



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                 |
|----------------------------|--------------------------------------------------------------------------|
| Core Processor             | PIC                                                                      |
| Core Size                  | 8-Bit                                                                    |
| Speed                      | 4MHz                                                                     |
| Connectivity               | -                                                                        |
| Peripherals                | POR, WDT                                                                 |
| Number of I/O              | 13                                                                       |
| Program Memory Size        | 896B (512 x 14)                                                          |
| Program Memory Type        | FLASH                                                                    |
| EEPROM Size                | 64 x 8                                                                   |
| RAM Size                   | 36 x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 6V                                                                  |
| Data Converters            | -                                                                        |
| Oscillator Type            | External                                                                 |
| Operating Temperature      | 0°C ~ 70°C (TA)                                                          |
| Mounting Type              | Through Hole                                                             |
| Package / Case             | 18-DIP (0.300", 7.62mm)                                                  |
| Supplier Device Package    | 18-PDIP                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lf83-04-p |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register), and the other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.



The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

A simplified block diagram for the PIC16F8X is shown in Figure 3-1, its corresponding pin description is shown in Table 3-1.



#### 3.1 <u>Clocking Scheme/Instruction Cycle</u>

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

#### 3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the Program Counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).



#### FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

#### EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW



All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

#### 4.5 Indirect Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

#### EXAMPLE 4-1: INDIRECT ADDRESSING

- Register file 05 contains the value 10h
- Register file 06 contains the value 0Ah
- Load the value 05 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 06)
- A read of the INDF register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

FIGURE 4-1: DIRECT/INDIRECT ADDRESSING

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-2.

#### EXAMPLE 4-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

|          |         | 00.0  | initializa naintan   |
|----------|---------|-------|----------------------|
|          | IIIOVIW | 0x20  | ;initialize pointer  |
|          | movwf   | FSR   | ; to RAM             |
| NEXT     | clrf    | INDF  | ;clear INDF register |
|          | incf    | FSR   | ;inc pointer         |
|          | btfss   | FSR,4 | ;all done?           |
|          | goto    | NEXT  | ;NO, clear next      |
| CONTINUE |         |       |                      |
|          | :       |       | :YES, continue       |

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-1. However, IRP is not used in the PIC16F8X.



NOTES:

### 8.1 <u>Configuration Bits</u>

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

Address 2007h is beyond the user program memory space and it belongs to the special test/configuration memory space (2000h - 3FFFh). This space can only be accessed during programming.

To find out how to program the PIC16C84, refer to *PIC16C84 EEPROM Memory Programming Specifica-tion* (DS30189).

### FIGURE 8-1: CONFIGURATION WORD - PIC16CR83 AND PIC16CR84

| R-u                                                                                                                        | R-u                                                                                                               | R-u                                              | R-u                                                | R-u                            | R-u                    | R/P-u    | R-u | R-u | R-u | R-u   | R-u  | R-u       | R-u             |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|--------------------------------|------------------------|----------|-----|-----|-----|-------|------|-----------|-----------------|
| CP                                                                                                                         | CP                                                                                                                | CP                                               | CP                                                 | CP                             | CP                     | DP       | CP  | CP  | CP  | PWRTE | WDTE | FOSC1     | FOSC0           |
| bit13                                                                                                                      |                                                                                                                   |                                                  |                                                    |                                |                        |          |     |     |     |       |      |           | bit0            |
|                                                                                                                            |                                                                                                                   |                                                  |                                                    |                                |                        |          |     |     |     |       |      | R = Rea   | adable bit      |
|                                                                                                                            |                                                                                                                   |                                                  |                                                    |                                |                        |          |     |     |     |       |      | P = Prop  | grammable bit   |
|                                                                                                                            |                                                                                                                   |                                                  |                                                    |                                |                        |          |     |     |     |       |      | -n = Valu | ie at POR reset |
| bit 13:8 <b>CP</b> : Program Memory Code Protection bit<br>1 = Code protection off<br>0 = Program memory is code protected |                                                                                                                   |                                                  |                                                    |                                |                        |          |     |     |     |       |      |           |                 |
| bit 7                                                                                                                      | bit 7 <b>DP</b> : Data Memory Code Protection bit<br>1 = Code protection off<br>0 = Data memory is code protected |                                                  |                                                    |                                |                        |          |     |     |     |       |      |           |                 |
| bit 6:4                                                                                                                    | <b>CP</b> : Program Memory Code Protection bit<br>1 = Code protection off<br>0 = Program memory is code protected |                                                  |                                                    |                                |                        |          |     |     |     |       |      |           |                 |
| bit 3                                                                                                                      | <b>PWF</b><br>1 = F<br>0 = F                                                                                      | RTE: Pov<br>Power-up<br>Power-up                 | ver-up<br>o timer<br>o timer                       | Timer I<br>is disal<br>is enat | Enable<br>bled<br>bled | bit      |     |     |     |       |      |           |                 |
| bit 2                                                                                                                      | WDTE: Watchdog Timer Enable bit<br>1 = WDT enabled<br>0 = WDT disabled                                            |                                                  |                                                    |                                |                        |          |     |     |     |       |      |           |                 |
| bit 1:0                                                                                                                    | <b>FOS</b><br>11 =<br>10 =<br>01 =<br>00 =                                                                        | C1:FOS<br>RC osc<br>HS osc<br>XT osci<br>LP osci | illator<br>illator<br>illator<br>illator<br>llator | scillator                      | Select                 | ion bits | i   |     |     |       |      |           |                 |

FIGURE 8-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1



### FIGURE 8-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2



#### 8.9 <u>Interrupts</u>

The PIC16F8X has 4 sources of interrupt:

- External interrupt RB0/INT pin
- TMR0 overflow interrupt
- PORTB change interrupts (pins RB7:RB4)
- Data EEPROM write complete interrupt

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also contains the individual and global interrupt enable bits.

The global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in INTCON register. Bit GIE is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits interrupt routine as well as sets the GIE bit, which re-enable interrupts.

#### FIGURE 8-16: INTERRUPT LOGIC

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

When an interrupt is responded to; the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. For external interrupt events, such as the RB0/INT pin or PORTB change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 8-17). The latency is the same for both one and two cycle instructions. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid infinite interrupt requests.

Note 1: Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.





#### 8.9.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if INTEDG bit (OPTION\_REG<6>) is set, or falling, if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing control bit INTE (INTCON<4>). Flag bit INTF must be cleared in software via the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake the processor from SLEEP (Section 8.12) only if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether the processor branches to the interrupt vector following wake-up.

#### 8.9.2 TMR0 INTERRUPT

An overflow (FFh  $\rightarrow$  00h) in TMR0 will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>) (Section 6.0).

#### 8.9.3 PORT RB INTERRUPT

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<3>) (Section 5.2).

Note 1: For a change on the I/O pin to be recognized, the pulse width must be at least TCY wide.

# 9.1 Instruction Descriptions

| ADDLW             | Add Literal and W                                                                                                       |                     |                 |               |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------|---------------|--|--|--|
| Syntax:           | [ <i>label</i> ] ADDLW k                                                                                                |                     |                 |               |  |  |  |
| Operands:         | $0 \le k \le 255$                                                                                                       |                     |                 |               |  |  |  |
| Operation:        | $(W) + k \to (W)$                                                                                                       |                     |                 |               |  |  |  |
| Status Affected:  | C, DC, Z                                                                                                                |                     |                 |               |  |  |  |
| Encoding:         | 11                                                                                                                      | 111x                | kkkk            | kkkk          |  |  |  |
| Description:      | The contents of the W register are<br>added to the eight bit literal 'k' and the<br>result is placed in the W register. |                     |                 |               |  |  |  |
| Words:            | 1                                                                                                                       |                     |                 |               |  |  |  |
| Cycles:           | 1                                                                                                                       |                     |                 |               |  |  |  |
| Q Cycle Activity: | Q1                                                                                                                      | Q2                  | Q3              | Q4            |  |  |  |
|                   | Decode                                                                                                                  | Read<br>literal 'k' | Process<br>data | Write to<br>W |  |  |  |
| Example:          | ADDLW                                                                                                                   | 0x15                |                 |               |  |  |  |
|                   | Before In                                                                                                               | struction<br>W =    | 0x10            |               |  |  |  |
|                   | After Instruction<br>W = 0x25                                                                                           |                     |                 |               |  |  |  |

| ADDWF             | Add W a                                                         | nd f                                                                                                                                                                      |                 |                      |  |  |  |  |
|-------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|--|--|--|--|
| Syntax:           | [ <i>label</i> ] ADDWF f,d                                      |                                                                                                                                                                           |                 |                      |  |  |  |  |
| Operands:         | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$ |                                                                                                                                                                           |                 |                      |  |  |  |  |
| Operation:        | (W) + (f) $\rightarrow$ (destination)                           |                                                                                                                                                                           |                 |                      |  |  |  |  |
| Status Affected:  | C, DC, Z                                                        | C, DC, Z                                                                                                                                                                  |                 |                      |  |  |  |  |
| Encoding:         | 0 0                                                             | 0111                                                                                                                                                                      | dfff            | ffff                 |  |  |  |  |
| Description:      | Add the co<br>register 'f'.<br>in the W re<br>stored bac        | Add the contents of the W register with<br>register 'f'. If 'd' is 0 the result is stored<br>in the W register. If 'd' is 1 the result is<br>stored back in register 'f'. |                 |                      |  |  |  |  |
| Words:            | 1                                                               |                                                                                                                                                                           |                 |                      |  |  |  |  |
| Cycles:           | 1                                                               |                                                                                                                                                                           |                 |                      |  |  |  |  |
| Q Cycle Activity: | Q1                                                              | Q2                                                                                                                                                                        | Q3              | Q4                   |  |  |  |  |
|                   | Decode                                                          | Read<br>register<br>'f'                                                                                                                                                   | Process<br>data | Write to destination |  |  |  |  |
| Example           | ADDWF                                                           | FSR,                                                                                                                                                                      | 0               |                      |  |  |  |  |
|                   | Before In                                                       | struction                                                                                                                                                                 | l               |                      |  |  |  |  |
|                   | W = 0x17<br>FSR = 0xC2                                          |                                                                                                                                                                           |                 |                      |  |  |  |  |
|                   | After Inst                                                      | ruction                                                                                                                                                                   |                 |                      |  |  |  |  |
|                   |                                                                 | W =<br>FSR =                                                                                                                                                              | 0xD9<br>0xC2    |                      |  |  |  |  |

| ANDLW                                                                                                                                    | AND Literal with W                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:                                                                                                                                  | [ <i>label</i> ] ANDLW k                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Operands:                                                                                                                                | $0 \le k \le 255$                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Operation:                                                                                                                               | (W) .AND. (k) $\rightarrow$ (W)                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Status Affected:                                                                                                                         | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Encoding:                                                                                                                                | 11 1001 kkkk kkkk                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Description:                                                                                                                             | The contents of W register are<br>AND'ed with the eight bit literal 'k'. The<br>result is placed in the W register.                                                                                                                                                                                                                                                                                                                                                              |
| Words:                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cycles:                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Q Cycle Activity:                                                                                                                        | Q1 Q2 Q3 Q4                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                          | Decode Read literal "k" Process Write to data W                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Example                                                                                                                                  | ANDLW 0x5F                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                          | Before Instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                          | W = 0xA3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                          | W = 0x03                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ANDWF                                                                                                                                    | AND W with f                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Syntax:                                                                                                                                  | [ <i>label</i> ] ANDWF f,d                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Syntax:<br>Operands:                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Syntax:<br>Operands:<br>Operation:                                                                                                       | [ <i>label</i> ] ANDWF f,d<br>$0 \le f \le 127$<br>$d \in [0,1]$<br>(W) .AND. (f) $\rightarrow$ (destination)                                                                                                                                                                                                                                                                                                                                                                    |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:                                                                                   | [ <i>label</i> ] ANDWF f,d<br>$0 \le f \le 127$<br>$d \in [0,1]$<br>(W) .AND. (f) $\rightarrow$ (destination)<br>Z                                                                                                                                                                                                                                                                                                                                                               |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:                                                                      | [ <i>label</i> ] ANDWF f,d<br>$0 \le f \le 127$<br>$d \in [0,1]$<br>(W) .AND. (f) $\rightarrow$ (destination)<br>Z<br>00 0101 dfff ffff                                                                                                                                                                                                                                                                                                                                          |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:                                                      | $\label] \ \ ANDWF  f,d \\ 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) \ \ AND. \ (f) \rightarrow (destination) \\ Z \\ \hline \hline 00  0101  dfff  ffff \\ AND \ the \ W \ register \ with \ register \ 'f'. \ If \ 'd' \\ is \ 0 \ the \ result \ is \ stored \ in \ the \ W \ register \ 'f'. \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                          |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:                                            | [ <i>label</i> ] ANDWF f,d<br>$0 \le f \le 127$<br>$d \in [0,1]$<br>(W) .AND. (f) $\rightarrow$ (destination)<br>Z<br>00 0101 dfff ffff<br>AND the W register with register 'f'. If 'd'<br>is 0 the result is stored in the W regis-<br>ter. If 'd' is 1 the result is stored back in<br>register 'f'.<br>1                                                                                                                                                                      |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:<br>Cycles:                                 | [ <i>label</i> ] ANDWF f,d<br>$0 \le f \le 127$<br>$d \in [0,1]$<br>(W) .AND. (f) $\rightarrow$ (destination)<br>Z<br>00 0101 dfff ffff<br>AND the W register with register 'f'. If 'd'<br>is 0 the result is stored in the W regis-<br>ter. If 'd' is 1 the result is stored back in<br>register 'f'.<br>1<br>1                                                                                                                                                                 |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:<br>Cycles:<br>Q Cycle Activity:            | [ <i>label</i> ] ANDWF f,d<br>$0 \le f \le 127$<br>$d \in [0,1]$<br>(W) .AND. (f) $\rightarrow$ (destination)<br>Z<br>00  0101  dfff  ffff<br>AND the W register with register 'f'. If 'd'<br>is 0 the result is stored in the W regis-<br>ter. If 'd' is 1 the result is stored back in<br>register 'f'.<br>1<br>1<br>Q1 Q2 Q3 Q4                                                                                                                                               |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:<br>Cycles:<br>Q Cycle Activity:            | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:<br>Cycles:<br>Q Cycle Activity:<br>Example | [ <i>label</i> ] ANDWF f,d<br>0 ≤ f ≤ 127<br>d ∈ [0,1]<br>(W) .AND. (f) → (destination)<br>Z<br>00 0101 dfff ffff<br>AND the W register with register 'f'. If 'd'<br>is 0 the result is stored in the W regis-<br>ter. If 'd' is 1 the result is stored back in<br>register 'f'.<br>1<br>1<br>Q1 Q2 Q3 Q4<br>Decode Read Process Write to<br>data destination<br>'f' ANDWF FSR, 1                                                                                                |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:<br>Cycles:<br>Q Cycle Activity:<br>Example | $[label] ANDWF f,d$ $0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) → (destination) Z $\boxed{00  0101  dfff  ffff}$ AND the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. 1 1 2 2 2 2 2 2 3 2 4 2 2 3 2 4 2 2 3 2 4 2 3 3 3 3                                                                                                                                                          |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:<br>Cycles:<br>Q Cycle Activity:<br>Example | [ <i>label</i> ] ANDWF f,d<br>0 ≤ f ≤ 127<br>d ∈ [0,1]<br>(W) .AND. (f) → (destination)<br>Z<br>00 0101 dfff ffff<br>AND the W register with register 'f'. If 'd'<br>is 0 the result is stored in the W regis-<br>ter. If 'd' is 1 the result is stored back in<br>register 'f'.<br>1<br>1<br>2<br>Q1 Q2 Q3 Q4<br>Decode Read Process Write to<br>data destination<br>"f' ANDWF FSR, 1<br>Before Instruction<br>W = 0x17<br>FSR 2: C2                                            |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:<br>Cycles:<br>Q Cycle Activity:<br>Example | $[label] ANDWF f,d$ $0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) → (destination) Z $\boxed{00  0101  dfff  ffff}$ AND the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. 1 1 2 2 2 2 3 2 3 2 3 3 3 3 3 3 4 3 3 3 3 3                                                                                                                                                                  |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:<br>Cycles:<br>Q Cycle Activity:<br>Example | [ <i>label</i> ] ANDWF f,d<br>0 ≤ f ≤ 127<br>d ∈ [0,1]<br>(W) .AND. (f) → (destination)<br>Z<br>00 0101 dfff ffff<br>AND the W register with register 'f'. If 'd'<br>is 0 the result is stored in the W regis-<br>ter. If 'd' is 1 the result is stored back in<br>register 'f'.<br>1<br>1<br>2<br>Q1 Q2 Q3 Q4<br>Decode Read Process Write to<br>data destinatio<br>ANDWF FSR, 1<br>Before Instruction<br>W = 0x17<br>FSR = 0xC2<br>After Instruction<br>W = 0x17<br>FSR = 0xC2 |

| COMF              | Complement f                                                                                                                                            | DECFSZ                    | Decrement f, Skip if 0                                                                                                                                                                                 |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:           | [label] COMF f,d                                                                                                                                        | Syntax:                   | [ label ] DECFSZ f,d                                                                                                                                                                                   |
| Operands:         | $\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$                                                                                             | Operands:                 | $0 \le f \le 127$<br>d $\in [0,1]$                                                                                                                                                                     |
| Operation:        | $(\overline{f}) \rightarrow (destination)$                                                                                                              | Operation:                | (f) - 1 $\rightarrow$ (destination);                                                                                                                                                                   |
| Status Affected:  | Z                                                                                                                                                       |                           | skip if result = 0                                                                                                                                                                                     |
| Encoding:         | 00 1001 dfff ffff                                                                                                                                       | Status Affected:          | None                                                                                                                                                                                                   |
| Description:      | The contents of register 'f' are comple-<br>mented. If 'd' is 0 the result is stored in<br>W. If 'd' is 1 the result is stored back in<br>register 'f'. | Encoding:<br>Description: | 00         1011         dfff         ffff           The contents of register 'f' are decremented. If 'd' is 0 the result is placed in the meter.         f' d' is 0 the result is placed in the meter. |
| Words:            | 1                                                                                                                                                       |                           | back in register 'f'.                                                                                                                                                                                  |
| Cycles:           | 1                                                                                                                                                       |                           | If the result is 1, the next instruction, is executed. If the result is 0, then a NOP is                                                                                                               |
| Q Cycle Activity: | Q1 Q2 Q3 Q4                                                                                                                                             |                           | executed instead making it a 2TCY instruc-<br>tion.                                                                                                                                                    |
|                   | Decode Read Process Write to                                                                                                                            | Words:                    | 1                                                                                                                                                                                                      |
|                   | 'f' data destination                                                                                                                                    | Cycles:                   | 1(2)                                                                                                                                                                                                   |
|                   |                                                                                                                                                         | Q Cycle Activity:         | Q1 Q2 Q3 Q4                                                                                                                                                                                            |
| Example           | COMF REG1, 0<br>Before Instruction                                                                                                                      |                           | Decode Read register 'f' Process Write to destination                                                                                                                                                  |
|                   | REG1 = 0x13                                                                                                                                             | If Skip:                  | (2nd Cycle)                                                                                                                                                                                            |
|                   | After Instruction<br>REG1 = 0x13                                                                                                                        |                           | Q1 Q2 Q3 Q4                                                                                                                                                                                            |
|                   | W = 0xEC                                                                                                                                                |                           | No-Operat No-Operat No-Operati ion on                                                                                                                                                                  |
| DECF              | Decrement f                                                                                                                                             |                           |                                                                                                                                                                                                        |
| Syntax:           | [ <i>label</i> ] DECF f,d                                                                                                                               | Example                   | HERE DECFSZ CNT, 1                                                                                                                                                                                     |
| Operands:         | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$                                                                              |                           | GOTO LOOP<br>CONTINUE •<br>•                                                                                                                                                                           |
| Operation:        | (f) - 1 $\rightarrow$ (destination)                                                                                                                     |                           | •                                                                                                                                                                                                      |
| Status Affected:  | Z                                                                                                                                                       |                           | Before Instruction                                                                                                                                                                                     |
| Encoding:         | 00 0011 dfff ffff                                                                                                                                       |                           | After Instruction                                                                                                                                                                                      |
| Description:      | Decrement register 'f'. If 'd' is 0 the<br>result is stored in the W register. If 'd' is<br>1 the result is stored back in register 'f'.                |                           | CNT = CNT - 1<br>if $CNT = 0$ ,<br>PC = oddreep community                                                                                                                                              |
| Words:            | 1                                                                                                                                                       |                           | if $CNT \neq 0$ ,                                                                                                                                                                                      |
| Cycles:           | 1                                                                                                                                                       |                           | PC = address HERE+1                                                                                                                                                                                    |
| Q Cycle Activity: | Q1 Q2 Q3 Q4                                                                                                                                             |                           |                                                                                                                                                                                                        |
|                   | Decode Read register data Vite to destination                                                                                                           |                           |                                                                                                                                                                                                        |
| Example           | DECF CNT, 1                                                                                                                                             |                           |                                                                                                                                                                                                        |
|                   | Before Instruction<br>CNT = 0x01<br>7 = 0                                                                                                               |                           |                                                                                                                                                                                                        |
|                   | After Instruction<br>CNT = 0x00<br>Z = 1                                                                                                                |                           |                                                                                                                                                                                                        |

| INCFSZ            | Increment f, Skip if 0                                                                                                     |                                                                                                   |                                    | IORLW             | Inclusiv                                                             | e OR Lit            | eral with       | w             |
|-------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------|-------------------|----------------------------------------------------------------------|---------------------|-----------------|---------------|
| Syntax:           | [label] INCF                                                                                                               | SZ f,d                                                                                            |                                    | Syntax:           | [ label ]                                                            | IORLW               | k               |               |
| Operands:         | $0 \leq f \leq 127$                                                                                                        |                                                                                                   |                                    | Operands:         | $0 \le k \le 2$                                                      | 55                  |                 |               |
|                   | d ∈ [0,1]                                                                                                                  |                                                                                                   |                                    | Operation:        | (W) .OR.                                                             | $k \rightarrow (W)$ | )               |               |
| Operation:        | (f) + 1 $\rightarrow$ (desti                                                                                               | nation),                                                                                          |                                    | Status Affected:  | Z                                                                    |                     |                 |               |
| Status Affastad:  | Nono                                                                                                                       | 0                                                                                                 |                                    | Encoding:         | 11                                                                   | 1000                | kkkk            | kkkk          |
| Encoding:         | 00 1111                                                                                                                    | dfff                                                                                              | ffff                               | Description:      | The contents of the W register<br>OR'ed with the eight bit literal ' |                     | ˈis<br>ˈk'. The |               |
| Description:      | The contents of r                                                                                                          | egister 'f' are                                                                                   | incre-                             |                   | result is p                                                          | laced in th         | ne W regis      | ter.          |
|                   | mented. If 'd' is 0<br>the W register. If                                                                                  | the result is<br>d' is 1 the re                                                                   | placed in<br>sult is               | Words:            | 1                                                                    |                     |                 |               |
|                   | placed back in re                                                                                                          | gister 'f'.<br>he next instru                                                                     | uction is                          | Cycles:           | 1                                                                    |                     |                 |               |
|                   | executed. If the recuted instead ma                                                                                        | sult is 0, a N<br>king it a 2TC                                                                   | OP is exe-<br>y instruc-           | Q Cycle Activity: | Q1                                                                   | Q2                  | Q3              | Q4            |
| Words:            | uon.<br>1                                                                                                                  |                                                                                                   |                                    |                   | Decode                                                               | Read<br>literal 'k' | Process<br>data | Write to<br>W |
| Cycles:           | 1(2)                                                                                                                       |                                                                                                   |                                    |                   |                                                                      |                     |                 |               |
| Q Cycle Activity: | Q1 Q2                                                                                                                      | Q3                                                                                                | Q4                                 | Example           | IORLW                                                                | 0x35                |                 |               |
|                   | Decode Rea                                                                                                                 | d Process                                                                                         | Write to                           |                   | Before Ir                                                            | nstruction<br>W =   | 0x9A            |               |
|                   | registe                                                                                                                    | uala                                                                                              | destination                        |                   | After Inst                                                           | truction            | 0 DE            |               |
| If Skip:          | (2nd Cycle)                                                                                                                | 00                                                                                                | 04                                 |                   |                                                                      | VV =<br>Z =         | 0xBF<br>1       |               |
|                   |                                                                                                                            | Q3                                                                                                | Q4                                 |                   |                                                                      |                     |                 |               |
|                   | No-Operat tion                                                                                                             | tion                                                                                              | on                                 |                   |                                                                      |                     |                 |               |
| Example           | HERE IN<br>GO<br>CONTINUE<br>PC = 2<br>After Instruction<br>CNT = 0<br>if $CNT = 0$<br>PC = 2<br>if $CNT \neq 0$<br>PC = 2 | CFSZ C<br>CO LC<br>DON<br>dddress HERE<br>D<br>CNT + 1<br>),<br>ddress CONT<br>0,<br>iddress HERE | NT, 1<br>OOP<br>S<br>TINUE<br>S +1 |                   |                                                                      |                     |                 |               |

| IORWF             | Inclusive                                                      | OR W \                                                  | with f                                    |                                       |
|-------------------|----------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|---------------------------------------|
| Syntax:           | [ label ]                                                      | IORWF                                                   | f,d                                       |                                       |
| Operands:         | $\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$ | 27                                                      |                                           |                                       |
| Operation:        | (W) .OR.                                                       | $(f) \rightarrow (de)$                                  | estination                                | ı)                                    |
| Status Affected:  | Z                                                              |                                                         |                                           |                                       |
| Encoding:         | 0 0                                                            | 0100                                                    | dfff                                      | ffff                                  |
| Description:      | Inclusive (<br>ter 'f'. If 'd'<br>W register<br>back in reg    | OR the W<br>is 0 the re<br>. If 'd' is 1<br>gister 'f'. | register wi<br>sult is plac<br>the result | ith regis-<br>ced in the<br>is placed |
| Words:            | 1                                                              |                                                         |                                           |                                       |
| Cycles:           | 1                                                              |                                                         |                                           |                                       |
| Q Cycle Activity: | Q1                                                             | Q2                                                      | Q3                                        | Q4                                    |
|                   | Decode                                                         | Read<br>register<br>'f'                                 | Process<br>data                           | Write to destination                  |
| Example           | IORWF                                                          |                                                         | RESULT,                                   | 0                                     |
|                   | Before In                                                      | struction                                               | l                                         |                                       |
|                   |                                                                | RESULT                                                  | = 0x13                                    | 3                                     |
|                   | After Inst                                                     | ruction                                                 | = 0,91                                    |                                       |
|                   |                                                                | RESULT<br>W                                             | = 0x13<br>- 0x93                          | 3                                     |
|                   |                                                                | Z                                                       | = 1                                       | ,                                     |

| MOVLW             | Move Lit                               | eral to V                    | v                            |                     |  |  |  |
|-------------------|----------------------------------------|------------------------------|------------------------------|---------------------|--|--|--|
| Syntax:           | [ label ]                              | MOVLW                        | / k                          |                     |  |  |  |
| Operands:         | $0 \le k \le 255$                      |                              |                              |                     |  |  |  |
| Operation:        | $k \rightarrow (W)$                    |                              |                              |                     |  |  |  |
| Status Affected:  | None                                   |                              |                              |                     |  |  |  |
| Encoding:         | 11                                     | 00xx                         | kkkk                         | kkkk                |  |  |  |
| Description:      | The eight l<br>register. Th<br>as 0's. | oit literal 'l<br>he don't c | <' is loaded<br>ares will as | l into W<br>ssemble |  |  |  |
| Words:            | 1                                      |                              |                              |                     |  |  |  |
| Cycles:           | 1                                      |                              |                              |                     |  |  |  |
| Q Cycle Activity: | Q1                                     | Q2                           | Q3                           | Q4                  |  |  |  |
|                   | Decode                                 | Read<br>literal 'k'          | Process<br>data              | Write to<br>W       |  |  |  |
| Example           | MOVLW                                  | 0x5A                         |                              |                     |  |  |  |
|                   | After Inst                             | ruction<br>W =               | 0x5A                         |                     |  |  |  |

| MOVF              | Move f                                                                                                                                                                                                                                                              |                              |                 |                      |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------|----------------------|--|--|--|
| Syntax:           | [label] MOVF f,d                                                                                                                                                                                                                                                    |                              |                 |                      |  |  |  |
| Operands:         | $\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$                                                                                                                                                                                                         |                              |                 |                      |  |  |  |
| Operation:        | (f) $\rightarrow$ (destination)                                                                                                                                                                                                                                     |                              |                 |                      |  |  |  |
| Status Affected:  | Z                                                                                                                                                                                                                                                                   |                              |                 |                      |  |  |  |
| Encoding:         | 0 0                                                                                                                                                                                                                                                                 | 1000                         | dfff            | ffff                 |  |  |  |
| Description:      | The contents of register f is moved to a destination dependant upon the status of d. If $d = 0$ , destination is W register. If $d = 1$ , the destination is file register f itself. $d = 1$ is useful to test a file register for since status flag Z is affected. |                              |                 |                      |  |  |  |
| Words:            | 1                                                                                                                                                                                                                                                                   |                              |                 |                      |  |  |  |
| Cycles:           | 1                                                                                                                                                                                                                                                                   |                              |                 |                      |  |  |  |
| Q Cycle Activity: | Q1                                                                                                                                                                                                                                                                  | Q2                           | Q3              | Q4                   |  |  |  |
|                   | Decode                                                                                                                                                                                                                                                              | Read<br>register<br>'f'      | Process<br>data | Write to destination |  |  |  |
| Example           | MOVF                                                                                                                                                                                                                                                                | FSR,                         | 0               |                      |  |  |  |
|                   | After Inst                                                                                                                                                                                                                                                          | ruction<br>W = valu<br>Z = 1 | ie in FSR i     | egister              |  |  |  |

| MOVWF             | Move W to f           |                         |                  |                       |  |  |
|-------------------|-----------------------|-------------------------|------------------|-----------------------|--|--|
| Syntax:           | [ label ]             | MOVW                    | = f              |                       |  |  |
| Operands:         | $0 \le f \le 12$      | 27                      |                  |                       |  |  |
| Operation:        | $(W) \rightarrow (f)$ |                         |                  |                       |  |  |
| Status Affected:  | None                  |                         |                  |                       |  |  |
| Encoding:         | 00                    | 0000                    | lfff             | ffff                  |  |  |
| Description:      | Move data<br>'f'.     | from W r                | egister to       | register              |  |  |
| Words:            | 1                     |                         |                  |                       |  |  |
| Cycles:           | 1                     |                         |                  |                       |  |  |
| Q Cycle Activity: | Q1                    | Q2                      | Q3               | Q4                    |  |  |
|                   | Decode                | Read<br>register<br>'f' | Process<br>data  | Write<br>register 'f' |  |  |
| Example           | MOVWF                 | OPTIC                   | ON_REG           |                       |  |  |
|                   | Before In             | struction               | i                |                       |  |  |
|                   |                       | OPTION<br>W             | = 0xFF<br>= 0x4F | =                     |  |  |
|                   | After Inst            | ruction                 | 0,11             |                       |  |  |
|                   |                       | OPTION                  | = 0x4F           | =                     |  |  |
|                   |                       | VV                      | = 0x4H           | -                     |  |  |

## TABLE 10-1: DEVELOPMENT TOOLS FROM MICROCHIP

|                                                                                    | PIC12C5XX | PIC14000 | PIC16C5X | PIC16CXXX | PIC16C6X | PIC16C7XX | PIC16C8X | PIC16C9XX | PIC17C4X | PIC17C75X | 24CXX<br>25CXX<br>93CXX | HCS200<br>HCS300<br>HCS301 |
|------------------------------------------------------------------------------------|-----------|----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-------------------------|----------------------------|
| PICMASTER®/<br>PICMASTER-CE<br>In-Circuit Emulat                                   | or        | >        | >        | ~         | ~        | >         | >        | >         | ~        | >         |                         |                            |
| In-Circuit Emulat                                                                  | st<br>or  |          | >        | >         | >        | >         | >        | >         |          |           |                         |                            |
| MPLAB™<br>Integrated<br>Development<br>Environment                                 | >         | >        | >        | >         | >        | >         | >        | >         | >        | >         |                         |                            |
| MPLAB™ C17<br>2 Compiler                                                           |           |          |          |           |          |           |          |           | >        | >         |                         |                            |
| <i>fuzzy</i> TECH <sup>®</sup> -MP<br>Explorer/Edition<br>Fuzzy Logic<br>Dev. Tool | >         | >        | >        | >         | >        | >         | >        | >         | >        |           |                         |                            |
| MP-DriveWay™<br>Applications<br>Code Generator                                     |           |          | ~        | ~         | ~        | ~         | >        | ~         | >        |           |                         |                            |
| Total Endurance<br>Software Model                                                  | TM        |          |          |           |          |           |          |           |          |           | >                       |                            |
| PICSTART®Plus<br>Low-Cost<br>Universal Dev. K                                      | Git 🗸     | >        | >        | >         | >        | >         | >        | >         | >        | >         |                         |                            |
| PRO MATE <sup>®</sup> II<br>Universal<br>Programmer                                | >         | >        | ~        | ~         | ~        | ^         | >        | ~         | ~        | >         | >                       | >                          |
| L KEELOQ <sup>®</sup><br>Programmer                                                |           |          |          |           |          |           |          |           |          |           |                         | >                          |
| SEEVAL <sup>®</sup><br>Designers Kit                                               |           |          |          |           |          |           |          |           |          |           | >                       |                            |
| PICDEM-1                                                                           |           |          | >        | >         |          |           | >        |           | >        |           |                         |                            |
| PICDEM-2                                                                           |           |          |          |           | ×        | ~         |          |           |          |           |                         |                            |
| PICDEM-3                                                                           |           |          |          |           |          |           |          | >         |          |           |                         |                            |
| KEELOQ <sup>®</sup><br>Evaluation Kit                                              |           |          |          |           |          |           |          |           |          |           |                         | ~                          |





#### 

| Parameter |       |                                                  | $\sim$ | $\rightarrow$ |       |       |                                  |
|-----------|-------|--------------------------------------------------|--------|---------------|-------|-------|----------------------------------|
| No.       | Sym   | Characteristic                                   | Min    | тур†          | Max   | Units | Conditions                       |
| 30        | TmcL  | MCLR Pulse Width (low)                           | 1000*  | _             | _     | ns    | $2.0V \leq V\text{DD} \leq 6.0V$ |
| 31        | Twdt  | Watchdog Timer Time-out Period<br>(No Prescater) | 7*     | 18            | 33 *  | ms    | VDD = 5.0V                       |
| 32        | Tost  | Oscillation Start-up Timer Period                |        | 1024Tosc      |       | ms    | Tosc = OSC1 period               |
| 33        | Tpwrt | Power-up Timer Period                            | 28 *   | 72            | 132 * | ms    | VDD = 5.0V                       |
| 34        | Tioz  | I/O Hi-impedance from MCLR Low<br>or reset       | -      | —             | 100 * | ns    |                                  |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 50, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested

NOTES:

# TABLE 11-1CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS<br/>AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

| osc | PIC16CR84-04                                                                                                   | PIC16CR84-10                                                                                               | PIC16LCR84-04                                                                                              |
|-----|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|     | PIC16CR83-04                                                                                                   | PIC16CR83-10                                                                                               | PIC16LCR83-04                                                                                              |
| RC  | VDD: 4.0V to 6.0V                                                                                              | VDD: 4.5V to 5.5V                                                                                          | VDD: 2.0V to 6.0V                                                                                          |
|     | IDD: 4.5 mA max. at 5.5V                                                                                       | IDD: 1.8 mA typ. at 5.5V                                                                                   | IDD: 4.5 mA max. at 5.5V                                                                                   |
|     | IPD: 14 μA max. at 4V WDT dis                                                                                  | IPD: 1.0 μA typ. at 5.5V WDT dis                                                                           | IPD: 5 μA max. at 2V WDT dis                                                                               |
|     | Freq: 4.0 MHz max.                                                                                             | Freq: 40 MHz max.                                                                                          | Freq: 2.0 MHz max.                                                                                         |
| ХТ  | VDD: 4.0V to 6.0V                                                                                              | VDD: 4.5V to 5.5V                                                                                          | VDD: 2.0V to 6.0V                                                                                          |
|     | IDD: 4.5 mA max. at 5.5V                                                                                       | IDD: 1.8 mA typ. at 5.5V                                                                                   | IDD: 4.5 mA max. at 5.5V                                                                                   |
|     | IPD: 14 μA max. at 4V WDT dis                                                                                  | IPD: 1.0 μA typ. at 5.5V WDT dis                                                                           | IPD: 5 μA max. at 2V WDT dis                                                                               |
|     | Freq: 4.0 MHz max.                                                                                             | Freq: 4.0 MHz max.                                                                                         | Freq: 2.0 MHz max.                                                                                         |
| HS  | VDD: 4.5V to 5.5V<br>IDD: 4.5 mA typ. at 5.5V<br>IPD: 1.0 μA typ. at 4.5V WDT dis<br>Freq: 4.0 MHz max.        | VDD: 4.5V to 5.5V<br>IDD: 10 mA max. at 5.5V typ.<br>IPD: 1.0 μA typ. at 4.5V WDT dis<br>Freq: 10 MHz max. | Do not use in HS mode                                                                                      |
| LP  | VDD: 4.0V to 6.0V<br>IDD: 48 μA typ. at 32 kHz, 2.0V<br>IPD: 0.6 μA typ. at 3.0V WDT dis<br>Freq: 200 kHz max. | Do not use in LP mode                                                                                      | VDD: 2.0V to 6.0V<br>IDD: 45 μA max. at 32 kHz, 2.0V<br>IPD: 5 μA max. at 2V WDT dis<br>Freq: 200 kHz max. |

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

### 11.1 DC CHARACTERISTICS:

#### PIC16CR84, PIC16CR83 (Commercial, Industrial)

| DC Charac<br>Power Sup | cteristic<br>oply Pin | s<br>s                                                           | <b>Stand</b><br>Opera | lard Op<br>ating ter | <b>peratii</b><br>mpera | n <b>g Con</b><br>ture 0<br>-40 | ditions (unless otherwise stated)<br>$^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial)<br>$^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial)                                              |
|------------------------|-----------------------|------------------------------------------------------------------|-----------------------|----------------------|-------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>No.       | Sym                   | Characteristic                                                   | Min                   | Тур†                 | Max                     | Units                           | Conditions                                                                                                                                                                                 |
| D001<br>D001A          | Vdd                   | Supply Voltage                                                   | 4.0<br>4.5            | _                    | 6.0<br>5.5              | V<br>V                          | XT, RC and LP osc configuration<br>HS osc configuration                                                                                                                                    |
| D002                   | Vdr                   | RAM Data Retention<br>Voltage <sup>(1)</sup>                     | 1.5*                  | —                    | _                       | V                               | Device in SLEEP mode                                                                                                                                                                       |
| D003                   | VPOR                  | VDD start voltage to<br>ensure internal<br>Power-on Reset signal | _                     | Vss                  | _                       | V                               | See section on Power-on Reset for details                                                                                                                                                  |
| D004                   | Svdd                  | VDD rise rate to ensure<br>internal Power-on<br>Reset signal     | 0.05*                 | _                    | _                       | V/ms                            | See section on Power-on Reset for details                                                                                                                                                  |
| D010<br>D010A<br>D013  | IDD                   | Supply Current <sup>(2)</sup>                                    |                       | 1.8<br>7.3<br>5      | 4.5<br>10<br>10         | mA<br>mA<br>mA <                | RC and XT ose configuration<br>Fosc = 4.0 MHz, VDD = 5.5V<br>Fosc = 4.0 MHz, VoD = 5.5V<br>(During EERROM programming)<br>HS ose configuration (PIC16CR84-10)<br>Fosc = 10 MHz, VDD = 5.5V |
| D020<br>D021<br>D021A  | IPD                   | Power-down Current <sup>(3)</sup>                                |                       | 7.0<br>1.0<br>1.0    | 28<br>14<br>16          |                                 | Vod = 4.0V, WDT enabled, industrial<br>Vod = 4.0V, WDT disabled, commercial<br>Vod = 4.0V, WDT disabled, industrial                                                                        |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1=external square wave, from rail to rail, all I/O pins tristated, pulled to VDD, T0CKI = VDD,  $\overline{MCLR} = VDD$ ; WDT applied displayed as approximate

MCLR = VDD; WDT enabled/disabled as specified.

**3:** The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula IB = VpD/2Rext (mA) with Rext in kOhm.



### FIGURE 12-21: TYPICAL DATA MEMORY ERASE/WRITE CYCLE TIME VS. VDD



# TABLE 12-2 INPUT CAPACITANCE\*

| Din Namo    | Typical Capa | acitance (pF) |
|-------------|--------------|---------------|
|             | 18L PDIP     | 18L SOIC      |
| PORTA       | 5.0          | 4.3           |
| POBTB       | 5.0          | 4.3           |
| MCER / / /  | 17.0         | 17.0          |
| OSCIUCLIUM  | 4.0          | 3.5           |
| OSCZYCLKOUJ | 4.3          | 3.5           |
| СС тоскі    | 3.2          | 2.8           |

All capacitance values are typical at 25°C. A part to part variation of  $\pm 25\%$  (three standard deviations) should be taken into account.

### Ρ

| Paging, Program Memory                           |
|--------------------------------------------------|
| PCL                                              |
| PCLATH                                           |
| PD15, 41, 46                                     |
| PICDEM-1 Low-Cost PIC MCU Demo Board70           |
| PICDEM-2 Low-Cost PIC16CXX Demo Board70          |
| PICDEM-3 Low-Cost PIC16CXXX Demo Board70         |
| PICMASTER® In-Circuit Emulator69                 |
| PICSTART® Plus Entry Level Development System 69 |
| Pinout Descriptions9                             |
| POR                                              |
| Oscillator Start-up Timer (OST)                  |
| Power-on Reset (POR)                             |
| Power-up Timer (PWRT)                            |
| Time-out Sequence46                              |
| Time-out Sequence on Power-up44                  |
| TO                                               |
| Port RB Interrupt                                |
| PORTA                                            |
| PORTB                                            |
| Power-down Mode (SLEEP)                          |
| Prescaler                                        |
| PRO MATE® II Universal Programmer                |
| Product Identification System                    |
|                                                  |

# R

| RBIF bit           |  |
|--------------------|--|
| RC Oscillator      |  |
| Read-Modify-Write  |  |
| Register File      |  |
| Reset              |  |
| Reset on Brown-Out |  |

# S

| Saving W Register and STATUS in RAM       | 49           |
|-------------------------------------------|--------------|
| SEEVAL® Evaluation and Programming System | 71           |
| SLEEP                                     | 37, 41, 51   |
| Software Simulator (MPLAB-SIM)            | 71           |
| Special Features of the CPU               |              |
| Special Function Registers                |              |
| Stack                                     |              |
| Overflows                                 |              |
|                                           |              |
| STATUS                                    | 7, 15, 42    |
| т                                         |              |
| time-out                                  | 42           |
| Timer0                                    |              |
| Switching Prescaler Assignment            | 31           |
| T0IF                                      | 48           |
| Timer0 Module                             | 27           |
| TMR0 Interrupt                            |              |
| TMR0 with External Clock                  | 29           |
| Timing Diagrams                           |              |
| Time-out Sequence                         | 44           |
| Timing Diagrams and Specifications        | 80, 92       |
| TRISA                                     | 21           |
| TRISB                                     |              |
| W                                         |              |
| W                                         |              |
| Wake-up from SLEEP                        | 42, 51       |
| Watchdog Timer (WDT)37                    | , 41, 42, 50 |
| WDT                                       |              |
| Period                                    |              |

| Programming Considerations | 50<br>42 |
|----------------------------|----------|
| x                          |          |
| хт                         | 46       |
| Z                          |          |
| Zero bit                   | 7        |