E. Analog Devices Inc./Maxim Integrated - MAX32625IWYL+T Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	96MHz
Connectivity	1-Wire, I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	40
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.14V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-30°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	63-WFBGA, WLBGA
Supplier Device Package	63-WLP (3.07x3.87)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/max32625iwyl-t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ultra-Low Power, High-Performance ARM Cortex-M4F Microcontroller for Wearables

TABLE OF CONTENTS (CONTINUED)

SPI (Slave)	
SPI (Execute in Place (SPIX) Master)	
UART	
1-Wire Master	
Peripheral Management Unit (PMU)	
Additional Documentation	
Development and Technical Support	
Trust Protection Unit (TPU) (MAX32626 Only).	
Applications Information.	
General-Purpose I/O Matrix	
Ordering Information	
Revision History	

LIST OF FIGURES

Figure 1. SPI Master and SPI XIP Master Timing	12
Figure 2. MAX32625/MAX32626 Clock Scheme	20
Figure 3. 32-Bit Timer	22

LIST OF TABLES

Table 1. General-Purpose I/O Matrix		25
-------------------------------------	--	----

Ultra-Low Power, High-Performance ARM Cortex-M4F Microcontroller for Wearables

Simplified Block Diagram

Ultra-Low Power, High-Performance ARM Cortex-M4F Microcontroller for Wearables

Absolute Maximum Ratings

V _{DD18}	0.3V to +1.89V
V _{DD12}	0.3V to +1.32V
V _{RTC}	0.3V to +1.89V
V _{DDB}	0.3V to +3.6V
V _{DDIO}	0.3V to +3.6V
V _{DDIOH}	0.3V to +3.6V
32KIN, 32KOUT	0.3V to +3.6V
RSTN, SRSTN, DP, DM, GPIO, JTAG	0.3V to +3.6V
AIN[1:0]	0.3V to +5.5V
AIN[3:2]	0.3V to +3.6V

(All voltages with respect to $\mathsf{V}_{SS},$ unless otherwise noted.)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

63 WLP

PACKAGE CODE	W6333B+1
Outline Number	<u>21-100084</u>
Land Pattern Number	Refer to Application Note 1891
Thermal Resistance, Single Layer Board:	
Junction-to-Ambient (θ _{JA})	N/A
Junction-to-Case Thermal Resistance (θ_{JC})	N/A
Thermal Resistance, Four Layer Board:	
Junction-to-Ambient (θ _{JA})	35.87°C/W
Junction-to-Case Thermal Resistance (θ_{JC})	N/A

68 TQFN

PACKAGE CODE	T6888+1
Outline Number	<u>21-0510</u>
Land Pattern Number	90-0354
Thermal Resistance, Single Layer Board:	
Junction-to-Ambient (θ _{JA})	N/A
Junction-to-Case Thermal Resistance (θ_{JC})	N/A
Thermal Resistance, Four Layer Board:	
Junction-to-Ambient (θ _{JA})	20.20°C/W
Junction-to-Case Thermal Resistance (θ_{JC})	1°C/W

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packaging</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Ultra-Low Power, High-Performance ARM Cortex-M4F Microcontroller for Wearables

Electrical Characteristics

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						
	V _{DD18}		1.71	1.8	1.89	
	V _{DD12}		1.14	1.2	1.26]
Supply Voltage	V _{RTC}		1.75	1.8	1.89	V
	V _{DDIO}		1.71	1.8	3.6	
	V _{DDIOH}	V _{DDIOH} must be ≥ V _{DDIO}	1.71	1.8	3.6	
1.2V Internal Regulator	V _{REG12}		1.14	1.2	1.26	V
Power-Fail Reset Voltage	V _{RST}	Monitors V _{DD18}	1.61		1.7	V
Power-On Reset Voltage	V _{POR}	Monitors V _{DD18}		1.5		V
RAM Data Retention Voltage	V _{DRV}	V _{DD12} supply, retention in LP1		0.930		mV
V _{DD12} Dynamic Current, LP3 Mode	IDD12_DLP3	Measured on the V_{DD12} pin and executing code from cache memory, all inputs are tied to V_{SS} or V_{DD18} , outputs do not source/sink any current, PMU disabled		106		µA/MHz
V _{DD12} Fixed Current, LP3		96MHz oscillator selected as system clock, measured on the V_{DD12} pin and executing code from cache memory, all inputs are tied to V_{SS} or V_{DD18} , outputs do not source/sink any current		87		- μΑ
Mode	IDD12_FLP3	$\begin{array}{l} \mbox{4MHz oscillator selected as system clock,} \\ \mbox{measured on the V}_{DD12} \mbox{pin and executing code from cache memory, all inputs} \\ \mbox{are tied to V}_{SS} \mbox{ or V}_{DD18}, \mbox{ outputs do not} \\ \mbox{source/sink any current} \end{array}$		39		
V _{DD18} Fixed Current, LP3 Mode		96MHz oscillator selected as system clock, measured on the V_{DD18} pin and executing code from cache memory, all inputs are tied to V_{SS} or V_{DD18} , outputs do not source/sink any current		366		
	IDD18_FLP3	4MHz oscillator selected as system clock, measured on the V_{DD18} pin and execut- ing code from cache memory, all inputs are tied to V_{SS} or V_{DD18} , outputs do not source/sink any current		33		- μΑ
V _{DD12} Dynamic Current, LP2 Mode	I _{DD12_DLP2}	Measured on the $V_{DD12}\text{pin},\text{ARM}$ in sleep mode, PMU with two channels active		27		µA/MHz

Ultra-Low Power, High-Performance ARM Cortex-M4F Microcontroller for Wearables

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
V _{DD12} Fixed Current, LP2	2	96MHz oscillator selected as system clock, measured on the V_{DD12} pin, ARM in sleep mode, PMU with two channels active		87		
Mode	IDD12_FLP2	$4 MHz$ oscillator selected as system clock, measured on the $V_{DD12}\text{pin},$ ARM in sleep mode, PMU with two channels active		39		μA
V _{DD18} Fixed Current, LP2		96MHz oscillator selected as system clock, measured on the $V_{DD18}\rm pin,ARM$ in sleep mode, PMU with two channels active		366		
Mode	IDD18_FLP2	4MHz oscillator selected as system clock, measured on the V_{DD18} pin, ARM in sleep mode, PMU with two channels active		33		μA
V _{DD12} Fixed Current, LP1 Mode	IDD12_FLP1	Standby state with full data retention		1.06		μA
V _{DD18} Fixed Current, LP1 Mode	IDD18_FLP1	Standby state with full data retention		120		nA
V _{RTC} Fixed Current, LP1 Mode	IDDRTC_FLP1	RTC enabled, retention regulator powered by $V_{\mbox{DD12}}$		594		nA
V _{DD12} Fixed Current, LP0 Mode	IDD12_FLP0			14		nA
V _{DD18} Fixed Current, LP0 Mode	IDD18_FLP0			120		nA
V _{RTC} Fixed Current, LP0		RTC enabled		505		nA
Mode	DDRTC_FLP0	RTC disabled		105		11/3
LP2 Mode Resume Time	t _{LP2_ON}			0		μs
LP1 Mode Resume Time	t _{LP1_ON}			5		μs
LP0 Mode Resume Time	t _{LP0_ON}	Polling flash ready		11		μs
GENERAL-PURPOSE I/O						
Input Low Voltage for All	w Voltage for All	$V_{\mbox{DDIO}}$ selected as I/O supply, pin configured as GPIO			0.3 × V _{DDIO}	V
GPIO	V _{IL_GPIO}	$V_{\mbox{DDIOH}}$ selected as I/O supply, pin configured as GPIO			0.3 × V _{DDIOH}	v
Input Low Voltage for RSTN	V _{IL_RSTN}				0.3 x V _{RTC}	V
Input Low Voltage for SRSTN	V _{IL_SRSTN}				0.3 x V _{DDIO}	
Input High Voltage for All	VIH_GPIO	V _{DDIO} selected as I/O supply, pin config- ured as GPIO	0.7 × V _{DDIO}			V
GPIO	VIH_GPIOH	V _{DDIOH} selected as I/O supply, pin configured as GPIO	0.7 × V _{DDIOH}			v

Ultra-Low Power, High-Performance ARM Cortex-M4F Microcontroller for Wearables

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Voltage for RSTN	V _{IH_RSTN}		0.7 x			V
Input High Voltage for SRSTN	V _{IH_SRSTN}		V _{RTC} 0.7 x V _{DDIO}			V
		I_{OL} = 4mA, V_{DDIO} = V_{DDIOH} = 1.71V, V_{DDIO} selected as I/O supply, normal drive configuration, pin configured as GPIO		0.2	0.4	
Output Low Voltage for All GPIO	V _{OL_GPIO}	I_{OL} = 24mA, V_{DDIO} = V_{DDIOH} = 1.71V, V_{DDIO} selected as I/O supply, fast drive configuration, pin configured as GPIO		0.2	0.4	V
		I_{OL} = 900µA, V _{DDIO} = 1.71V, V _{DDIOH} = 2.97V, V _{DDIOH} selected as I/O supply, pin configured as GPIO		0.2	0.4	
Output High Voltage for All GPIO	$\label{eq:selected as I/O su} \text{for All} V_{\text{OH}_\text{GPIO}} \\ \text{for All} V_{\text{OH}_\text{GPIO}} \\ \hline \\ V_{\text{OH}_\text{GPIO}} \\ \hline \\ \hline \\ V_{\text{DH}_\text{GPIO}} \\ \hline \\$	I_{OH} = -2mA, V_{DDIO} = V_{DDIOH} = 1.71V, V_{DDIO} selected as I/O supply, normal drive configuration, pin configured as GPIO	V _{DDIO} - 0.4			- V
		I_{OH} = -8mA, V_{DDIO} = V_{DDIOH} = 1.71V, V_{DDIO} selected as I/O supply, fast drive configuration, pin configured as GPIO	V _{DDIO} - 0.4			
		I_{OH} = -900µA, V _{DDIOH} = 3.6V, V _{DDIOH} selected as I/O supply, pin configured as GPIO	V _{DDIOH} - 0.4			
		I_{OH} = -2mA, V_{DDIO} = 1.71V, V_{DDIOH} = 3.6V, V_{DDIO} selected as I/O supply, pin configured as GPIO	V _{DDIO} - 0.50			
Combined I _{OL} , All GPIO	I _{OL_TOTAL}				48	mA
Combined I _{OH} , All GPIO	IOH_TOTAL				-48	mA
Input Hysteresis (Schmitt)	VIHYS			300		mV
Input/Output Pin Capacitance for All Pins	C _{IO}			3		pF
Input Leakage Current Low	Ι _{ΙL}	V_{DDIO} = 1.89V, V_{DDIOH} = 3.6V, V_{DDIOH} selected as I/O supply, V_{IN} = 0V, internal pullup disabled	-100		+100	nA
Input Leakage Current High	IIН	V_{DDIO} = 1.89V, V_{DDIOH} = 3.6V, V_{DDIOH} selected as I/O supply, V_{IN} = 3.6V, internal pulldown disabled	-100		+100	nA
	I _{OFF}	V_{DDIO} = 0V, V_{DDIOH} = 0V, V_{DDIO} selected as I/O supply, V_{IN} < 1.89V	-1		+1	
	luce v	$V_{DDIO} = V_{DDIOH} = 1.71V$, V_{DDIO} selected as I/O supply, $V_{IN} = 3.6V$	-2		+2	μA

Ultra-Low Power, High-Performance ARM Cortex-M4F Microcontroller for Wearables

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Pullup Resistor to SRSTN, TMS, TCK, TDI	R _{PU_VDDIO}	Pullup to V _{DDIO}		25		kΩ
Input Pullup Resistor to RSTN	R _{PU_VRTC}	Pullup to V _{RTC}		25		kΩ
Input Pullup/Pulldown Re-	R _{PU_NORM}	Normal resistance, pin configured as GPIO		25		kΩ
sistor for All GPIO	R _{PU_HIGH}	Highest resistance, pin configured as GPIO		1		MΩ
JTAG						
Input Low Voltage for TCK, TMS, TDI	V _{IL}				0.3 x V _{DDIO}	V
Input High Voltage for TCK, TMS, TDI	V _{IH}		0.7 x V _{DDIO}			V
Output Low Voltage for TDO	V _{OL}			0.2	0.4	V
Output High Voltage for TDO	V _{OH}		V _{DDIO} - 0.4			v
CLOCKS						
System Clock Frequency	fsys_clk		0.001		98	MHz
System Clock Period	^t SYS_CLK			1/f _{SYS} _ CLK		ns
Internal Relaxation Oscilla-		Factory default	94	96	98	MHz
tor Frequency	^f INTCLK	Firmware trimmed, required for USB com- pliance	95.76	96	96.24	
Internal RC Oscillator Fre- quency	^f RCCLK		3.9	4	4.1	MHz
RTC Input Frequency	f _{32KIN}	32kHz watch crystal, 6pF, ESR < 70k Ω		32.768		kHz
RTC Operating Current	I _{RTC_LP23}	LP2 or LP3 mode		0.7		μA
itto operating ourrent	IRTC_LP01	LP0 or LP1 mode		0.35		μΛ
RTC Power-Up Time	^t RTC_ON			250		ms
FLASH MEMORY						
Page Size				8		kB
Flash Erase Time	t _{M_ERASE}	Mass erase		30		
1 10311 21038 111118	^t P_ERASE	Page erase		30		ms
Flash Programming Time Per Word	t _{PROG}			60		μs
Flash Endurance			10			kcycles
Data Retention	t _{RET}	T _A = +25°C	10			years

Ultra-Low Power, High-Performance ARM Cortex-M4F Microcontroller for Wearables

Electrical Characteristics - SPI Master / SPIX Master

(Timing specifications are guaranteed by design and are not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Master Operating Frequency	fмск				48	MHz
Master SCLK Period	t _{MCK}			1/f _{MCK}		ns
SCLK Output Pulse- Width High	^t MCH		t _{MCK} /2			ns
SCLK Output Pulse- Width Low	t _{MCL}		(t _{MCK} /2) - 4			ns
MOSI Output Hold Time After SCLK Sample Edge	^t мон		(t _{MCK} /2) - 4			ns
MOSI Output Valid to Sample Edge	t _{MOV}		(t _{MCK} /2) - 4			ns
MISO Input Valid to SCLK Sample Edge Setup	t _{MIS}		1			ns
MISO Input to SCLK Sample Edge	t _{MIH}				1	ns

Figure 1. SPI Master and SPI XIP Master Timing

Ultra-Low Power, High-Performance ARM Cortex-M4F Microcontroller for Wearables

Pin Configurations

Ultra-Low Power, High-Performance ARM Cortex-M4F Microcontroller for Wearables

Pin Configurations (continued)

Ultra-Low Power, High-Performance ARM Cortex-M4F Microcontroller for Wearables

Pin Description

PIN 63 WLP 68 TQFN		NAME				
			FUNCTION			
POWER PINS	1	1				
A8	23, 32	V _{DD18}	1.8V Supply Voltage. This pin must be bypassed to V_{SS} with a $1.0\mu F$ capacitor as close as possible to the package.			
B8, C8, D1	5, 34, 41, 52, 63	V _{SS}	Digital Ground			
C1	19, 46	V _{DDIOH}	I/O Supply Voltage, High. 1.8V \leq V _{DDIOH} \leq 3.6V, always with V _{DDIOH} \geq V _{DDIO} . See EC table for V _{DDIOH} specification. This pin must be bypassed to V _{SS} with a 1.0µF capacitor as close as possible to the package.			
C9	37	V _{RTC}	RTC Supply Voltage. This pin must be bypassed to V_{SS} with a $1.0\mu F$ capacitor as close as possible to the package.			
D8	3, 42	V _{DDIO}	I/O Supply Voltage. 1.8V \leq V _{DDIO} \leq 3.6V. See EC table for V _{DDIO} specification. This pin must be bypassed to V _{SS} with a 1.0µF capacitor as close as possible to the package.			
D9	40	V _{DDB}	USB Transceiver Supply Voltage. This pin must be bypassed to V_{SS} with a $1.0\mu F$ capacitor as close as possible to the package.			
E1	8	V _{DD12}	1.2V Nominal Supply Voltage. This pin must be bypassed to V_{SS} with a 1.0 μ F capacitor as close as possible to the package.			
CLOCK PINS						
A9	35	32KIN	32kHz Crystal Oscillator Input. Connect a 6pF 32kHz crystal between 32KIN and 32KOUT for RTC operation. Optionally, an external clock source can be driven on 32KIN if the 32KOUT pin is left unconnected. A 32kHz crystal or external clock source is required for proper USB operation.			
B9	36	32KOUT	32kHz Crystal Oscillator Output			
USB PINS	1	1	I.			
E8	43	DP	USB DP Signal. This bidirectional pin carries the positive differential data or single- ended data. This pin is weakly pulled high internally when the USB is disabled.			
E9	44	DM	USB DM Signal. This bidirectional pin carries the negative differential data or sin- gle-ended data. This pin is weakly pulled high internally when the USB is disabled.			
JTAG PINS						
B4	26	TCK/SWCLK	JTAG Clock Serial Wire Debug Clock This pin has an internal $25k\Omega$ pullup to V _{DDIO} .			
B5	24	TMS/SWDIO/ IO	JTAG Test Mode Select Serial Wire Debug I/O 1-Wire Master I/O This pin has an internal 25kΩ pullup to V _{DDIO} .			
B6	28	TDO	JTAG Test Data Output			
B7	30	TDI	JTAG Test Data Inputt. This pin has an internal $25k\Omega$ pullup to V _{DDIO} .			

Ultra-Low Power, High-Performance ARM Cortex-M4F Microcontroller for Wearables

Pin Description (continued)

PIN 63 WLP 68 TQFN			FUNCTION		
		NAME			
RESET PINS	I	1			
A3	22	SRSTN	Software Reset, Active-Low Input/Output. The device remains in software reset while this pin is in its active state. When the pin transitions to its inactive state, the device performs a reset to the ARM core, digital registers and peripherals (resetting most of the core logic on the V_{DD12} supply). This reset does not affect the POR only registers, RTC logic, ARM debug engine or JTAG debugger allowing for a soft reset without having to reconfigure all registers. After the device senses SRSTN as a logic 0, the pin automatically reconfigures as an output sourcing a logic 0. The device continues to output for 6 system clock cycles and then repeats the input sensing/output driving until SRSTN is sensed inactive. This pin is internally connected with an internal $25k\Omega$ pullup to the V_{DDIO} supply. This pin should be left unconnected if the system design does not provide a reset signal to the device.		
В3	21	RSTN	Hardware Power Reset (Active-Low) Input. The device remains in reset while this pin is in its active state. When the pin transitions to its inactive state, the device performs a POR reset (resetting all logic on all supplies except for real-time clock circuitry) and begins execution. This pin is internally connected with an internal $25k\Omega$ pullup to the V _{RTC} supply. This pin should be left unconnected if the system design does not provide a reset signal to the device.		
GENERAL-PU	RPOSE I/O AN	D SPECIAL FU	NCTIONS (See Table 1. General-Purpose I/O Matrix)		
A2	20	P0.0	GPIO Port 0.0		
B2	18	P0.1	GPIO Port 0.1		
A1	17	P0.2	GPIO Port 0.2		
C4	16	P0.3	GPIO Port 0.3		
C3	15	P0.4	GPIO Port 0.4		
B1	14	P0.5	GPIO Port 0.5		
D4	13	P0.6	GPIO Port 0.6		
C2	12	P0.7	GPIO Port 0.7		
D3	11	P1.0	GPIO Port 1.0		
E4	10	P1.1	GPIO Port 1.1		
D2	9	P1.2	GPIO Port 1.2		
E3	7	P1.3	GPIO Port 1.3		
E2	6	P1.4	GPIO Port 1.4		
F2	4	P1.5	GPIO Port 1.5		
F1	2	P1.6	GPIO Port 1.6		
F3	1	P1.7	GPIO Port 1.7		
G2	67	P2.1	GPIO Port 2.1		
G3	66	P2.2	GPIO Port 2.2		
F4	65	P2.3	GPIO Port 2.3		
G4	64	P2.4	GPIO Port 2.4		
E5	62	P2.5	GPIO Port 2.5		

Ultra-Low Power, High-Performance ARM Cortex-M4F Microcontroller for Wearables

Pin Description (continued)

PIN					
63 WLP	68 TQFN	NAME	FUNCTION		
F5	61	P2.6	GPIO Port 2.6		
G5	60	P2.7	GPIO Port 2.7		
E6	59	P3.0	GPIO Port 3.0		
F6	58	P3.1	GPIO Port 3.1		
G6	57	P3.2	GPIO Port 3.2		
D5	56	P3.3	GPIO Port 3.3		
D6	55	P3.4	GPIO Port 3.4		
G7	54	P3.5	GPIO Port 3.5		
F7	53	P3.6	GPIO Port 3.6		
G8	51	P3.7	GPIO Port 3.7		
G9	50	P4.0	GPIO Port 4.0		
E7	49	P4.1	GPIO Port 4.1		
F8	48	P4.2	GPIO Port 4.2		
F9	47	P4.3	GPIO Port 4.3		
D7	45	P4.4	GPIO Port 4.4		
C5	39	P4.5	GPIO Port 4.5		
C6	38	P4.6	GPIO Port 4.6		
C7	33	P4.7	GPIO Port 4.7		
ANALOG INP	UT PINS		·		
A4	25	AIN0	ADC Input 0. 5V Tolerant Input		
A5	27	AIN1	ADC Input 1. 5V Tolerant Input		
A6	29	AIN2	ADC Input 2		
A7	31	AIN3	ADC Input 3		

Ultra-Low Power, High-Performance ARM Cortex-M4F Microcontroller for Wearables

Detailed Description

MAX32625/MAX32626

The MAX32625/MAX32626 is an ultra-low power, highefficiency, mixed-signal microcontroller based on the ARM Cortex-M4F 32-bit core with a maximum operating frequency of 96MHz with a hardware AES engine. An internal 4MHz oscillator supports minimal power consumption for applications requiring always-on monitoring. The MAX32626 is a secure version of the MAX32625, incorporating a trust protection unit (TPU) with advanced security features.

Application code executes from an internal 512kB program flash memory with up to 160kB SRAM available for general-application use. An 8kB instruction cache improves execution throughput, and a transparent code scrambling scheme is used to protect customer intellectual property residing in the internal program flash memory. Additionally, a SPI execute in place (SPIX) external memory interface allows application code and data (up to 16MB) to be accessed from an external SPI memory device.

The MAX32625L is a lower-cost version of the MAX32625, providing 256kB of flash and 128kB of SRAM.

A 10-bit delta-sigma ADC is provided with a multiplexer front end for four external input channels (two of which are 5.5V tolerant) and internal channels to monitor internal voltages. Built-in limit monitors allow converted input samples to be compared against user-configurable high and low limits with an option to trigger an interrupt and wake the CPU from a low power mode if attention is required.

A wide variety of communications and interface peripherals are provided. Other communications peripherals include a USB 2.0 slave interface, three master SPI interfaces, one slave SPI interface, three UART interfaces with multidrop support, up to two master I²C interfaces, and one slave I²C interface.

ARM Cortex-M4F Processor

The ARM Cortex-M4F processor is ideal for the emerging category of wearable medical and wellness applications. The architecture combines high-efficiency signal processing functionality with the low power, low cost, and ease-of-use benefits.

The ARM Cortex-M4F DSP supports single instruction multiple data (SIMD) path DSP extensions, providing:

- 4 parallel 8-bit add/sub
- 2 parallel 16-bit add/sub
- 2 parallel MACs
- 32- or 64-bit accumulate
- Signed, unsigned data with or without saturation

Power Operating Modes

Low Power Mode 0 (LP0)

This mode places the core and peripheral logic in a static, low-power state. All features of the device are disabled except:

- Power sequencer
- RTC clock (if enabled)
- Key data retention registers
- Power-on reset
- Voltage supply monitoring

Data retention in this mode can be maintained using only the $V_{\mbox{RTC}}$ supply with all other voltage supplies disabled.

Low Power Mode 1 (LP1)

This mode places the core logic in a static, low-power state that supports a fast wake-up feature. Data retention in this mode can be maintained using only the V_{RTC} supply with all other voltage supplies disabled.

Low Power Mode 2 (LP2)

This configuration allows the ADC and some peripherals to operate while the ARM core is in sleep mode. The peripheral management unit provides intelligent, dynamic clocking of any enabled peripherals, ensuring the lowest possible power consumption.

Low Power Mode 3 (LP3)

During this state, the CPU is executing application code and all digital and analog peripherals are fully powered and awake. Dynamic clocking disables peripherals not in use, providing the optimal mix of high performance and low power consumption.

Analog-to-Digital Converter

The 10-bit delta-sigma ADC provides 4 external inputs and can also measure all internal power supplies. It operates at a maximum of 7.8ksps. AIN0 and AIN1 are 5V tolerant, making them suitable for monitoring batteries.

An optional feature allows samples captured by the ADC to be automatically compared against user-programmable high and low limits. Up to four channel limit pairs can be configured in this way. The comparison allows the ADC to trigger an interrupt (and potentially wake the CPU from a low power sleep mode) when a captured sample goes outside the preprogrammed limit range. Since this comparison is performed directly by the sample limit monitors, it can be performed even while the main CPU is suspended in a low power mode.

Ultra-Low Power, High-Performance ARM Cortex-M4F Microcontroller for Wearables

The ADC measures:

- AIN[3:2] (up to 3.3V)
- AIN[1:0] (up to 5.5V)
- V_{DD12}
- V_{DD18}
- V_{DDB}
- V_{RTC}
- VDDIO
- V_{DDIOH}

Pulse Train Engine

16 independent pulse train generators can provide either a square wave or a repeating pattern from 2 bits to 32 bits in length. Any single pulse train generator or any desired group of pulse train generators can be synchronized at the bit level allowing for multibit patterns

Each pulse train generator is independently configurable.

The pulse train generators provide the following features:

- Independently enabled
- Multiple pin configurations allow for flexible layout

- Pulse trains can be started/synchronized independently or as a group
- Frequency of each enabled pulse train generator is also set separately, based on a divide down (divide by 2, divide by 4, divide by 8, and so on) of the input pulse train module clock
- Multiple repetition options for pulse train mode
 - Single shot (nonrepeating pattern of 2–32 bits)
 - Pattern repeats user-configurable number of times or indefinitely
 - End of one pulse train's loop count can restart one or more other pulse trains

Clocking Scheme

The high-frequency internal relaxation oscillator operates at a nominal frequency of 96MHz. It is the primary clock source for the digital logic and peripherals. Select the 4MHz internal oscillator to optimize active power consumption. Wake-up is possible from either the 4MHz or the 96MHz internal oscillator.

An external 32.766kHz time base is required when using the RTC or USB features of the device.

Figure 2. MAX32625/MAX32626 Clock Scheme

Ultra-Low Power, High-Performance ARM Cortex-M4F Microcontroller for Wearables

Programmable Timers

Six 32-bit timers provide timing, capture/compare, or generation of pulse-width modulated (PWM) signals. Each of the 32-bit timers can also be split into two 16-bit timers, enabling 12 standard 16-bit timers.

The 32-bit timer provide a number of features:

- 32-bit up/down autoreload
- Programmable prescaler
- PWM output generation
- Capture, compare, and capture/compare capability
- External input pin for timer input, clock gating or capture, limited to an input frequency of 1/4 of the peripheral clock frequency
- Timer output pin
- Configurable as 2x 16-bit general-purpose timers
- Timer interrupt

Serial Peripherals

USB

The integrated USB slave controller is compliant with the full-speed (12Mb/s) USB 2.0 specification. The integrated USB physical interface (PHY) reduces board space and system cost. The USB is powered by the V_{DDB} supply.

The USB controller supports DMA for the endpoint buffers. A total of 7 endpoint buffers are supported with configurable selection of IN or OUT in addition to endpoint 0.

An external 32kHz crystal or clock source is required for USB operation, even if the RTC function is not used. Although the USB timing is derived from the internal 96MHz oscillator, the default accuracy is not sufficient for USB operation. Periodic firmware adjustments of the 96MHz oscillator, using the 32kHz timebase as a reference, are necessary to comply with the USB timing requirements.

Figure 3. 32-Bit Timer

Ultra-Low Power, High-Performance ARM Cortex-M4F Microcontroller for Wearables

1-Wire Master

Maxim's DeepCover[®] 1-Wire security solutions provide a cost-effective solution to authenticate medical sensors and peripherals, preventing counterfeit products. The integrated 1-Wire master communicates with slave devices through the bidirectional, multidrop 1-Wire bus. All of the devices on the 1-Wire bus share one signal that carries data communication and also supplies power to the slave devices. The single contact serial interface is ideal for communication networks requiring minimal interconnect. Features of the 1-Wire bus include:

- Single contact for control and operation
- Unique factory identifier for any 1-Wire device
- Power is distributed to all slave device (parasitic power)
- Multiple device capability on a single line
- Supports 1-Wire standard (15.6 kbps) and overdrive (110 kbps) speeds

The incorporation of the 1-Wire master enables the creation of 1-Wire enhanced consumable and reusable accessories. The following benefits can be added to products by the addition of only one contact:

- OEM authenticity is verifiable with SHA-256 and ECDSA
- External tracking is eliminated because calibration data can be securely stored within an accessory
- Reuse of single-use accessories can be prevented
- Counterfeit products can be identified and use denied using the unique, factory identifier
- Environmental temperature and humidity sensing

Peripheral Management Unit (PMU)

The PMU is a DMA-based link list processing engine that performs operations and data transfers involving memory and/or peripherals in the advanced peripheral bus (APB) and advanced high-performance bus (AHB) peripheral memory space while the main CPU is in a sleep state. This allows low-overhead peripheral operations to be performed without the CPU, significantly reducing overall power consumption. Using the PMU with the CPU in a sleep state provides a lower-noise environment critical for obtaining optimum ADC performance.

Key features of the PMU engine include:

- Six independent channels with round-robin scheduling allows for multiple parallel operations
- Programmed using PMU opcodes stored in SRAM

DeepCover is a registered trademark of Maxim Integrated Products, Inc.

- PMU action can be initiated from interrupt conditions from peripherals without CPU
- Integrated AHB bus master
- Coprocessor-like state machine

Additional Documentation

Engineers must have the following documents to fully use this device:

• This data sheet, containing pin descriptions, feature overviews, and electrical specifications

• The device-appropriate user guide, containing detailed information and programming guidelines for core features and peripherals

• Errata sheets for specific revisions noting deviations from published specifications

Visit Technical Support at <u>support.maximintegrated.com/</u> micro for more information regarding these documents.

Development and Technical Support

Contact technical support for information about highly versatile, affordable development tools, available from Maxim Integrated and third-party vendors.

- Evaluation kits
- Software development kit
- Compilers
- Integrated development environments (IDEs)
- USB interface modules for programming and debugging

Visit Technical Support at <u>support.maximintegrated</u>. <u>com/micro</u> for more information.

Trust Protection Unit (TPU) (MAX32626 Only)

The TPU enhances cryptographic data security for valuable intellectual property (IP) and data. A high-speed, dedicated, hardware-based math accelerator (MAA) performs mathematical computations that support strong cryptographic algorithms including:

- AES-128
- AES-192
- AES-256
- 1024-bit DSA
- 2048-bit (CRT)

The device provides a pseudo-random number generator that can be used to create cryptographic keys for any application. A user-selectable entropy source further increases the randomness and key strength.

The secure bootloader protects against unauthorized access to program memory.

Ultra-Low Power, High-Performance ARM Cortex-M4F Microcontroller for Wearables

Applications Information

General-Purpose I/O Matrix

Table 1. General-Purpose I/O Matrix

GPIO	PRIMARY FUNCTION	SECONDARY FUNCTION	PULSE TRAIN OUTPUT	TIMER INPUT	GPIO INTERRUPT
P0.0	UART0A_RX	UART0B_TX	PT_PT0	TIMER_TMR0	GPIO_INT(P0)
P0.1	UART0A_TX	UART0B_RX	PT_PT1	TIMER_TMR1	GPIO_INT(P0)
P0.2	UART0A_CTS	UART0B_RTS	PT_PT2	TIMER_TMR2	GPIO_INT(P0)
P0.3	UART0A_RTS	UART0B_CTS	PT_PT3	TIMER_TMR3	GPIO_INT(P0)
P0.4	SPIM0A_SCK		PT_PT4	TIMER_TMR4	GPIO_INT(P0)
P0.5	SPIM0A_MOSI/SDIO0		PT_PT5	TIMER_TMR5	GPIO_INT(P0)
P0.6	SPIM0A_MISO/SDIO1		PT_PT6	TIMER_TMR0	GPIO_INT(P0)
P0.7	SPIM0A_SS0		PT_PT7	TIMER_TMR1	GPIO_INT(P0)
P1.0	SPIM1A_SCK	SPIX0A_SCK	PT_PT8	TIMER_TMR2	GPIO_INT(P1)
P1.1	SPIM1A_MOSI/SDIO0	SPIX0A_SDIO0	PT_PT9	TIMER_TMR3	GPIO_INT(P1)
P1.2	SPIM1A_MISO/SDIO1	SPIX0A_SDIO1	PT_PT10	TIMER_TMR4	GPIO_INT(P1)
P1.3	SPIM1A_SS0	SPIX0A_SS0	PT_PT11	TIMER_TMR5	GPIO_INT(P1)
P1.4	SPIM1A_SDIO2	SPIX0A_SDIO2	PT_PT12	TIMER_TMR0	GPIO_INT(P1)
P1.5	SPIM1A_SDIO3	SPIX0A_SDIO3	PT_PT13	TIMER_TMR1	GPIO_INT(P1)
P1.6	I2CM0A_SDA / I2CS0A_SDA		PT_PT14	TIMER_TMR2	GPIO_INT(P1)
P1.7	I2CM0A_SCL / I2CS0A_SCL		PT_PT15	TIMER_TMR3	GPIO_INT(P1)
P2.0	UART1A_RX	UART1B_TX	PT_PT0	TIMER_TMR4	GPIO_INT(P2)
P2.1	UART1A_TX	UART1B_RX	PT_PT1	TIMER_TMR5	GPIO_INT(P2)
P2.2	UART1A_CTS	UART1B_RTS	PT_PT2	TIMER_TMR0	GPIO_INT(P2)
P2.3	UART1A_RTS	UART1B_CTS	PT_PT3	TIMER_TMR1	GPIO_INT(P2)
P2.4	SPIM2A_SCK		PT_PT4	TIMER_TMR2	GPIO_INT(P2)
P2.5	SPIM2A_MOSI/SDIO0		PT_PT5	TIMER_TMR3	GPIO_INT(P2)
P2.6	SPIM2A_MISO/SDIO1		PT_PT6	TIMER_TMR4	GPIO_INT(P2)
P2.7	SPIM2A_SS0		PT_PT7	TIMER_TMR5	GPIO_INT(P2)
P3.0	UART2A_RX	UART2B_TX	PT_PT8	TIMER_TMR0	GPIO_INT(P3)
P3.1	UART2A_TX	UART2B_RX	PT_PT9	TIMER_TMR1	GPIO_INT(P3)
P3.2	UART2A_CTS	UART2B_RTS	PT_PT10	TIMER_TMR2	GPIO_INT(P3)
P3.3	UART2A_RTS	UART2B_CTS	PT_PT11	TIMER_TMR3	GPIO_INT(P3)
P3.4	I2CM1A_SDA / I2CS0B_SDA	SPIM2A_SS1	PT_PT12	TIMER_TMR4	GPIO_INT(P3)
P3.5	I2CM1A_SCL / I2CS0B_SCL	SPIM2A_SS2	PT_PT13	TIMER_TMR5	GPIO_INT(P3)
P3.6	SPIM1A_SS1	SPIX_SS1	PT_PT14	TIMER_TMR0	GPIO_INT(P3)
P3.7	SPIM1A_SS2	SPIX_SS2	PT_PT15	TIMER_TMR1	GPIO_INT(P3)
P4.0	OWM_I/O	SPIM2A_SR0	PT_PT0	TIMER_TMR2	GPIO_INT(P4)
P4.1	OWM_PUPEN	SPIM2A_SR1	PT_PT1	TIMER_TMR3	GPIO_INT(P4)

Ultra-Low Power, High-Performance ARM Cortex-M4F Microcontroller for Wearables

PULSE TRAIN GPIO GPIO **PRIMARY FUNCTION** SECONDARY FUNCTION TIMER INPUT INTERRUPT OUTPUT PT_PT2 P4.2 SPIM0A SDIO2 SPIS0A_SDIO2 TIMER_TMR4 GPIO_INT(P4) P4.3 SPIM0A_SDIO3 SPIS0A_SDIO3 PT_PT3 TIMER_TMR5 GPIO_INT(P4) P4.4 SPIM0A SS1 SPIS0A_SCLK PT_PT4 TIMER_TMR0 GPIO_INT(P4) SPIM0A_SS2 P4.5 SPIS0A_MOSI/SDIO0 PT_PT5 TIMER_TMR1 GPIO_INT(P4) P4.6 SPIM0A_SS3 SPIS0A_MISO/SDIO1 GPIO_INT(P4) PT_PT6 TIMER_TMR2 GPIO_INT(P4) P4.7 SPIM0A_SS4 SPIS0A_SS0 PT_PT7 TIMER_TMR3

Table 1. General-Purpose I/O Matrix (continued)

Ordering Information

PART	FLASH	SRAM	TRUST PROTECTION UNIT (TPU)	PIN-PACKAGE
MAX32625IWY+	512KB	160KB	No	63 WLP
MAX32625IWY+T	512KB	160KB	No	63 WLP
MAX32625ITK+*	512KB	160KB	No	68 TQFN
MAX32625ITK+T*	512KB	160KB	No	68 TQFN
MAX32625IWYL+*	256KB	128KB	No	63 WLP
MAX32625IWYL+T*	256KB	128KB	No	63 WLP
MAX32625ITKL+*	256KB	128KB	No	68 TQFN
MAX32625ITKL+T*	256KB	128KB	No	68 TQFN
MAX32626IWY+	512KB	160KB	Yes	63 WLP
MAX32626IWY+T	512KB	160KB	Yes	63 WLP
MAX32626ITK+*	512KB	160KB	Yes	68 TQFN
MAX32626ITK+T*	512KB	160KB	Yes	68 TQFN

+Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel.

*Future product—contact factory for availability.

Ultra-Low Power, High-Performance ARM Cortex-M4F Microcontroller for Wearables

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	8/16	Initial release	—

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.