E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	83
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	12K x 8
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 25x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151vdt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32L151xD and STM32L152xD ultra-low-power ARM[®] Cortex[®]-M3 based microcontroller product line.

The STM32L151xD and STM32L152xD microcontrollers feature 384 Kbytes of Flash memory.

The ultra-low-power STM32L151xD and STM32L152xD family includes devices in 5 different package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

These features make the ultra-low-power STM32L151xD and STM32L152xD microcontroller family suitable for a wide range of applications:

- Medical and handheld equipment
- Application control and user interface
- PC peripherals, gaming, GPS and sport equipment
- Alarm systems, wired and wireless sensors, video intercom
- Utility metering

This STM32L151xD and STM32L152xD datasheet should be read in conjunction with the STM32L1xxxx reference manual (RM0038). The application note "Getting started with STM32L1xxxx hardware development" (AN3216) gives a hardware implementation overview. Both documents are available from the STMicroelectronics website *www.st.com*.

For information on the ARM[®] Cortex[®]-M3 core please refer to the ARM[®] Cortex[®]-M3 technical reference manual, available from the www.arm.com website. *Figure 1* shows the general block diagram of the device family.

Table 5. Functionalities depending on the working mode (from Run/active down to
standby)

		St	andby)						
			Low-	Low- Low-		Stop	Standby		
lps	Run/Active	Sleep	power Run	power Sleep		Wakeup capability		Wakeup capability	
CPU	Y		Y						
Flash	Y	Y	Y	Y					
RAM	Y	Y	Y	Y	Y				
Backup Registers	Y	Y	Y	Y	Y		Y		
EEPROM	Y	Y	Y	Y	Y				
Brown-out rest (BOR)	Y	Y	Y	Y	Y	Y	Y		
DMA	Y	Y	Y	Y					
Programmable Voltage Detector (PVD)	Y	Y	Y	Y	Y	Y	Y		
Power On Reset (POR)	Y	Y	Y	Y	Y	Y	Y		
Power Down Rest (PDR)	Y	Y	Y	Y	Y		Y		
High Speed Internal (HSI)	Y	Y							
High Speed External (HSE)	Y	Y							
Low Speed Internal (LSI)	Y	Y	Y	Y	Y		Y		
Low Speed External (LSE)	Y	Y	Y	Y	Y		Y		
Multi-Speed Internal (MSI)	Y	Y	Y	Y					
Inter-Connect Controller	Y	Y	Y	Y					
RTC	Y	Y	Y	Y	Y	Y	Y		
RTC Tamper	Y	Y	Y	Y	Y	Y	Y	Y	
Auto WakeUp (AWU)	Y	Y	Y	Y	Y	Y	Y	Y	
LCD	Y	Y	Y	Y	Y				
USB	Y	Y				Y			
USART	Y	Y	Y	Y	Y	(1)			
SPI	Y	Y	Y	Y					
12C	Y	Y	Y	Y		(1)			

operate. This acquisition is managed directly by the GPIOs, timers and analog I/O groups (see *Section 3.15: System configuration controller and routing interface*).

Reliable touch sensing functionality can be quickly and easily implemented using the free STM32L1xx STMTouch touch sensing firmware library.

3.17 Timers and watchdogs

The ultra-low-power STM32L151xD and STM32L152xD devices include seven generalpurpose timers, two basic timers, and two watchdog timers.

Table 6 compares the features of the general-purpose and basic timers.

				-		
Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM2, TIM3, TIM4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TIM5	32-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TIM9	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No
TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

 Table 6. Timer feature comparison

3.17.1 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and TIM11)

There are seven synchronizable general-purpose timers embedded in the STM32L151xD and STM32L152xD devices (see *Table 6* for differences).

TIM2, TIM3, TIM4, TIM5

TIM2, TIM3, TIM4 are based on 16-bit auto-reload up/down counter. TIM5 is based on a 32bit auto-reload up/down counter. They include a 16-bit prescaler. They feature four independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input captures/output compares/PWMs on the largest packages.

TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together or with the TIM10, TIM11 and TIM9 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

DocID022027 Rev 11

TIM10, TIM11 and TIM9

TIM10 and TIM11 are based on a 16-bit auto-reload upcounter. TIM9 is based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers.

They can also be used as simple time bases and be clocked by the LSE clock source (32.768 kHz) to provide time bases independent from the main CPU clock.

3.17.2 Basic timers (TIM6 and TIM7)

These timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit time bases.

3.17.3 SysTick timer

This timer is dedicated to the OS, but could also be used as a standard downcounter. It is based on a 24-bit downcounter with autoreload capability and a programmable clock source. It features a maskable system interrupt generation when the counter reaches 0.

3.17.4 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 37 kHz internal RC and, as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode.

3.17.5 Window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.18 Communication interfaces

3.18.1 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.

They support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master mode. A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SM Bus 2.0/PM Bus.

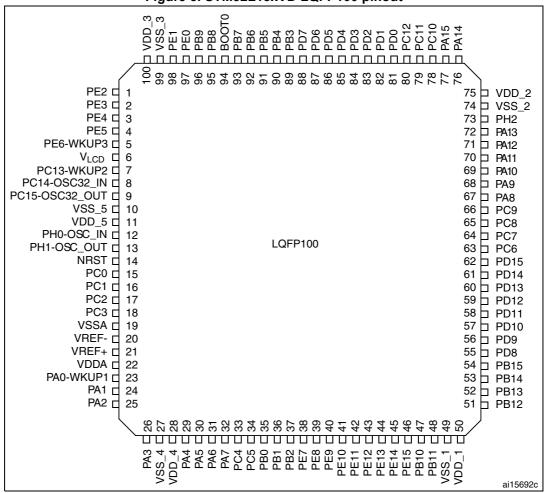


Figure 5. STM32L15xVD LQFP100 pinout

1. This figure shows the package top view.

	F	Pins			51W32L151X				Pin functions		
LQFP144	UFBGA132	LQFP100	LQFP64	WLCSP64	Pin name	Pin Type ⁽¹⁾	I / O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions	
31	-	20	-	-	V _{REF-}	S	-	V _{REF-}	-	-	
32	L1	21	-	-	V _{REF+}	S	-	V _{REF+}	-	-	
33	M1	22	13	G8	V_{DDA}	S	-	V _{DDA}	-	-	
34	L2	23	14	F6	PA0-WKUP1	I/O	FT	PA0	TIM2_CH1_ETR/ TIM5_CH1/ USART2_CTS	WKUP1/ RTC_TAMP2/ ADC_IN0/ COMP1_INP	
35	M2	24	15	E6	PA1	I/O	FT	PA1	TIM2_CH2/TIM5_CH2/ USART2_RTS/ LCD_SEG0	ADC_IN1/ COMP1_INP/ OPAMP1_VINP	
36	-	25	16	H8	PA2	I/O	FT	PA2	TIM2_CH3/TIM5_CH3/ TIM9_CH1/ USART2_TX/LCD_SEG1	ADC_IN2/ COMP1_INP/ OPAMP1_VINM	
-	K3	-	-	-	PA2	I/O	FT	PA2	TIM2_CH3/TIM5_CH3/ TIM9_CH1/ USART2_TX/LCD_SEG1	ADC_IN2/ COMP1_INP	
_	М3	-	-	-	OPAMP1_VI NM	I	тс	OPAMP1_ VINM	-	-	
37	L3	26	17	G7	PA3	I/O	тс	PA3	TIM2_CH4/TIM5_CH4/ TIM9_CH2/ USART2_RX/LCD_SEG2	ADC_IN3/ COMP1_INP/ OPAMP1_VOUT	
38	-	27	18	F5	V _{SS_4}	S	-	V _{SS_4}	-	-	
39	-	28	19	G6	V _{DD_4}	S	-	V _{DD_4}	-	-	
40	J4	29	20	H7	PA4	I/O	тс	PA4	SPI1_NSS/SPI3_NSS/ I2S3_WS/USART2_CK	ADC_IN4/ DAC_OUT1/ COMP1_INP	
41	K4	30	21	E5	PA5	I/O	тс	PA5	TIM2_CH1_ETR/ SPI1_SCK	ADC_IN5/ DAC_OUT2/ COMP1_INP	
42	L4	31	22	G5	PA6	I/O	FT	PA6	TIM3_CH1/TIM10_CH1/ SPI1_MISO/ LCD_SEG3	ADC_IN6/ COMP1_INP/ OPAMP2_VINP	
43	-	32	23	G4	PA7	I/O	FT	PA7	TIM3_CH2/TIM11_CH1/ SPI1_MOSI/ LCD_SEG4	ADC_IN7/ COMP1_INP/ OPAMP2_VINM	

Table 8. STM32L151xD and STM32L152xD pin definitions (continued)

- Positive current injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 10* for maximum allowed input voltage values.
- A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 10: Voltage characteristics* for the maximum allowed input voltage values.
- 6. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C

Table 12. Thermal characteristics

6.3 Operating conditions

6.3.1 General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	32		
f _{PCLK1}	Internal APB1 clock frequency	-	0	32	MHz	
f _{PCLK2}	Internal APB2 clock frequency	-	0	32		
		BOR detector disabled	1.65	3.6		
V _{DD}	Standard operating voltage	BOR detector enabled, at power on	1.8	3.6	V	
		BOR detector disabled, after power on	1.65	3.6		
V _{DDA} ⁽¹⁾	Analog operating voltage (ADC and DAC not used)			3.6	v	
VDDA` ′	Analog operating voltage (ADC or DAC used)	V _{DD} ⁽²⁾	1.8	3.6	v	
		FT pins; 2.0 V ⊴V _{DD}	-0.3	5.5 ⁽³⁾	v	
N	I/O input voltage	FT pins; V _{DD} < 2.0 V	-0.3	5.25 ⁽³⁾		
V _{IN}		BOOT0 pin	0	5.5	V	
		Any other pin	-0.3	V _{DD} +0.3		
		LQFP144 package	-	500		
		LQFP100 package	-	465		
P_D	Power dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for suffix $7^{(4)}$	LQFP64 package	-	435	mW	
		UFBGA132	-	333		
		WLCSP64 package	-	435		
т	Ambient temperature for 6 suffix version	Maximum power dissipation ⁽⁵⁾	-40	85	°C	
ΤΑ	Ambient temperature for 7 suffix version	Maximum power dissipation	-40	105	°C	

Table 13. General operating conditions

Symbol	Parameter	Conditions	f _{HCLK}	Тур	Max	Unit	
			Range3,	1	230	470	
			V _{CORE} =1.2 V	2	415	780	μA
			VOS[1:0]=11	4	800	1200	
		f _{HSE} = f _{HCLK} up to 16 MHz,	Range2,	4	0.935	1.5	
		included $f_{HSE} = f_{HCLK}/2$ above 16MHz (PLL ON) ⁽¹⁾	V _{CORE} =1.5 V	8	1.9	3	
	Supply current in Run mode code executed from RAM	16MHz (PLL ON) ⁽¹⁾	VOS[1:0]=10	16	3.75	5	mA
			Range1, V _{CORE} =1.8 V VOS[1:0]=01	8	2.25	3.5	
				16	4.45	5.55	
I _{DD (Run} from RAM)				32	9.05	10.9	
		HSI clock source (16 MHz)	Range2, V _{CORE} =1.5 V VOS[1:0]=10	16	3.75	4.8	
			Range1, V _{CORE} =1.8 V VOS[1:0]=01	32	8.95	11.7	
		MSI clock, 65 kHZ	Range3,	0.065	43.5	100	
		MSI clock, 524 kHZ	V _{CORE} =1.2 V	0.524	135	215	μA
		MSI clock, 4.2 MHZ	VOS[1:0]=11	4.2	835	1100	

Table 18. Current consumption in Run mode, code with data processing running from RAM

1. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Symbol	Parameter	Conditions				Max ⁽¹⁾	Unit				
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 1.8 \text{ V}$	1.1	-					
			LCD	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.35	4					
			OFF	T _A = 55°C	1.95	6					
				T _A = 85°C	4.35	10					
		RTC clocked by LSI		or LSE external clock		or LSE external clock		T _A = 105°C	11.0	23	
		(32.768kHz),	LCD	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.65	6					
		regulator in LP mode, HSI and HSE OFF	ON	T _A = 55°C	2.1	7					
		(no independent	(static duty) ⁽²⁾	T _A = 85°C	4.7	12					
		watchdog)	uuty)	T _A = 105°C	11.0	27					
				$T_A = -40^{\circ}C$ to $25^{\circ}C$	2.5	10					
			LCD ON (1/8 duty) ⁽³⁾	T _A = 55°C	4.65	11	-				
				T _A = 85°C	7.25	16					
				T _A = 105°C	14.0	44					
	Supply current in		LCD OFF	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.7	-					
I _{DD} (Stop with RTC)	Stop mode with RTC			T _A = 55°C	2.15	-	μA				
with the system of the system	enabled			T _A = 85°C	4.7	-					
				T _A = 105°C	11.5	-					
				$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.8	-					
			LCD ON (static duty) ⁽²⁾	T _A = 55°C	2.35	-					
		RTC clocked by LSE		T _A = 85°C	4.85	-					
		external quartz (32.768kHz),	uuty)	T _A = 105°C	11.5	-					
		regulator in LP mode,		$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$	2.45	-					
		HSI and HSE OFF (no independent	LCD ON (1/8	T _A = 55°C	4.9	-					
		watchdog ⁽⁴⁾	duty) ⁽³⁾	T _A = 85°C	7.7	-					
				T _A = 105°C	14.5	-					
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 1.8V$	1.35	-					
			LCD OFF	$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 3.0V$	1.7	-					
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 3.6V$	2.0	-					

6.3.7 Internal clock source characteristics

The parameters given in *Table 30* are derived from tests performed under the conditions summarized in *Table 13*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
TRIM ⁽¹⁾⁽²⁾	HSI user-trimmed	Trimming code is not a multiple of 16	-	±0.4	0.7	%
TRIM	resolution	Trimming code is a multiple of 16	-	-	±1.5	%
		V _{DDA} = 3.0 V, T _A = 25 °C	-1 ⁽³⁾	-	1 ⁽³⁾	%
	Accuracy of the factory-calibrated HSI oscillator	V _{DDA} = 3.0 V, T _A = 0 to 55 °C		-	1.5	%
		V_{DDA} = 3.0 V, T_A = -10 to 70 °C		-	2	%
ACC _{HSI} ⁽²⁾		V_{DDA} = 3.0 V, T_{A} = -10 to 85 °C	-2.5	-	2	%
		V _{DDA} = 3.0 V, T _A = -10 to 105 °C	-4	-	2	%
		V _{DDA} = 1.65 V to 3.6 V T _A = -40 to 105 °C	-4	-	3	%
t _{SU(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	3.7	6	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	100	140	μA

Table 30. HSI oscillator	characteristics
--------------------------	-----------------

1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).

2. Guaranteed by characterization results.

3. Guaranteed by test in production.

Low-speed internal (LSI) RC oscillator

Table 31. LSI oscillator characteristics

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽¹⁾	LSI frequency	26	38	56	kHz
D _{LSI} ⁽²⁾	LSI oscillator frequency drift $0^{\circ}C \leq T_{A} \leq 105^{\circ}C$	-10	-	4	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	200	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	400	510	nA

1. Guaranteed by test in production.

2. This is a deviation for an individual part, once the initial frequency has been measured.

3. Guaranteed by design.

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 45*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25 °C, f _{HCLK} = 32 MHz conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$\label{eq:VDD} \begin{array}{l} V_{DD} = 3.3 \text{ V}, \text{ LQFP100}, \text{ T}_{\text{A}} = +25 \\ ^{\circ}\text{C}, \\ \text{f}_{\text{HCLK}} = 32 \text{ MHz} \\ \text{conforms to IEC 61000-4-4} \end{array}$	4A

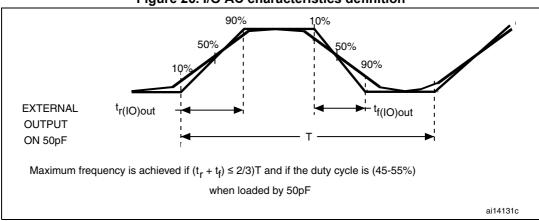
Table 45. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations


The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second.

6.3.15 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 53*)

Unless otherwise specified, the parameters given in *Table 53* are derived from tests performed under the conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST input low level voltage	-	-	-	0.3 V _{DD}	
V _{IH(NRST)} ⁽¹⁾	NRST input high level voltage	-	0.7 V _{DD}	-	-	V
V	NRST output low	I _{OL} = 2 mA 2.7 V < V _{DD} < 3.6 V	-	-	0.4	v
V _{OL(NRST)} ⁽¹⁾	level voltage	I _{OL} = 1.5 mA 1.65 V < V _{DD} < 2.7 V	-	-	0.4	
V _{hys(NRST)} ⁽¹⁾	NRST Schmitt trigger voltage hysteresis	-	-	10%V _{DD} ⁽²⁾	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽³⁾	$V_{IN} = V_{SS}$	30	45	60	kΩ
V _{F(NRST)} ⁽¹⁾	NRST input filtered pulse	-	-	-	50	ns
V _{NF(NRST)} ⁽³⁾	NRST input not filtered pulse	-	350	-	-	ns

Table 53. NRST pin characteristics

1. Guaranteed by design.

2. With a minimum of 200 mV.

3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%.

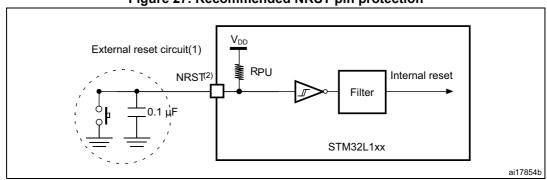


Figure 27. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 53. Otherwise the reset will not be taken into account by the device.

6.3.16 TIM timer characteristics

The parameters given in the *Table 54* are guaranteed by design.

Refer to *Section 6.3.14: I/O port characteristics* for details on the input/output ction characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit			
t	Timer resolution time	-	1	-	t _{TIMxCLK}			
t _{res(TIM)}		f _{TIMxCLK} = 32 MHz	31.25	-	ns			
f	Timer external clock	-	0	f _{TIMxCLK} /2	MHz			
f _{EXT}	frequency on CH1 to CH4	f _{TIMxCLK} = 32 MHz	0	16	MHz			
Res _{TIM}	Timer resolution	-		16	bit			
	16-bit counter clock	-	1	65536	t _{TIMxCLK}			
t _{COUNTER}	period when internal clock is selected (timer's prescaler disabled)	f _{TIMxCLK} = 32 MHz	0.0312	2048	μs			
t	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}			
^t MAX_COUNT		f _{TIMxCLK} = 32 MHz	-	134.2	S			

Table 54. TIMx⁽¹⁾ characteristics

1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers.

6.3.17 Communications interfaces

I²C interface characteristics

The device I²C interface meets the requirements of the standard I²C communication protocol with the following restrictions: SDA and SCL are not "true" open-drain I/O pins. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 55*. Refer also to *Section 6.3.14: I/O port characteristics* for more details on the input/output ction characteristics (SDA and SCL).

Symbol	Parameter		Standard mode I ² C ⁽¹⁾⁽²⁾		Fast mode I ² C ⁽¹⁾⁽²⁾	
		Min	Мах	Min	Мах	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	-	3450 ⁽³⁾	-	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300	
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs
Cb	Capacitive load for each bus line	-	400	-	400	pF
t _{SP}	Pulse width of spikes that are suppressed by the analog filter	0	50 ⁽⁴⁾	0	50 ⁽⁴⁾	ns

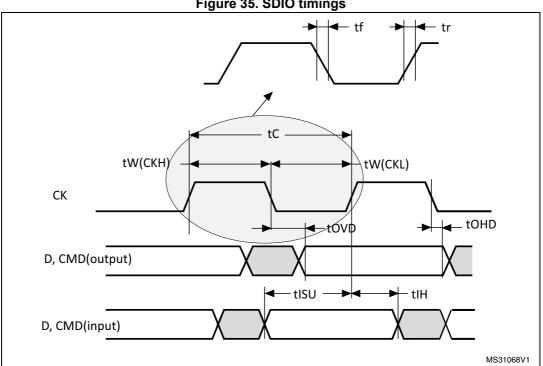
Table 55. I²C characteristics

1. Guaranteed by design.

 f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I²C fast mode clock.

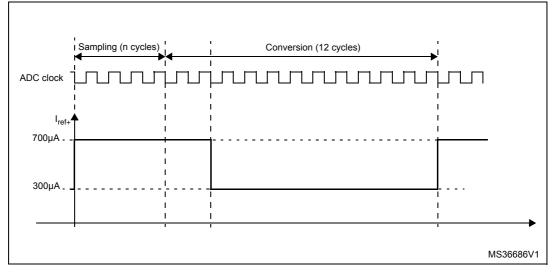
3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.

4. The minimum width of the spikes filtered by the analog filter is above t_{SP(max)}.


6.3.18 **SDIO characteristics**

Symbol	Parameter	Conditions	Min	Max	Unit		
f _{PP}	Clock frequency in data transfer mode	CL ≤30 pF	0	24	MHz		
t _{W(CKL)}	Clock low time, f _{PP} = 24 MHz	CL ≤30 pF	20 ⁽²⁾	-			
t _{W(CKH)}	Clock high time, f _{PP} = 24 MHz	18 ⁽²⁾	-				
t _r	Clock rise time, f _{PP} = 24 MHz	CL ≦30 pF	-	5	ns		
t _f	Clock fall time, f _{PP} = 24 MHz	CL ≦30 pF	-	5			
	CMD, D inputs (referenced to	CK) in SD defau	lt mode				
	-	From 2.8 to 3.6 V	-	-			
t _{ISU}	Input setup time, f _{PP} = 24 MHz	CL ≤30 pF	2	-	20		
t _{IH}	Input hold time, f _{PP} = 24 MHz	CL ≦30 pF	1.6	-	ns		
CMD, D outputs (referenced to CK) in SD default mode							
t _{OVD}	Output valid default time, f _{PP} = 24 MHz	CL ≦30 pF	0	14	200		
t _{OHD}	Output hold default time, f _{PP} = 24 MHz	CL ≤30 pF	0	-	ns		

Table 62. SDIO characteristics⁽¹⁾


1. Guaranteed by characterization results.

2. Values measured with a threshold level equal to $V_{\mbox{\scriptsize DD}}/2.$

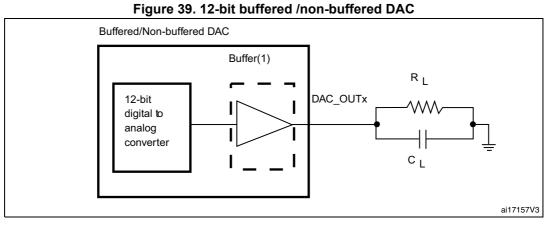
Figure 35. SDIO timings

Figure 38. Maximum dynamic current consumption on V_{REF+} supply pin during ADC conversion

Table 66. Maximum source impedance $R_{AIN} max^{(1)}$

	R _{AIN} max (kΩ)							
Ts (µs)	Multiplexe	d channels	Direct c	Ts (cycles) f _{ADC} =16 MHz ⁽²⁾				
	2.4 V < V _{DDA} < 3.6 V	1.8 V < V _{DDA} < 2.4 V	2.4 V < V _{DDA} < 3.6 V 1.8 V < V _{DDA} < 2.4 V					
0.25	Not allowed	Not allowed	0.7	Not allowed	4			
0.5625	0.8	Not allowed	2.0	1.0	9			
1	2.0	0.8	4.0	3.0	16			
1.5	3.0	1.8	6.0	4.5	24			
3	6.8	4.0	15.0	10.0	48			
6	15.0	10.0	30.0	20.0	96			
12	32.0	25.0	50.0	40.0	192			
24	50.0	50.0	50.0	50.0	384			

1. Guaranteed by design.


2. Number of samples calculated for f_{ADC} = 16 MHz. For f_{ADC} = 8 and 4 MHz the number of sampling cycles can be reduced with respect to the minimum sampling time Ts (µs),

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 11*. The applicable procedure depends on whether V_{REF+} is connected to V_{DDA} or not. The 100 nF capacitors should be ceramic (good quality). They should be placed as close as possible to the chip.

- 4. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.
- 5. Difference between the value measured at Code (0x800) and the ideal value = $V_{REF+}/2$.
- 6. Difference between the value measured at Code (0x001) and the ideal value.
- 7. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is OFF, and from code giving 0.2 V and ($V_{DDA} 0.2$) V when buffer is ON.
- 8. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

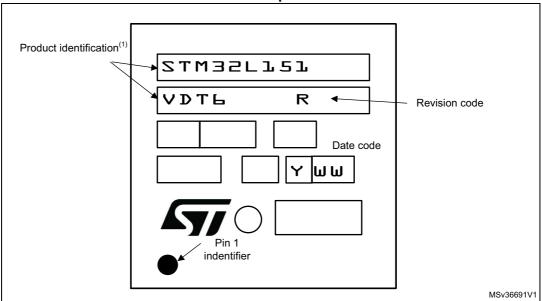
6.3.21 Operational amplifier characteristics

Symbol	Para	meter	Condition ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
CMIR	Common mode input range		-	0	-	V _{DD}	
VI _{OFFSET}		Maximum calibration range	-	-	-	±15	mV
		After offset calibration	-	-	-	±1.5	
43.71	Input offset voltage	Normal mode	-	-	-	±40	µV/°C
ΔVI_{OFFSET}	drift	Low-power mode	-	-	±80		
		Dedicated input		-		1	
I _{IB} Input cu	Input current bias	General purpose input	75 °C	-	-	10	nA
		Normal mode	-	-	-	500	
ILOAD	Drive current	Low-power mode	-	-	-	100	μA
	Orana	Normal mode	No load,	-	100	220	
I _{DD}	Consumption	Low-power mode	quiescent mode	_	30	60	μA
	Common mode	Normal mode	-	-	-85	-	dB
CMRR	rejection ration	Low-power mode	-	-	-90	-	

Table 68. Operational amplifier characteristics

Symbol	Parameter		Condition ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit	
DODD	Power supply	Normal mode		-	-85	-	dB	
PSRR	rejection ratio	Low-power mode	- DC	-	-90	-		
		Normal mode	N - 20 4 M	400	1000	3000		
	Denduidth	Low-power mode	– V _{DD} >2.4 V	150	300	800	6117	
GBW	Bandwidth	Normal mode	V 2 4 V	200	500	2200	kHZ	
		Low-power mode	– V _{DD} <2.4 V	70	150	800		
		Normal mode	V_{DD} >2.4 V (between 0.1 V and V_{DD} -0.1 V)	-	700	-		
SR	Slew rate	Low-power mode	V _{DD} >2.4 V	-	100	-	V/ms	
		Normal mode	N0.4 M	-	300	-	-	
		Low-power mode	— V _{DD} <2.4 V	-	50	-		
AO	Open loop gain	Normal mode		55	100	-	dB	
		Low-power mode		65	110	-	UD	
_	Desistive lead	Normal mode	V2 4 V	4	-	-	kΩ	
R _L	Resistive load	Low-power mode	– V _{DD} <2.4 V	20	-	-	K02	
CL	Capacitive load	•	-	-	-	50	pF	
VOH _{SAT}	High saturation	Normal mode		V _{DD} - 100	-	-		
0.11	voltage	Low-power mode	I _{LOAD} = max or	V _{DD} -50	-	-	mV	
VO	Low saturation	Normal mode	$-R_{L} = min$	-	-	100		
VOL _{SAT}	voltage	Low-power mode		-	-	50		
φm	Phase margin		-	-	60	-	0	
GM	Gain margin		-	-	-12	-	dB	
t _{OFFTRIM}	Offset trim time: during calibration, minimum time needed between two steps to have 1 mV accuracy		-	-	1	-	ms	
+	Wakoup time	Normal mode	$C_L \leq 50 \text{ pf}, \\ R_L \geq 4 \text{ k}\Omega$	-	10	-		
t _{WAKEUP}	Wakeup time	Low-power mode	C _L ≤50 pf, R _L ≥ 20 kΩ	-	30	-	μs	

Table 68. Operational amplifier characteristics (continued)


Operating conditions are limited to junction temperature (0 °C to 105 °C) when V_{DD} is below 2 V. Otherwise to the full ambient temperature range (-40 °C to 85 °C, -40 °C to 105 °C).

2. Guaranteed by characterization results.

Marking of engineering samples

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity

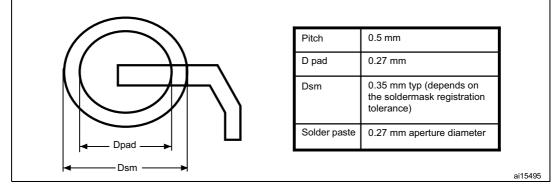


Table 77. UFBGA132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid arraypackage mechanical data (continued)

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Max Min Typ		Мах
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 50. UFBGA132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array package recommended footprint

