

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	64 × 8
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f84t-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 PIC16F8X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements the proper device option can be selected using the information in this section. When placing orders, please use the "PIC16F8X Product Identification System" at the back of this data sheet to specify the correct part number.

There are four device "types" as indicated in the device number.

- 1. **F**, as in PIC16**F**84. These devices have Flash program memory and operate over the standard voltage range.
- LF, as in PIC16LF84. These devices have Flash program memory and operate over an extended voltage range.
- 3. **CR**, as in PIC16**CR**83. These devices have ROM program memory and operate over the standard voltage range.
- 4. **LCR**, as in PIC16**LCR**84. These devices have ROM program memory and operate over an extended voltage range.

When discussing memory maps and other architectural features, the use of **F** and **CR** also implies the **LF** and **LCR** versions.

2.1 Flash Devices

These devices are offered in the lower cost plastic package, even though the device can be erased and reprogrammed. This allows the same device to be used for prototype development and pilot programs as well as production.

A further advantage of the electrically-erasable Flash version is that it can be erased and reprogrammed incircuit, or by device programmers, such as Microchip's PICSTART[®] Plus or PRO MATE[®] II programmers.

2.2 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices have all Flash locations and configuration options already programmed by the factory. Certain code and prototype verification procedures do apply before production shipments are available.

For information on submitting a QTP code, please contact your Microchip Regional Sales Office.

2.3 <u>Serialized Quick-Turnaround-</u> <u>Production (SQTPSM) Devices</u>

Microchip offers the unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

For information on submitting a SQTP code, please contact your Microchip Regional Sales Office.

2.4 ROM Devices

Some of Microchip's devices have a corresponding device where the program memory is a ROM. These devices give a cost savings over Microchip's traditional user programmed devices (EPROM, EEPROM).

ROM devices (PIC16CR8X) do not allow serialization information in the program memory space. The user may program this information into the Data EEPROM.

For information on submitting a ROM code, please contact your Microchip Regional Sales Office.

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture. This architecture has the program and data accessed from separate memories. So the device has a program memory bus and a data memory bus. This improves bandwidth over traditional von Neumann architecture where program and data are fetched from the same memory (accesses over the same bus). Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. PIC16CXX opcodes are 14-bits wide, enabling single word instructions. The full 14-bit wide program memory bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions execute in a single cycle except for program branches.

The PIC16F83 and PIC16CR83 address 512 x 14 of program memory, and the PIC16F84 and PIC16CR84 address 1K x 14 program memory. All program memory is internal.

The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers including the program counter are mapped in the data memory. An orthogonal (symmetrical) instruction set makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16CXX simple yet efficient. In addition, the learning curve is reduced significantly.

TABLE 5-1 PORTA FUNCTIONS

Name	Bit0	Buffer Type	Function
RA0	bit0	TTL	Input/output
RA1	bit1	TTL	Input/output
RA2	bit2	TTL	Input/output
RA3	bit3	TTL	Input/output
RA4/T0CKI	bit4	ST	Input/output or external clock input for TMR0. Output is open drain type.

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 5-2 SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
05h	PORTA	—	—	—	RA4/T0CKI	RA3	RA2	RA1	RA0	x xxxx	u uuuu
85h	TRISA	-	—	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are unimplemented, read as '0'

5.3 I/O Programming Considerations

5.3.1 BI-DIRECTIONAL I/O PORTS

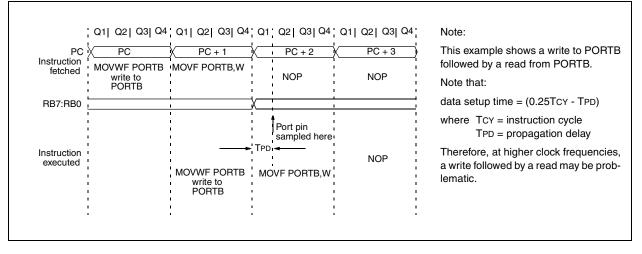
Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (i.e., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch is unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (i.e., BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output current may damage the chip.

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-5). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such that the pin voltage stabilizes (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.


Example 5-1 shows the effect of two sequential read-modify-write instructions (e.g., ${\tt BCF}\,,\,\,{\tt BSF},\, etc.)$ on an I/O port.

EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings: PORTB<7:4> Inputs ; PORTB<3:0> Outputs ;PORTB<7:6> have external pull-ups and are ;not connected to other circuitry

'								
;					PORT	latch	PORT	pins
;								
	BCF	PORTB,	7	;	01pp	ppp	11pp	ppp
	BCF	PORTB,	6	;	10pp	ppp	11pp	ppp
	BSF	STATUS	, RPO	;				
	BCF	TRISB,	7	;	10pp	ppp	11pp	ppp
	BCF	TRISB,	6	;	10pp	ppp	10pp	ppp
:								

;Note that the user may have expected the ;pin values to be 00pp ppp. The 2nd BCF ;caused RB7 to be latched as the pin value ;(high).

FIGURE 5-5: SUCCESSIVE I/O OPERATION

NOTES:

7.2 EECON1 and EECON2 Registers

EECON1 is the control register with five low order bits physically implemented. The upper-three bits are nonexistent and read as '0's.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a $\overline{\text{MCLR}}$ reset or a WDT time-out reset during normal operation. In these situations, following reset, the user can check the WRERR bit and rewrite the location. The data and address will be unchanged in the EEDATA and EEADR registers.

Interrupt flag bit EEIF is set when write is complete. It must be cleared in software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the Data EEPROM write sequence.

7.3 Reading the EEPROM Data Memory

To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1<0>). The data is available, in the very next cycle, in the EEDATA register; therefore it can be read in the next instruction. EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 7-1: DATA EEPROM READ

BCF	STATUS, RPO	; Bank 0
MOVLW	CONFIG_ADDR	;
MOVWF	EEADR	; Address to read
BSF	STATUS, RPO	; Bank 1
BSF	EECON1, RD	; EE Read
BCF	STATUS, RPO	; Bank 0
MOVF	EEDATA, W	; W = EEDATA

7.4 Writing to the EEPROM Data Memory

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte.

EXAMPLE 7-1: DATA EEPROM WRITE

	BSF BCF	STATUS, RPO INTCON, GIE	'	Bank 1 Disable INTs.
	BSF	EECON1, WREN	;	Enable Write
	MOVLW	55h	;	
	MOVWF	EECON2	;	Write 55h
p e	MOVLW	AAh	;	
lequired equence	MOVWF	EECON2	;	Write AAh
ng ng	BSF	EECON1,WR	;	Set WR bit
Se			;	begin write
	BSF	INTCON, GIE	;	Enable INTs.

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

7.5 <u>Write Verify</u>

Depending on the application, good programming practice may dictate that the value written to the Data EEPROM should be verified (Example 7-1) to the desired value to be written. This should be used in applications where an EEPROM bit will be stressed near the specification limit. The Total Endurance disk will help determine your comfort level.

Generally the EEPROM write failure will be a bit which was written as a '1', but reads back as a '0' (due to leakage off the bit).

EXAMPLE 7-1: WRITE VERIFY

	BCF	STATUS,	RP0	;	Bank 0
	:			;	Any code can go here
	:			;	
	MOVF	EEDATA,	W	;	Must be in Bank 0
	BSF	STATUS,	RP0	;	Bank 1
RE	EAD				
	BSF	EECON1,	RD	;	YES, Read the
				;	value written
	BCF	STATUS,	RP0	;	Bank 0
;					
;	Is the	value wr:	itter	ı	(in W reg) and
;	read	(in EEDA	ΓA) t	h	e same?

SUBWF	EEDATA, W	;	
BTFSS	STATUS, Z	; Is difference	0?
GOTO	WRITE_ERR	; NO, Write err	or
:		; YES, Good wri	te
:		; Continue prog	ram

7.6 Protection Against Spurious Writes

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built in. On power-up, WREN is cleared. Also, the Power-up Timer (72 ms duration) prevents EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch, or software malfunction.

7.7 Data EEPROM Operation during Code Protect

When the device is code protected, the CPU is able to read and write unscrambled data to the Data EEPROM.

For ROM devices, there are two code protection bits (Section 8.1). One for the ROM program memory and one for the Data EEPROM memory.

TABLE 7-1 REGISTERS/BITS ASSOCIATED WITH DATA EEPROM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
08h	EEDATA	EEPROM	data regis	ter						xxxx xxxx	uuuu uuuu
09h	EEADR	EEPROM a	EPROM address register							xxxx xxxx	uuuu uuuu
88h	EECON1	—	_	_	EEIF	WRERR	WREN	WR	RD	0 x000	0 q000
89h	EECON2	EEPROM	PROM control register 2								

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Shaded cells are not used by Data EEPROM.

TABLE 8-3 RESET CONDITION FOR PROGRAM COUNTER AND THE STATUS REGISTER

Condition	Program Counter	STATUS Register
Power-on Reset	000h	0001 1xxx
MCLR Reset during normal operation	000h	000u uuuu
MCLR Reset during SLEEP	000h	0001 0uuu
WDT Reset (during normal operation)	000h	0000 luuu
WDT Wake-up	PC + 1	uuu0 0uuu
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul 0uuu

Legend: u = unchanged, x = unknown.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

Register	Address	Power-on Reset	MCLR Reset during: – normal operation – SLEEP WDT Reset during nor- mal operation	Wake-up from SLEEP: – through interrupt – through WDT Time-out
W	_	XXXX XXXX	นนนน นนนน	սսսս սսսս
INDF	00h			
TMR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h	0000h	0000h	PC + 1 ⁽²⁾
STATUS	03h	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	04h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	05h	x xxxx	u uuuu	u uuuu
PORTB	06h	xxxx xxxx	uuuu uuuu	uuuu uuuu
EEDATA	08h	xxxx xxxx	uuuu uuuu	uuuu uuuu
EEADR	09h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCLATH	0Ah	0 0000	0 0000	u uuuu
INTCON	0Bh	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾
INDF	80h			
OPTION_REG	81h	1111 1111	1111 1111	uuuu uuuu
PCL	82h	0000h	0000h	PC + 1
STATUS	83h	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	84h	xxxx xxxx	uuuu uuuu	uuuu uuuu
TRISA	85h	1 1111	1 1111	u uuuu
TRISB	86h	1111 1111	1111 1111	սսսս սսսս
EECON1	88h	0 x000	0 q000	0 uuuu
EECON2	89h			
PCLATH	8Ah	0 0000	0 0000	u uuuu
INTCON	8Bh	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾

TABLE 8-4 RESET CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0',

q = value depends on condition.

Note 1: One or more bits in INTCON will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: Table 8-3 lists the reset value for each specific condition.

8.12.3 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

8.13 Program Verification/Code Protection

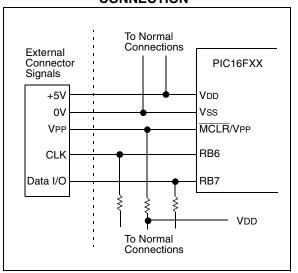
If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip does not recommend code pro-
	tecting widowed devices.

8.14 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations to store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable only during program/verify. Only the 4 least significant bits of ID location are usable.

For ROM devices, these values are submitted along with the ROM code.


8.15 In-Circuit Serial Programming

PIC16F8X microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. Customers can manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product, allowing the most recent firmware or custom firmware to be programmed.

The device is placed into a program/verify mode by holding the RB6 and RB7 pins low, while raising the MCLR pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After reset, to place the device into programming/verify mode, the program counter (PC) points to location 00h. A 6-bit command is then supplied to the device, 14-bits of program data is then supplied to or from the device, using load or read-type instructions. For complete details of serial programming, please refer to the PIC16CXX Programming Specifications (Literature #DS30189).

FIGURE 8-20: TYPICAL IN-SYSTEM SERIAL PROGRAMMING CONNECTION

For ROM devices, both the program memory and Data EEPROM memory may be read, but only the Data EEPROM memory may be programmed.

INCFSZ	Increment f, Skip if 0	IORLW	Inclusive OR Literal with W
Syntax:	[label] INCFSZ f,d	Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \le f \le 127$	Operands:	$0 \le k \le 255$
	d ∈ [0,1]	Operation:	(W) .OR. $k \rightarrow$ (W)
Operation:	(f) + 1 \rightarrow (destination),	Status Affected:	Z
	skip if result = 0	Encoding:	11 1000 kkkk kkkk
Status Affected:	None	Description:	The contents of the W register is
Encoding:	00 1111 dfff ffff		OR'ed with the eight bit literal 'k'. The result is placed in the W register.
Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in	Words:	1
	the W register. If 'd' is 1 the result is placed back in register 'f'.	Cycles:	1
	If the result is 1, the next instruction is executed. If the result is 0, a NOP is exe- cuted instead making it a 2TCY instruc-	Q Cycle Activity:	Q1 Q2 Q3 Q4
	cuted instead making it a 2TCY instruc- tion.	Q Cycle Activity.	Decode Read Process Write to
Words:	1		literal 'k' data W
Cycles:	1(2)		
Q Cycle Activity:	Q1 Q2 Q3 Q4	Example	IORLW 0x35
	Decode Read Process Write to		Before Instruction W = 0x9A
	register 'f' data destination		After Instruction
If Skip:	(2nd Cycle)		W = 0xBF Z = 1
	Q1 Q2 Q3 Q4		$\mathcal{L} = 1$
	No-Operation No-		
Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •		
	Before Instruction PC = address HERE After Instruction CNT = CNT + 1 if CNT= 0, PC = address CONTINUE if CNT \neq 0, PC = address HERE +1		

RLF	Rotate Left f throug	gh Carry	RRF	Rotate Right f through Carry
Syntax:	[label] RI	lLF f,d	Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	See description belo	WC	Operation:	See description below
Status Affected:	С		Status Affected:	С
Encoding:	00 1101 d	lfff ffff	Encoding:	00 1100 dfff ffff
Description:	The contents of registe one bit to the left throug Flag. If 'd' is 0 the resul W register. If 'd' is 1 the back in register 'f'.	igh the Carry It is placed in the	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Words:	1		Words:	1
Cycles:	1		Cycles:	1
Q Cycle Activity:	Q1 Q2	Q3 Q4	Q Cycle Activity:	Q1 Q2 Q3 Q4
		Process Write to destination		Decode Read register data Vite to destination
Example	RLF REG1,	, 0	Example	RRF REG1,0
	Before Instruction REG1 = C = After Instruction REG1 = W = C =	1110 0110 0 1110 0110 1100 1100 1		Before Instruction REG1 = 1110 0110 C = 0 0 After Instruction REG1 = 1110 0110 W = 0111 0011 0011 C = 0 0 0

SUBWF	Subtract	W from f			
Syntax:	[label]	SUBWF	f,d		
Operands:	$\begin{array}{l} 0\leq f\leq 12\\ d\in [0,1] \end{array}$	7			
Operation:	(f) - (W) \rightarrow (destination)				
Status Affected:	C, DC, Z				
Encoding:	00	0010	dfff	ffff	
Description:	ister from r stored in th	egister 'f'. I ne W regist	nent metho f 'd' is 0 the er. If 'd' is 1 n register 'f	result is the	
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read register 'f'	Process data	Write to destination	
Example 1:	SUBWF		REG1,1		
	Before Ins	struction			
	REG1 W C	= = =	3 2 ?		
	Z	=	?		
	After Insti REG1		1		
	W	=	2		
	C Z	=	1; result is 0	positive	
Example 2:	Before In:		°		
·	REG1	=	2		
	W	=	2		
	C Z	=	? ?		
	After Inst	ruction			
	REG1	=	0		
	W C	=	2 1; result is	zero	
	Z	=	1	2010	
Example 3:	Before Ins	struction			
	REG1		1		
	W C	=	2 ?		
	Z	=	?		
	After Insti				
	REG1 W	=	0xFF 2		
	С	=	0; result is	negative	
	Z	=	0		

SWAPF	Swap Nibbles in f						
Syntax:	[label]	[label] SWAPF f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 12\\ d\in [0,1] \end{array}$	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	· ,	ightarrow (destin $ ightarrow$ (destin					
Status Affected:	None						
Encoding:	0 0	1110	dfff	ffff			
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.						
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process data	Write to destination			
Example	SWAPF	REG,	0				
	Before Ir	struction					
		REG1	= 0x/	45			
	After Instruction						
		REG1 W	= 0x/ = 0x5				

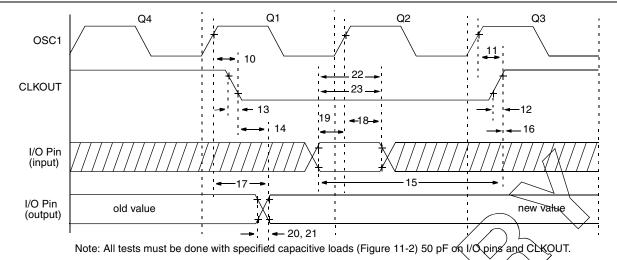
TRIS	Load TRIS Register			
Syntax:	[<i>label</i>] TRIS f			
Operands:	$5 \le f \le 7$			
Operation:	(W) \rightarrow TRIS register f;			
Status Affected:	None			
Encoding:	00 0000 0110 0fff			
Description: Words: Cycles: Example	The instruction is supported for code compatibility with the PIC16C5X prod- ucts. Since TRIS registers are read- able and writable, the user can directly address them. 1			
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.			

TABLE 10-1CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

OSC	PIC16F84-04 PIC16F83-04	PIC16F84-10 PIC16F83-10	PIC16LF84-04 PIC16LF83-04		
RC	VDD: 4.0V to 6.0V IDD: 4.5 mA max. at 5.5V IPD: 14 μA max. at 4V WDT dis Freq: 4.0 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 5.5V WDT dis Freq: 40 MHz max.	VDD: 2.0V to 6.0V IDD: 4.5 mA max. at 5.5V IPD: 7.0 μA max. at 2V WDT dis Freq: 2.0 MHz max.		
XT	VDD: 4.0V to 6.0V IDD: 4.5 mA max. at 5.5V IPD: 14 μA max. at 4V WDT dis Freq: 4.0 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 5.5V WDT dis Freq: 4.0 MHz max.	VDD: 2.0V to 6.0V IDD: 4.5 mA max. at 555V IPD: 7.0 μA max. at 2V WDT dis Freq: 2.0 MHz max.		
HS	VDD: 4.5V to 5.5V IDD: 4.5 mA typ. at 5.5V IPD: 1.0 μA typ. at 4.5V WDT dis Freq: 4.0 MHz max.	VDD: 4.5V to 5.5V IDD: 10 mA max. at 5.5V typ. IPD: 1.0 μA typ. at 4.5V WDT dis Freq: 10 MHz max.	Do not use in HS mode		
LP	VDD: 4.0V to 6.0V IDD: 48 μA typ. at 32 kHz, 2.0V IPD: 0.6 μA typ. at 3.0V WDT dis Freq: 200 kHz max.	Do not use in LP mode	VDD: 2.0V to 6.0V IDD: 45 μA max. at 32 kHz, 2.0V IPD: 7 μA max, at 2.0V WDT dis Freq: 200 kHz max.		

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

11.0 ELECTRICAL CHARACTERISTICS FOR PIC16CR83 AND PIC16CR84


Absolute Maximum Ratings †

Ambient temperature under bias	55°C to +125°C
Ambient temperature under bias Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	
Voltage on MCLR with respect to Vss ⁽²⁾	
Voltage on any pin with respect to Vss (except VDD and MCLR)	
Total power dissipation ⁽¹⁾	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iк (Vi < 0 or Vi > VDD)	
Output clamp current, Iок (Vo < 0 or Vo > VDD)	
Maximum output current sunk by any I/O pin	
Maximum output current sunk by any I/O pin Maximum output current sourced by any I/O pin	
Maximum current sunk by PORTA	
Maximum current sourced by PORTA	
Maximum current sourced by PORTA Maximum current sunk by PORTB	\
Maximum current sourced by PORTB.	,
Note 1: Power dissipation is calculated as follows: Pdis = VDD χ {IDD - Σ D	
Note 2: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greate a series resistor of 50-100 Ω should be used when applying a "low"	rthan 80 mA, may cause latch-up. Thus, level to the $\overline{\text{MCLR}}$ pin rather than pulling

this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 11-4 CLKOUT AND I/O TIMING REQUIREMENTS

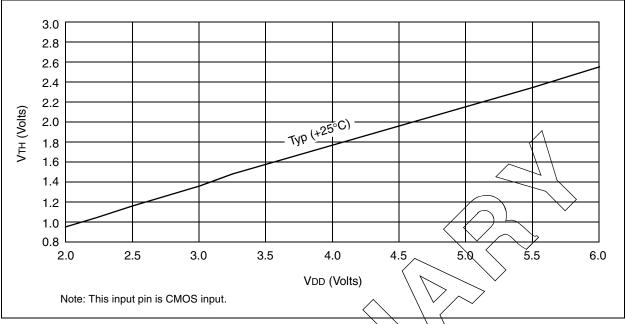
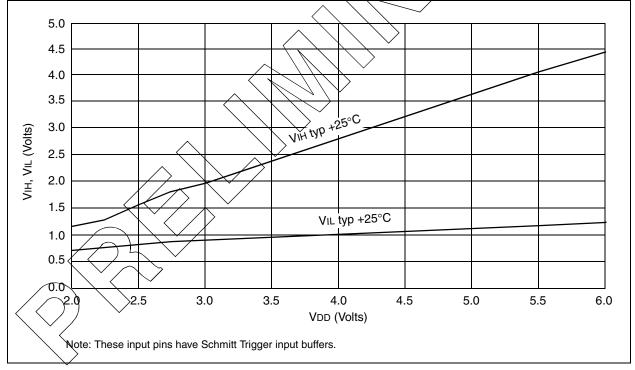
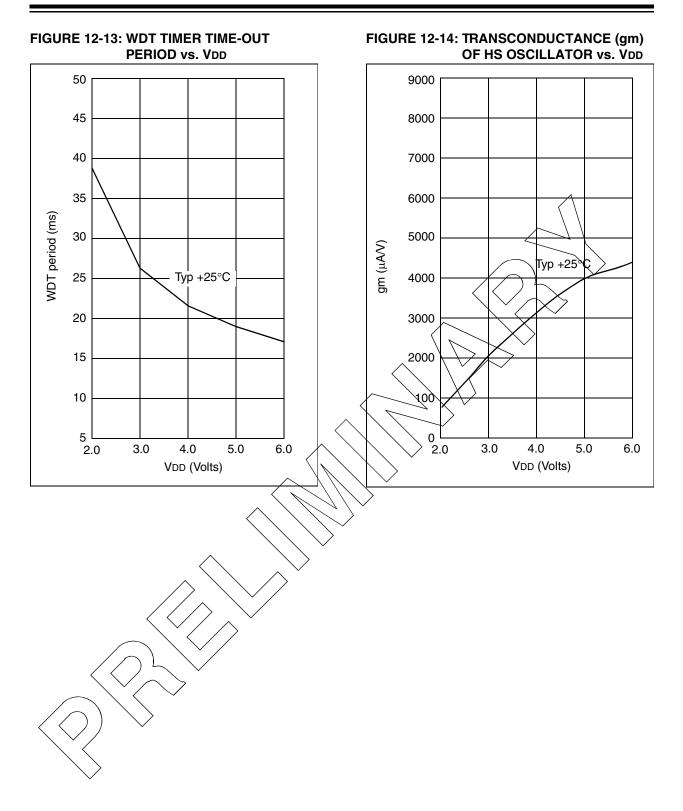
Parameter No.	Sym	Characteristic		Min	Typt	Max	Units	Conditions
10	TosH2ckL	OSC1↑ to CLKOUT↓	PIC16CR8X		15	30 *	ns	Note 1
10A			PIC16LCR8X	\sim	15	120 *	ns	Note 1
11	TosH2ckH	OSC1↑ to CLKOUT↑	PIC16CR8X	$\langle f \rangle$		30 *	ns	Note 1
11A			PIC16LCR8X	$/ \neq /$	15	120 *	ns	Note 1
12	TckR	CLKOUT rise time	PIC1@CR8X		15	30 *	ns	Note 1
12A			PIC16LOR8X	\searrow	15	100 *	ns	Note 1
13	TckF	CLKOUT fall time	PIC16CR8X	> -	15	30 *	ns	Note 1
13A		\land	RICHOLCHOX	× _	15	100 *	ns	Note 1
14	TckL2ioV	CLKOUT ↓ to Port out	valid	—	—	0.5TCY +20 *	ns	Note 1
15	TioV2ckH	Port in valid before	PIC16CR8X	0.30TCY + 30 *	_	_	ns	Note 1
		CLKOUT	RIC16LCR8X	0.30TCY + 80 *	—	_	ns	Note 1
16	TckH2iol	Port in hold after CLKØ	NT ↓	0 *	—	_	ns	Note 1
17	TosH2ioV	ØSC11 (Q1 cycle) to	PIC16CR8X	—	—	125 *	ns	
		Port øut valid	PIC16LCR8X	—	—	250 *	ns	
18	TosH2iol	OSC11 (Q2 cycle) to	PIC16CR8X	10 *	—	_	ns	
	\bigcirc	Rort input invalid (I/O in hold time)	PIC16LCR8X	10 *		_	ns	
19 <	TioV20sH	Rort input valid to	PIC16CR8X	-75 *	Ι		ns	
	$\sum ($	OSC1↑ (I/O in setup time)	PIC16LCR8X	-175 *	_	—	ns	
20	TioR	Port output rise time	PIC16CR8X	—	10	35 *	ns	
20A	, ř		PIC16LCR8X	—	10	70 *	ns	
21	TioF	Port output fall time	PIC16CR8X	—	10	35 *	ns	
21A			PIC16LCR8X	—	10	70 *	ns	
22	Tinp	INT pin high	PIC16CR8X	20 *	_		ns	
22A		or low time	PIC16LCR8X	55 *		_	ns	
23	Trbp	RB7:RB4 change INT	PIC16CR8X	Tosc §			ns	
23A		high or low time	PIC16LCR8X	Tosc §		_	ns	

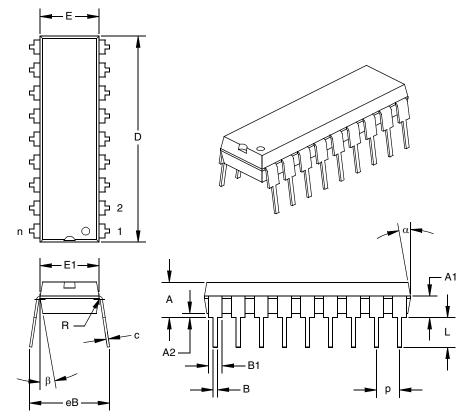
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ By design

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.


FIGURE 12-9: VIH, VIL OF MCLR, TOCKI AND OSC1 (IN RC MODE) vs. VDD

Package Type: K04-007 18-Lead Plastic Dual In-line (P) – 300 mil

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES*			М	ILLIMETER	S
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
PCB Row Spacing			0.300			7.62	
Number of Pins	n		18			18	
Pitch	р		0.100			2.54	
Lower Lead Width	В	0.013	0.018	0.023	0.33	0.46	0.58
Upper Lead Width	B1 [†]	0.055	0.060	0.065	1.40	1.52	1.65
Shoulder Radius	R	0.000	0.005	0.010	0.00	0.13	0.25
Lead Thickness	С	0.005	0.010	0.015	0.13	0.25	0.38
Top to Seating Plane	А	0.110	0.155	0.155	2.79	3.94	3.94
Top of Lead to Seating Plane	A1	0.075	0.095	0.115	1.91	2.41	2.92
Base to Seating Plane	A2	0.000	0.020	0.020	0.00	0.51	0.51
Tip to Seating Plane	L	0.125	0.130	0.135	3.18	3.30	3.43
Package Length	D‡	0.890	0.895	0.900	22.61	22.73	22.86
Molded Package Width	E‡	0.245	0.255	0.265	6.22	6.48	6.73
Radius to Radius Width	E1	0.230	0.250	0.270	5.84	6.35	6.86
Overall Row Spacing	eB	0.310	0.349	0.387	7.87	8.85	9.83
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter.

[†] Dimension "B1" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B1."

[‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."

NOTES:

APPENDIX E: CONVERSION CONSIDERATIONS - PIC16C84 TO PIC16F83/F84 AND PIC16CR83/CR84

Considerations for converting from the PIC16C84 to the PIC16F84 are listed in the table below. These considerations apply to converting from the PIC16C84 to the PIC16F83 (same as PIC16F84 except for program and data RAM memory sizes) and the PIC16CR84 and PIC16CR83 (ROM versions of Flash devices). Development Systems support is available for all of the PIC16X8X devices.

Difference	PIC16C84	PIC16F84
The polarity of the PWRTE bit has been reversed. Ensure that the pro- grammer has this bit correctly set before programming.	PWRTE	PWRTE
The PIC16F84 (and PIC16CR84) have larger RAM sizes. Ensure that this does not cause an issue with your program.	RAM = 36 bytes	RAM = 68 bytes
The MCLR pin now has an on-chip filter. The input signal on the MCLR pin will require a longer low pulse to generate an interrupt.	$\label{eq:mcLR} \begin{array}{l} \hline \text{MCLR} \text{ pulse width (low)} \\ = 350\text{ns}; \ 2.0\text{V} \leq \text{V}\text{DD} \leq 3.0\text{V} \\ = 150\text{ns}; \ 3.0\text{V} \leq \text{V}\text{DD} \leq 6.0\text{V} \\ \end{array}$	$\frac{MCLR}{MCLR}$ pulse width (low) = 1000ns; 2.0V \leq VDD \leq 6.0V
Some electrical specifications have been improved (see IPD example). Compare the electrical specifica- tions of the two devices to ensure that this will not cause a compatibil- ity issue.	IPD (typ @ 2V) = 26μA IPD (max @ 4V, WDT disabled) =100μA (PIC16C84) =100μA (PIC16LC84)	IPD (typ @ 2V) < 1μA IPD (max @ 4V, WDT disabled) =14μA (PIC16F84) =7μA (PIC16LF84)
PORTA and crystal oscillator values less than 500kHz	For crystal oscillator configurations operating below 500kHz, the device may generate a spurious internal Q-clock when PORTA<0> switches state.	N/A
RB0/INT pin	TTL	TTL/ST* (* This buffer is a Schmitt Trigger input when configured as the exter- nal interrupt.)
EEADR<7:6> and IDD	It is recommended that the EEADR<7:6> bits be cleared. When either of these bits is set, the maximum IDD for the device is higher than when both are cleared.	N/A
Code Protect	1 CP bit	9 CP bits
Recommended value of REXT for RC oscillator circuits	Rext = 3kΩ - 100kΩ	Rext = 5kΩ - 100kΩ
GIE bit unintentional enable	If an interrupt occurs while the Global Interrupt Enable (GIE) bit is being cleared, the GIE bit may unin- tentionally be re-enabled by the user's Interrupt Service Routine (the RETFIE instruction).	N/A