG REGISTER

The OPTION_REG register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external INT interrupt, TMR0, and the weak pull-ups on PORTB.

FIGURE 4-1: OPTION_REG REGISTER (ADDRESS 81h)

Note: When the prescaler is assigned to the WDT (PSA = '1'), TMR0 has a 1:1 prescaler assignment.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	R = Readable bit			
bit7							bit0	W = Writable bit			
								U = Unimplemented bit, read as '0'			
								- n = Value at POR reset			
bit 7:	RBPU: PC		ın Enabl	a hit							
Dit 7.											
	 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled (by individual port latch values) 										
bit 6:	INTEDG:						,				
bit 0.	1 = Interru	•	•		nin						
	0 = Interru										
bit 5:	TOCS: TM				r						
Dit J.	1 = Transit										
	0 = Interna			•	OUT)						
bit 4:	TOSE: TM		•								
DIL 4.					on RA4/T00						
					on RA4/T00						
bit 3:	PSA: Pres		•			p					
DIL 3.	1 = Presca										
	0 = Presca										
hit 2 0.	PS2:PS0:	•									
bit <u>∠</u> -0.											
	Bit Value	TMR0 Ra	te WD	Γ Rate							
	000	1:2	1 :								
	001	1:4	1:								
	010 011	1:8		: 4 : 8							
	100	1 : 16 1 : 32		16							
	101	1:64		32							
	110	1 : 128		64							
	111	1 : 256	1:	128							

4.2.2.3 INTCON REGISTER

The INTCON register is a readable and writable register which contains the various enable bits for all interrupt sources.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

FIGURE 4-1: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x				
GIE	EEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	R = Readable bit			
bit7							bitO	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset 			
bit 7:	GIE: Glob 1 = Enabl 0 = Disab	es all un-r	nasked inf								
	Note: For	the opera	tion of the	interrupt	structure, p	lease refe	r to Section	8.5.			
bit 6:	 Note: For the operation of the interrupt structure, please refer to Section 8.5. EEIE: EE Write Complete Interrupt Enable bit 1 = Enables the EE write complete interrupt 0 = Disables the EE write complete interrupt 										
bit 5:	TOIE : TMI 1 = Enabl 0 = Disab	es the TM	R0 interru	pt	bit						
bit 4:	INTE: RB 1 = Enabl 0 = Disab	es the RB	0/INT inte	rrupt							
bit 3:	RBIE : RB 1 = Enabl 0 = Disab	es the RB	port char	ge interru	pt						
bit 2:	TOIF : TMF 1 = TMR0 0 = TMR0	has over	flowed (m		ared in softw	vare)					
bit 1:	INTF: RB 1 = The R 0 = The R	B0/INT in	terrupt oc	curred							
bit 0:		at least o	ne of the l	RB7:RB4			nust be clea	ared in software)			

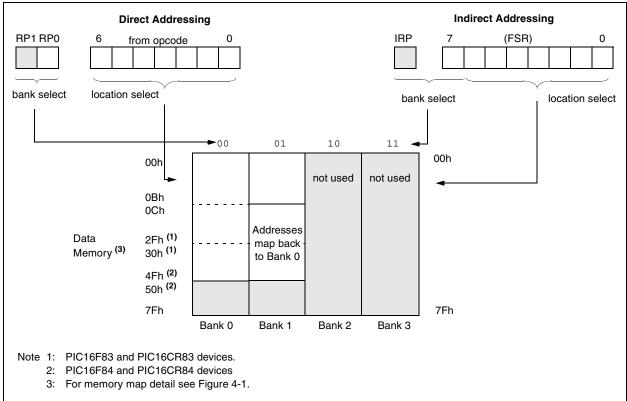
4.5 Indirect Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 4-1: INDIRECT ADDRESSING

- Register file 05 contains the value 10h
- Register file 06 contains the value 0Ah
- Load the value 05 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 06)
- A read of the INDF register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).


FIGURE 4-1: DIRECT/INDIRECT ADDRESSING

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

	movlw	0x20	;initialize pointer
	movwf	FSR	; to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-1. However, IRP is not used in the PIC16F8X.

5.3 I/O Programming Considerations

5.3.1 BI-DIRECTIONAL I/O PORTS

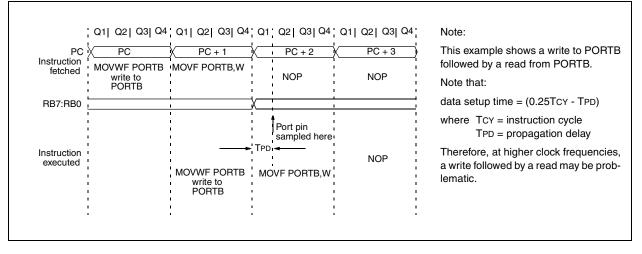
Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (i.e., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch is unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (i.e., BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output current may damage the chip.

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-5). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such that the pin voltage stabilizes (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.


Example 5-1 shows the effect of two sequential read-modify-write instructions (e.g., ${\tt BCF}\,,\,\,{\tt BSF},\, etc.)$ on an I/O port.

EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings: PORTB<7:4> Inputs ; PORTB<3:0> Outputs ;PORTB<7:6> have external pull-ups and are ;not connected to other circuitry

'								
;					PORT	latch	PORT	pins
;								
	BCF	PORTB,	7	;	01pp	ppp	11pp	ppp
	BCF	PORTB,	6	;	10pp	ppp	11pp	ppp
	BSF	STATUS	, RPO	;				
	BCF	TRISB,	7	;	10pp	ppp	11pp	ppp
	BCF	TRISB,	6	;	10pp	ppp	10pp	ppp
:								

;Note that the user may have expected the ;pin values to be 00pp ppp. The 2nd BCF ;caused RB7 to be latched as the pin value ;(high).

FIGURE 5-5: SUCCESSIVE I/O OPERATION

NOTES:

8.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real time applications. The PIC16F8X has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These features are:

- OSC Selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming

The PIC16F8X has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. This design keeps the device in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode offers a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer time-out or through an interrupt. Several oscillator options are provided to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select the various options.

TABLE 8-3 RESET CONDITION FOR PROGRAM COUNTER AND THE STATUS REGISTER

Condition	Program Counter	STATUS Register
Power-on Reset	000h	0001 1xxx
MCLR Reset during normal operation	000h	000u uuuu
MCLR Reset during SLEEP	000h	0001 0uuu
WDT Reset (during normal operation)	000h	0000 luuu
WDT Wake-up	PC + 1	uuu0 0uuu
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul 0uuu

Legend: u = unchanged, x = unknown.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

Register	Address	Power-on Reset	MCLR Reset during: – normal operation – SLEEP WDT Reset during nor- mal operation	Wake-up from SLEEP: – through interrupt – through WDT Time-out
W	_	XXXX XXXX	սսսս սսսս	սսսս սսսս
INDF	00h			
TMR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h	0000h	0000h	PC + 1 ⁽²⁾
STATUS	03h	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	04h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	05h	x xxxx	u uuuu	u uuuu
PORTB	06h	xxxx xxxx	uuuu uuuu	uuuu uuuu
EEDATA	08h	xxxx xxxx	uuuu uuuu	uuuu uuuu
EEADR	09h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCLATH	0Ah	0 0000	0 0000	u uuuu
INTCON	0Bh	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾
INDF	80h			
OPTION_REG	81h	1111 1111	1111 1111	uuuu uuuu
PCL	82h	0000h	0000h	PC + 1
STATUS	83h	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	84h	xxxx xxxx	uuuu uuuu	uuuu uuuu
TRISA	85h	1 1111	1 1111	u uuuu
TRISB	86h	1111 1111	1111 1111	սսսս սսսս
EECON1	88h	0 x000	0 q000	0 uuuu
EECON2	89h			
PCLATH	8Ah	0 0000	0 0000	u uuuu
INTCON	8Bh	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾

TABLE 8-4 RESET CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0',

q = value depends on condition.

Note 1: One or more bits in INTCON will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: Table 8-3 lists the reset value for each specific condition.

8.4 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, just tie the \overline{MCLR} pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A minimum rise time for VDD must be met for this to operate properly. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be meet to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting.*"

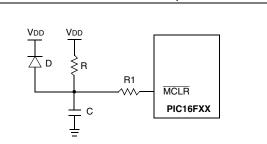
The POR circuit does not produce an internal reset when VDD declines.

8.5 Power-up Timer (PWRT)

The Power-up Timer (PWRT) provides a fixed 72 ms nominal time-out (TPWRT) from POR (Figure 8-10, Figure 8-11, Figure 8-12 and Figure 8-13). The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level (Possible exception shown in Figure 8-13).

A configuration bit, PWRTE, can enable/disable the PWRT. See either Figure 8-1 or Figure 8-2 for the operation of the PWRTE bit for a particular device.

The power-up time delay TPWRT will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.


8.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle delay (from OSC1 input) after the PWRT delay ends (Figure 8-10, Figure 8-11, Figure 8-12 and Figure 8-13). This ensures the crystal oscillator or resonator has started and stabilized.

The OST time-out (TOST) is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

When VDD rises very slowly, it is possible that the TPWRT time-out and TOST time-out will expire before VDD has reached its final value. In this case (Figure 8-13), an external power-on reset circuit may be necessary (Figure 8-9).

FIGURE 8-9: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- Note 1: External Power-on Reset circuit is required only if VDD power-up rate is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - R < 40 kΩ is recommended to make sure that voltage drop across R does not exceed 0.2V (max leakage current spec on MCLR pin is 5 μA). A larger voltage drop will degrade VIH level on the MCLR pin.
 - 3: R1 = 100Ω to 1 k Ω will limit any current flowing into MCLR from external capacitor C in the event of an MCLR pin breakdown due to ESD or EOS.

8.7 <u>Time-out Sequence and Power-down</u> Status Bits (TO/PD)

On power-up (Figure 8-10, Figure 8-11, Figure 8-12 and Figure 8-13) the time-out sequence is as follows: First PWRT time-out is invoked after a POR has expired. Then the OST is activated. The total time-out will vary based on oscillator configuration and PWRTE configuration bit status. For example, in RC mode with the PWRT disabled, there will be no time-out at all.

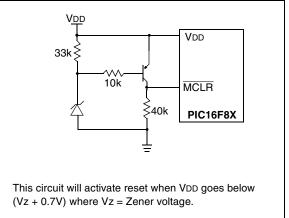
TABLE 8-5TIME-OUT IN VARIOUSSITUATIONS

Oscillator	Powe	Wake-up		
Configuration	PWRT Enabled	PWRT Disabled	from SLEEP	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024Tosc	
RC	72 ms	_	_	

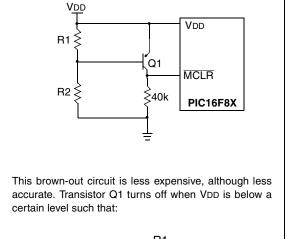
Since the time-outs occur from the POR reset pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high, execution will begin immediately (Figure 8-10). This is useful for testing purposes or to synchronize more than one PIC16F8X device when operating in parallel.

Table 8-6 shows the significance of the $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits. Table 8-3 lists the reset conditions for some special registers, while Table 8-4 lists the reset conditions for all the registers.

TABLE 8-6STATUS BITS AND THEIRSIGNIFICANCE


то	PD	Condition
1	1	Power-on Reset
0	x	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$
x	0	Illegal, PD is set on POR
0	1	WDT Reset (during normal operation)
0	0	WDT Wake-up
1	1	MCLR Reset during normal operation
1	0	MCLR Reset during SLEEP or interrupt
		wake-up from SLEEP

8.8 Reset on Brown-Out


A brown-out is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be reset in the event of a brown-out.

To reset a PIC16F8X device when a brown-out occurs, external brown-out protection circuits may be built, as shown in Figure 8-14 and Figure 8-15.

FIGURE 8-14: BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 8-15: BROWN-OUT PROTECTION CIRCUIT 2

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

8.12 Power-down Mode (SLEEP)

A device may be powered down (SLEEP) and later powered up (Wake-up from SLEEP).

8.12.1 SLEEP

The Power-down mode is entered by executing the SLEEP instruction.

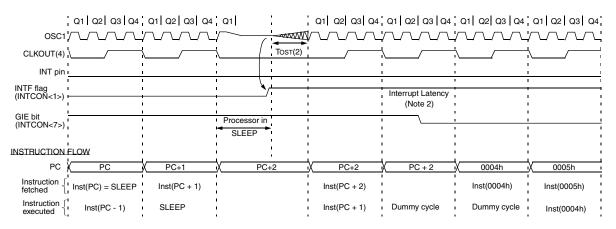
If enabled, the Watchdog Timer is cleared (but keeps running), the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} bit (STATUS<4>) is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For the lowest current consumption in SLEEP mode, place all I/O pins at either at VDD or VSS, with no external circuitry drawing current from the I/O pins, and disable external clocks. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

It should be noted that a RESET generated by a WDT time-out does not drive the MCLR pin low.

8.12.2 WAKE-UP FROM SLEEP


The device can wake-up from SLEEP through one of the following events:

- 1. External reset input on MCLR pin.
- 2. WDT Wake-up (if WDT was enabled).
- 3. Interrupt from RB0/INT pin, RB port change, or data EEPROM write complete.

Peripherals cannot generate interrupts during SLEEP, since no on-chip Q clocks are present.

The first event ($\overline{\text{MCLR}}$ reset) will cause a device reset. The two latter events are considered a continuation of program execution. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits can be used to determine the cause of a device reset. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

While the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up occurs regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the state of the substant of the instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

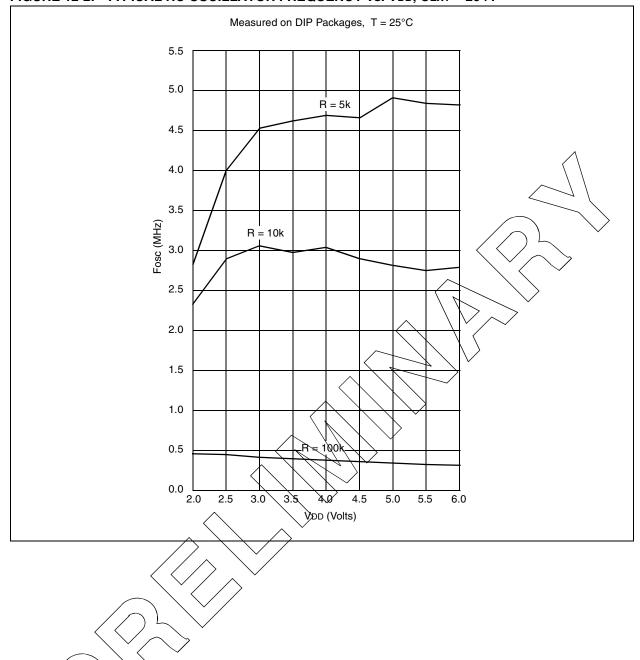
FIGURE 8-19: WAKE-UP FROM SLEEP THROUGH INTERRUPT

Note 1: XT, HS or LP oscillator mode assumed.

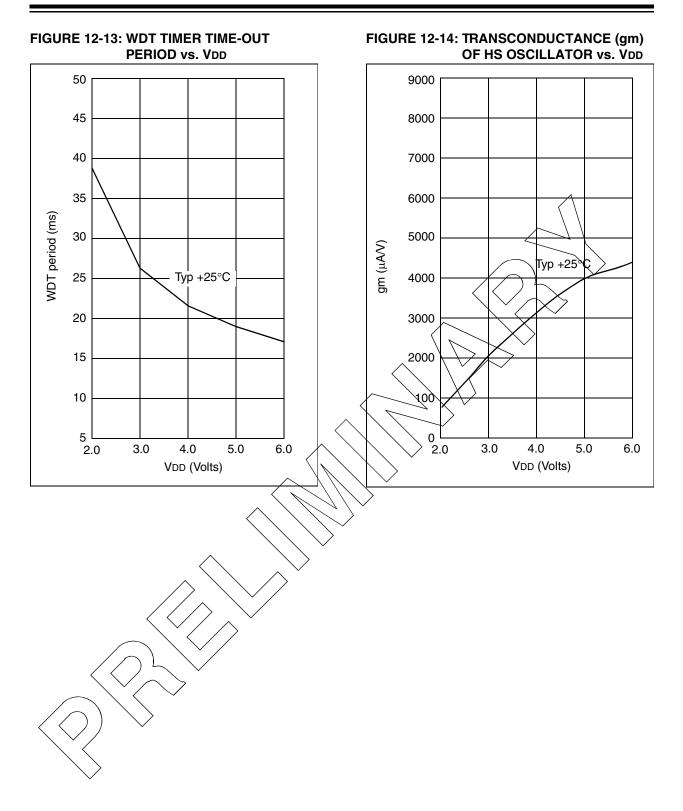
2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.

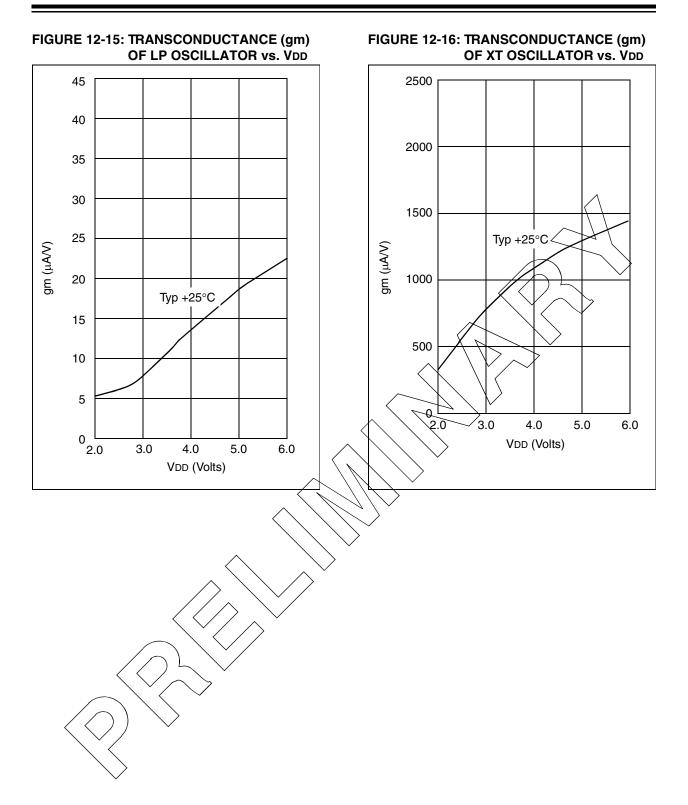
3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.


BTFSS	Bit Test f, Skip if Set				CALL	Call Sub	proutine			
Syntax:	[<i>label</i>] BTFS	SS f,b			Syntax:	[label]	[<i>label</i>] CALL k			
Operands:	$0 \leq f \leq 127$				Operands:	$0 \le k \le 2$				
	0 ≤ b < 7				Operation:	(PC)+ 1-	→ TOS,			
Operation:	skip if (f)	-) = 1				$k \rightarrow PC <$,	50 /0		
Status Affected:	None				.	,	1<4:3>) -	→ PC<12	:11>	
Encoding:	01 1	11bb	bfff	ffff	Status Affected:	None	1		1 1	
Description:	If bit 'b' in regi			ne next	Encoding:	10	0kkk	kkkk	kkkk	
Words:	If bit 'b' is '1', t discarded and instead, making 1	then the	next instruits execute	ed	Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL				
Cycles:	1(2)						ycle instru	ction.		
Q Cycle Activity:	Q1	Q2	Q3	Q4	Words:	1				
		Read	Process	No-Operat	Cycles:	2	0.0	0.0	<u>.</u>	
	re	egister 'f'	data	ion	Q Cycle Activity:	Q1	Q2	Q3	Q4	
If Skip:	(2nd Cycle))			1st Cycle	Decode	Read literal 'k',	Process data	Write to PC	
	Q1	Q2	Q3	Q4			Push PC to Stack			
	No-Operat ion	o-Operati on	No-Opera tion	No-Operat ion	2nd Cycle	No-Opera tion	No-Opera tion	No-Opera tion	No-Operat ion	
Example			FLAG,1 PROCESS	CODE	Example	HERE	CALL	THERE		
	TRUE •	•	-	_		Before Ir	nstruction			
	•	•				After Ins	-	ddress HE	RE	
	Before Instru	ruction						ddress TH	IERE	
	PC	C = a	ddress H	IERE			TOS = A	ddress HE	IRE+1	
	After Instruc									
	if Fl PC	FLAG<1> C = a	= 0, address F#	ALSE						
	if Fl	-LAG<1>								
	PC	C = 6	address TI	RUE						

PIC16F8X


ff
n the d
' is
truc-
Q 4
ite to ination
Q 4
Operati on


PIC16F8X

RLF	Rotate Left f thr	ough Carry	RRF	Rotate Right f through Carry
Syntax:	[label]	RLF f,d	Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	See description I	below	Operation:	See description below
Status Affected:	С		Status Affected:	С
Encoding:	00 1101	dfff ffff	Encoding:	00 1100 dfff ffff
Description:	•		Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Words:	1		Words:	1
Cycles:	1		Cycles:	1
Q Cycle Activity:	Q1 Q2	Q3 Q4	Q Cycle Activity:	Q1 Q2 Q3 Q4
	Decode Read register 'f'	Process Write to destination		Decode Read register data Vite to destination
Example	$\begin{array}{cccc} RLF & REGI, 0 \\ \hline \mbox{Before Instruction} \\ \hline \mbox{REG1} & = & 1110 & 0110 \\ \mbox{C} & = & 0 \\ \hline \mbox{After Instruction} \\ \hline \mbox{REG1} & = & 1110 & 0110 \\ \mbox{W} & = & 1100 & 1100 \\ \mbox{C} & = & 1 \\ \hline \mbox{C} & = & 1 \\ \end{array}$		Example	RRF REG1,0
				$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

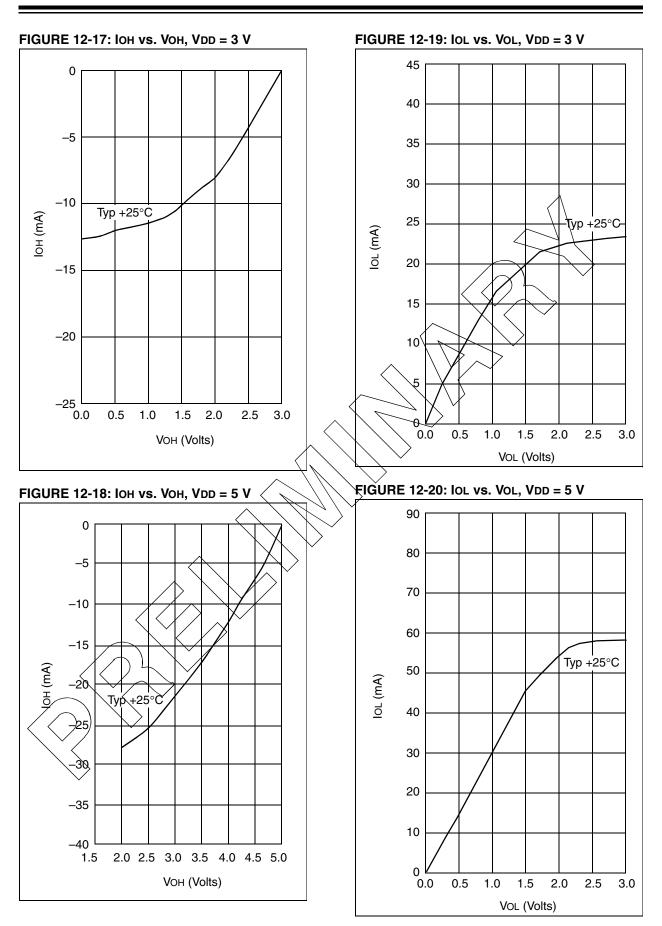


FIGURE 12-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 20 PF

PIC16F8X

NOTES: