



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                       |
|----------------------------|--------------------------------------------------------------------------------|
| Core Processor             | ARM7®                                                                          |
| Core Size                  | 16/32-Bit                                                                      |
| Speed                      | 55MHz                                                                          |
| Connectivity               | CANbus, Ethernet, I <sup>2</sup> C, SPI, SSC, UART/USART, USB                  |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                                     |
| Number of I/O              | 62                                                                             |
| Program Memory Size        | 128KB (128K x 8)                                                               |
| Program Memory Type        | FLASH                                                                          |
| EEPROM Size                | -                                                                              |
| RAM Size                   | 32K x 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 1.65V ~ 1.95V                                                                  |
| Data Converters            | A/D 8x10b                                                                      |
| Oscillator Type            | Internal                                                                       |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                  |
| Package / Case             | 100-TFBGA                                                                      |
| Supplier Device Package    | 100-TFBGA (9x9)                                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/at91sam7xc128-cu-999 |
|                            |                                                                                |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



## 3. Signal Description

## Table 3-1.Signal Description List

| Signal Name | Function                                          | Туре           | Active<br>Level | Comments                                |
|-------------|---------------------------------------------------|----------------|-----------------|-----------------------------------------|
|             | Ро                                                | wer            |                 |                                         |
| VDDIN       | Voltage Regulator and ADC Power<br>Supply Input   | Power          |                 | 3V to 3.6V                              |
| VDDOUT      | Voltage Regulator Output                          | Power          |                 | 1.85V                                   |
| VDDFLASH    | Flash and USB Power Supply                        | Power          |                 | 3V to 3.6V                              |
| VDDIO       | I/O Lines Power Supply                            | Power          |                 | 3V to 3.6V                              |
| VDDCORE     | Core Power Supply                                 | Power          |                 | 1.65V to 1.95V                          |
| VDDPLL      | PLL                                               | Power          |                 | 1.65V to 1.95V                          |
| GND         | Ground                                            | Ground         |                 |                                         |
|             | Clocks, Oscill                                    | ators and PLLs | L               |                                         |
| XIN         | Main Oscillator Input                             | Input          |                 |                                         |
| XOUT        | Main Oscillator Output                            | Output         |                 |                                         |
| PLLRC       | PLL Filter                                        | Input          |                 |                                         |
| PCK0 - PCK3 | Programmable Clock Output                         | Output         |                 |                                         |
|             | ICE an                                            | d JTAG         | 1               |                                         |
| ТСК         | Test Clock                                        | Input          |                 | No pull-up resistor                     |
| TDI         | Test Data In                                      | Input          |                 | No pull-up resistor                     |
| TDO         | Test Data Out                                     | Output         |                 |                                         |
| TMS         | Test Mode Select                                  | Input          |                 | No pull-up resistor                     |
| JTAGSEL     | JTAG Selection                                    | Input          |                 | Pull-down resistor <sup>(1)</sup>       |
|             | Flash I                                           | Memory         | 1               |                                         |
| ERASE       | Flash and NVM Configuration Bits Erase<br>Command | Input          | High            | Pull-down resistor <sup>(1)</sup>       |
|             | Rese                                              | t/Test         |                 |                                         |
| NRST        | Microcontroller Reset                             | I/O            | Low             | Pull-Up resistor, Open Drain<br>Output. |
| TST         | Test Mode Select                                  | Input          | High            | Pull-down resistor <sup>(1)</sup>       |
|             | Debu                                              | g Unit         |                 |                                         |
| DRXD        | Debug Receive Data                                | Input          |                 |                                         |
| DTXD        | Debug Transmit Data Output                        |                |                 |                                         |
|             | Α                                                 | IC             | 1               |                                         |
| IRQ0 - IRQ1 | External Interrupt Inputs                         | Input          |                 |                                         |
| FIQ         | Fast Interrupt Input                              | Input          |                 |                                         |
|             | Р                                                 | ю              |                 |                                         |
| PA0 - PA30  | Parallel IO Controller A                          | I/O            |                 | Pulled-up input at reset.               |
| PB0 - PB30  | Parallel IO Controller B                          | I/O            |                 | Pulled-up input at reset.               |

| Signal Name      | Function                          | Туре               | Active<br>Level | Comments |
|------------------|-----------------------------------|--------------------|-----------------|----------|
| Signal Name      |                                   | evice Port         | Level           | Comments |
| DDM              | USB Device Port Data -            | Analog             |                 |          |
| DDP              | USB Device Port Data +            | Analog             |                 |          |
|                  |                                   | SART               |                 |          |
| SCK0 - SCK1      | Serial Clock                      | I/O                |                 |          |
| TXD0 - TXD1      | Transmit Data                     | I/O                |                 |          |
| RXD0 - RXD1      | Receive Data                      | Input              |                 |          |
| RTS0 - RTS1      | Request To Send                   | Output             |                 |          |
| CTS0 - CTS1      | Clear To Send                     | Input              |                 |          |
| DCD1             | Data Carrier Detect               | Input              |                 |          |
| DTR1             | Data Terminal Ready               | Output             |                 |          |
| DSR1             | Data Set Ready                    | Input              |                 |          |
| RI1              | Ring Indicator                    | Input              |                 |          |
|                  |                                   | Serial Controller  |                 |          |
| TD               | Transmit Data                     | Output             |                 |          |
| RD               | Receive Data                      | Input              |                 |          |
| ТК               | Transmit Clock                    | I/O                |                 |          |
| RK               | Receive Clock                     | I/O                |                 |          |
| TF               | Transmit Frame Sync               | I/O                |                 |          |
| RF               | Receive Frame Sync                | I/O                |                 |          |
|                  |                                   | /Counter           |                 |          |
| TCLK0 - TCLK2    | External Clock Inputs             | Input              |                 |          |
| TIOA0 - TIOA2    | I/O Line A                        | I/O                |                 |          |
| TIOB0 - TIOB2    | I/O Line B                        | I/O                |                 |          |
|                  |                                   | Controller         |                 |          |
| PWM0 - PWM3      | PWM Channels                      | Output             |                 |          |
|                  |                                   | al Interface - SPI | (               |          |
| SPIx_MISO        | Master In Slave Out               | I/O                | -               |          |
| SPIx_MOSI        | Master Out Slave In               | I/O                |                 |          |
| SPIx_SPCK        | SPI Serial Clock                  | I/O                |                 |          |
| SPIx_NPCS0       | SPI Peripheral Chip Select 0      | I/O                | Low             |          |
| SPIx_NPCS1-NPCS3 | SPI Peripheral Chip Select 1 to 3 | Output             | Low             |          |
|                  |                                   | e Interface        | <u> </u>        |          |
| TWD              | Two-wire Serial Data              | I/O                |                 |          |
| TWCK             | Two-wire Serial Clock             | I/O                |                 |          |

## Table 3-1. Signal Description List (Continued)





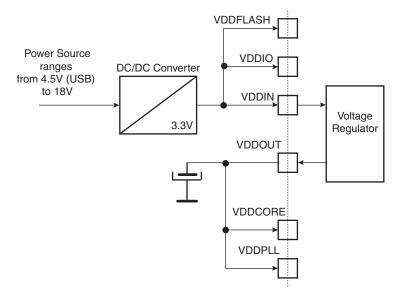
## 4.2 100-lead LQFP Pinout

**Table 4-1.**Pinout in 100-lead LQFP Package

| 1  | ADVREF     |   | 26 |   |
|----|------------|---|----|---|
| 2  | GND        |   | 27 |   |
| 3  | AD4        |   | 28 |   |
| 4  | AD5        |   | 29 |   |
| 5  | AD6        |   | 30 |   |
| 6  | AD7        |   | 31 |   |
| 7  | VDDOUT     |   | 32 |   |
| 8  | VDDIN      |   | 33 |   |
| 9  | PB27/AD0   | 1 | 34 |   |
| 10 | PB28/AD1   |   | 35 |   |
| 11 | PB29/AD2   |   | 36 |   |
| 12 | PB30/AD3   |   | 37 |   |
| 13 | PA8/PGMM0  |   | 38 |   |
| 14 | PA9/PGMM1  |   | 39 |   |
| 15 | VDDCORE    |   | 40 |   |
| 16 | GND        |   | 41 |   |
| 17 | VDDIO      |   | 42 |   |
| 18 | PA10/PGMM2 |   | 43 |   |
| 19 | PA11/PGMM3 |   | 44 |   |
| 20 | PA12/PGMD0 |   | 45 |   |
| 21 | PA13/PGMD1 | 1 | 46 |   |
| 22 | PA14/PGMD2 | 1 | 47 |   |
| 23 | PA15/PGMD3 |   | 48 |   |
| 24 | PA16/PGMD4 | 1 | 49 |   |
| 25 | PA17/PGMD5 |   | 50 |   |
|    | •          | • |    | • |

| 26 | PA18/PGMD6  |
|----|-------------|
| 27 | PB9         |
| 28 | PB8         |
| 29 | PB14        |
| 30 | PB13        |
| 31 | PB6         |
| 32 | GND         |
| 33 | VDDIO       |
| 34 | PB5         |
| 35 | PB15        |
| 36 | PB17        |
| 37 | VDDCORE     |
| 38 | PB7         |
| 39 | PB12        |
| 40 | PB0         |
| 41 | PB1         |
| 42 | PB2         |
| 43 | PB3         |
| 44 | PB10        |
| 45 | PB11        |
| 46 | PA19/PGMD7  |
| 47 | PA20/PGMD8  |
| 48 | VDDIO       |
| 49 | PA21/PGMD9  |
| 50 | PA22/PGMD10 |

| 51 | TDI         |
|----|-------------|
| 52 | GND         |
| 53 | PB16        |
| 54 | PB4         |
| 55 | PA23/PGMD11 |
| 56 | PA24/PGMD12 |
| 57 | NRST        |
| 58 | TST         |
| 59 | PA25/PGMD13 |
| 60 | PA26/PGMD14 |
| 61 | VDDIO       |
| 62 | VDDCORE     |
| 63 | PB18        |
| 64 | PB19        |
| 65 | PB20        |
| 66 | PB21        |
| 67 | PB22        |
| 68 | GND         |
| 69 | PB23        |
| 70 | PB24        |
| 71 | PB25        |
| 72 | PB26        |
| 73 | PA27/PGMD15 |
| 74 | PA28        |
| 75 | PA29        |
|    |             |


| 76  | TDO           |
|-----|---------------|
| 77  | JTAGSEL       |
| 78  | TMS           |
| 79  | TCK           |
| 80  | PA30          |
| 81  | PA0/PGMEN0    |
| 82  | PA1/PGMEN1    |
| 83  | GND           |
| 84  | VDDIO         |
| 85  | PA3           |
| 86  | PA2           |
| 87  | VDDCORE       |
| 88  | PA4/PGMNCMD   |
| 89  | PA5/PGMRDY    |
| 90  | PA6/PGMNOE    |
| 91  | PA7/PGMNVALID |
| 92  | ERASE         |
| 93  | DDM           |
| 94  | DDP           |
| 95  | VDDFLASH      |
| 96  | GND           |
| 97  | XIN/PGMCK     |
| 98  | XOUT          |
| 99  | PLLRC         |
| 100 | VDDPLL        |

Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability and reduce source voltage drop. The input decoupling capacitor should be placed close to the chip. For example, two capacitors can be used in parallel: 100 nF NPO and 4.7  $\mu$ F X7R.

### 5.4 Typical Powering Schematics

The AT91SAM7XC512/256/128 supports a 3.3V single supply mode. The internal regulator input connected to the 3.3V source and its output feeds VDDCORE and the VDDPLL. Figure 5-1 shows the power schematics to be used for USB bus-powered systems.









## 6. I/O Lines Considerations

### 6.1 JTAG Port Pins

TMS, TDI and TCK are schmitt trigger inputs and are not 5-V tolerant. TMS, TDI and TCK do not integrate a pull-up resistor.

TDO is an output, driven at up to VDDIO, and has no pull-up resistor.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. The JTAGSEL pin integrates a permanent pull-down resistor of about 15 k $\Omega$ 

To eliminate any risk of spuriously entering the JTAG boundary scan mode due to noise on JTAGSEL, it should be tied externally to GND if boundary scan is not used, or pulled down with an external low-value resistor (such as 1 k $\Omega$ ).

### 6.2 Test Pin

The TST pin is used for manufacturing test or fast programming mode of the AT91SAM7XC512/256/128 when asserted high. The TST pin integrates a permanent pull-down resistor of about 15 k $\Omega$  to GND.

To eliminate any risk of entering the test mode due to noise on the TST pin, it should be tied to GND if the FFPI is not used, or pulled down with an external low-value resistor (such as 1 k $\Omega$ ).

To enter fast programming mode, the TST pin and the PA0 and PA1 pins should be tied high and PA2 tied to low.

Driving the TST pin at a high level while PA0 or PA1 is driven at 0 leads to unpredictable results.

#### 6.3 Reset Pin

The NRST pin is bidirectional with an open drain output buffer. It is handled by the on-chip reset controller and can be driven low to provide a reset signal to the external components or asserted low externally to reset the microcontroller. There is no constraint on the length of the reset pulse, and the reset controller can guarantee a minimum pulse length. This allows connection of a simple push-button on the NRST pin as system user reset, and the use of the signal NRST to reset all the components of the system.

The NRST pin integrates a permanent pull-up resistor to VDDIO.

#### 6.4 ERASE Pin

The ERASE pin is used to re-initialize the Flash content and some of its NVM bits. It integrates a permanent pull-down resistor of about 15 k $\Omega$  to GND.

To eliminate any risk of erasing the Flash due to noise on the ERASE pin, it shoul be tied externally to GND, which prevents erasing the Flash from the application, or pulled down with an external low-value resistor (such as  $1 \text{ k}\Omega$ ).

This pin is debounced by the RC oscillator to improve the glitch tolerance. Minimum debouncing time is 200 ms.

### 6.5 PIO Controller Lines

All the I/O lines, PA0 to PA30 and PB0 to PB30, are 5V-tolerant and all integrate a programmable pull-up resistor. Programming of this pull-up resistor is performed independently for each I/O line through the PIO controllers.



## 7. Processor and Architecture

## 7.1 ARM7TDMI Processor

- RISC processor based on ARMv4T Von Neumann architecture
  - Runs at up to 55 MHz, providing 0.9 MIPS/MHz
- Two instruction sets
  - ARM® high-performance 32-bit instruction set
  - Thumb<sup>®</sup> high code density 16-bit instruction set
- Three-stage pipeline architecture
  - Instruction Fetch (F)
  - Instruction Decode (D)
  - Execute (E)

## 7.2 Debug and Test Features

- Integrated embedded in-circuit emulator
  - Two watchpoint units
  - Test access port accessible through a JTAG protocol
  - Debug communication channel
  - Debug Unit
    - Two-pin UART
    - Debug communication channel interrupt handling
    - Chip ID Register
  - IEEE1149.1 JTAG Boundary-scan on all digital pins

### 7.3 Memory Controller

- Programmable Bus Arbiter
  - Handles requests from the ARM7TDMI, the Ethernet MAC and the Peripheral DMA Controller
- · Address decoder provides selection signals for
  - Three internal 1 Mbyte memory areas
  - One 256 Mbyte embedded peripheral area
- Abort Status Registers
  - Source, Type and all parameters of the access leading to an abort are saved
  - Facilitates debug by detection of bad pointers
- Misalignment Detector
  - Alignment checking of all data accesses
  - Abort generation in case of misalignment
- Remap Command
  - Remaps the SRAM in place of the embedded non-volatile memory
  - Allows handling of dynamic exception vectors

- Embedded Flash Controller
  - Embedded Flash interface, up to three programmable wait states
  - Prefetch buffer, buffering and anticipating the 16-bit requests, reducing the required wait states
  - Key-protected program, erase and lock/unlock sequencer
  - Single command for erasing, programming and locking operations
  - Interrupt generation in case of forbidden operation

### 7.4 Peripheral DMA Controller

- Handles data transfer between peripherals and memories
- Seventeen channels
  - Two for each USART
  - Two for the Debug Unit
  - Two for the Serial Synchronous Controller
  - Two for each Serial Peripheral Interface
  - Two for the Advanced Encryption Standard 128-bit accelerator
  - Two for the Triple Data Encryption Standard 128-bit accelerator
  - One for the Analog-to-digital Converter
- Low bus arbitration overhead
  - One Master Clock cycle needed for a transfer from memory to peripheral
  - Two Master Clock cycles needed for a transfer from peripheral to memory
- · Next Pointer management for reducing interrupt latency requirements





## 8. Memory

## 8.1 AT91SAM7XC512

- 512 Kbytes of dual-plane Flash Memory
  - 2 contiguous banks of 1024 pages of 256 bytes
  - Fast access time, 30 MHz single-cycle access in Worst Case conditions
  - Page programming time: 6 ms, including page auto-erase
  - Page programming without auto-erase: 3 ms
  - Full chip erase time: 15 ms
  - 10,000 write cycles, 10-year data retention capability
  - 32 lock bits, protecting 32 sectors of 64 pages
  - Protection Mode to secure contents of the Flash
- 128 Kbytes of Fast SRAM
  - Single-cycle access at full speed

## 8.2 AT91SAM7XC256

- 256 Kbytes of Flash Memory
  - 1024 pages of 256 bytes
  - Fast access time, 30 MHz single-cycle access in Worst Case conditions
  - Page programming time: 6 ms, including page auto-erase
  - Page programming without auto-erase: 3 ms
  - Full chip erase time: 15 ms
  - 10,000 write cycles, 10-year data retention capability
  - 16 lock bits, each protecting 16 sectors of 64 pages
  - Protection Mode to secure contents of the Flash
- 64 Kbytes of Fast SRAM
  - Single-cycle access at full speed

## 8.3 AT91SAM7XC128

- 128 Kbytes of Flash Memory
  - 512 pages of 256 bytes
  - Fast access time, 30 MHz single-cycle access in Worst Case conditions
  - Page programming time: 6 ms, including page auto-erase
  - Page programming without auto-erase: 3 ms
  - Full chip erase time: 15 ms
  - 10,000 write cycles, 10-year data retention capability
  - 8 lock bits, each protecting 8 sectors of 64 pages
  - Protection Mode to secure contents of the Flash
- 32 Kbytes of Fast SRAM
  - Single-cycle access at full speed

## 9. System Controller

The System Controller manages all vital blocks of the microcontroller: interrupts, clocks, power, time, debug and reset.

The System Controller peripherals are all mapped to the highest 4 Kbytes of address space, between addresses 0xFFFF F000 and 0xFFFF FFFF.

Figure 9-1 on page 26 shows the System Controller Block Diagram.

Figure 8-1 on page 19 shows the mapping of the User Interface of the System Controller peripherals. Note that the Memory Controller configuration user interface is also mapped within this address space.



#### 9.1 Reset Controller

- Based on one power-on reset cell and one brownout detector
- Status of the last reset, either Power-up Reset, Software Reset, User Reset, Watchdog Reset, Brownout Reset
- Controls the internal resets and the NRST pin output
- Allows to shape a signal on the NRST line, guaranteeing that the length of the pulse meets any requirement.

#### 9.1.1 Brownout Detector and Power-on Reset

The AT91SAM7XC512/256/128 embeds one brownout detection circuit and a power-on reset cell. The power-on reset is supplied with and monitors VDDCORE.

Both signals are provided to the Flash to prevent any code corruption during power-up or powerdown sequences or if brownouts occur on the power supplies.

The power-on reset cell has a limited-accuracy threshold at around 1.5V. Its output remains low during power-up until VDDCORE goes over this voltage level. This signal goes to the reset controller and allows a full re-initialization of the device.

The brownout detector monitors the VDDCORE and VDDFLASH levels during operation by comparing them to a fixed trigger level. It secures system operations in the most difficult environments and prevents code corruption in case of brownout on the VDDCORE or VDDFLASH.

When the brownout detector is enabled and VDDCORE decreases to a value below the trigger level (Vbot18-, defined as Vbot18 - hyst/2), the brownout output is immediately activated.

When VDDCORE increases above the trigger level (Vbot18+, defined as Vbot18 + hyst/2), the reset is released. The brownout detector only detects a drop if the voltage on VDDCORE stays below the threshold voltage for longer than about 1µs.

The VDDCORE threshold voltage has a hysteresis of about 50 mV, to ensure spike free brownout detection. The typical value of the brownout detector threshold is 1.68V with an accuracy of  $\pm$  2% and is factory calibrated.

When the brownout detector is enabled and VDDFLASH decreases to a value below the trigger level (Vbot33-, defined as Vbot33 - hyst/2), the brownout output is immediately activated.

When VDDFLASH increases above the trigger level (Vbot33+, defined as Vbot33 + hyst/2), the reset is released. The brownout detector only detects a drop if the voltage on VDDCORE stays below the threshold voltage for longer than about  $1\mu s$ .

The VDDFLASH threshold voltage has a hysteresis of about 50 mV, to ensure spike free brownout detection. The typical value of the brownout detector threshold is 2.80V with an accuracy of  $\pm$  3.5% and is factory calibrated.

The brownout detector is low-power, as it consumes less than 28  $\mu$ A static current. However, it can be deactivated to save its static current. In this case, it consumes less than 1 $\mu$ A. The deactivation is configured through the GPNVM bit 0 of the Flash.





- Higher priority interrupts can be served during service of lower priority interrupt
- Vectoring
  - Optimizes interrupt service routine branch and execution
  - One 32-bit vector register per interrupt source
  - Interrupt vector register reads the corresponding current interrupt vector
- Protect Mode
  - Easy debugging by preventing automatic operations
- Fast Forcing
  - Permits redirecting any interrupt source on the fast interrupt
- General Interrupt Mask
  - Provides processor synchronization on events without triggering an interrupt

#### 9.5 Debug Unit

- Comprises:
  - One two-pin UART
  - One Interface for the Debug Communication Channel (DCC) support
  - One set of Chip ID Registers
  - One Interface providing ICE Access Prevention
- Two-pin UART
  - USART-compatible User Interface
  - Programmable Baud Rate Generator
  - Parity, Framing and Overrun Error
  - Automatic Echo, Local Loopback and Remote Loopback Channel Modes
- Debug Communication Channel Support
  - Offers visibility of COMMRX and COMMTX signals from the ARM Processor
- Chip ID Registers
  - Identification of the device revision, sizes of the embedded memories, set of peripherals
  - Chip ID is 0x271C 0A40 (VERSION 0) for AT91SAM7XC512
  - Chip ID is 0x271B 0940 (VERSION 0) for AT91SAM7XC256
  - Chip ID is 0x271A 0740 (VERSION 0) for AT91SAM7XC128

#### 9.6 Periodic Interval Timer

• 20-bit programmable counter plus 12-bit interval counter

#### 9.7 Watchdog Timer

- 12-bit key-protected Programmable Counter running on prescaled SLCK
- · Provides reset or interrupt signals to the system
- Counter may be stopped while the processor is in debug state or in idle mode

#### 9.8 Real-time Timer

• 32-bit free-running counter with alarm running on prescaled SLCK

# <sup>30</sup> AT91SAM7XC512/256/128

#### 10.3 Peripheral Multiplexing on PIO Lines

The AT91SAM7XC512/256/128 features two PIO controllers, PIOA and PIOB, that multiplex the I/O lines of the peripheral set.

Each PIO Controller controls 31 lines. Each line can be assigned to one of two peripheral functions, A or B. Some of them can also be multiplexed with the analog inputs of the ADC Controller.

Table 10-2 on page 34 and Table 10-3 on page 35 defines how the I/O lines of the peripherals A, B or the analog inputs are multiplexed on the PIO Controller A and PIO Controller B. The two columns "Function" and "Comments" have been inserted for the user's own comments; they may be used to track how pins are defined in an application.

Note that some peripheral functions that are output only, may be duplicated in the table.

At reset, all I/O lines are automatically configured as input with the programmable pull-up enabled, so that the device is maintained in a static state as soon as a reset is detected.





## 10.4 PIO Controller A Multiplexing

|          | PIO Controller A |              | Application U | sage     |          |
|----------|------------------|--------------|---------------|----------|----------|
| I/O Line | Peripheral A     | Peripheral B | Comments      | Function | Comments |
| PA0      | RXD0             |              | High-Drive    |          |          |
| PA1      | TXD0             |              | High-Drive    |          |          |
| PA2      | SCK0             | SPI1_NPCS1   | High-Drive    |          |          |
| PA3      | RTS0             | SPI1_NPCS2   | High-Drive    |          |          |
| PA4      | CTS0             | SPI1_NPCS3   |               |          |          |
| PA5      | RXD1             |              |               |          |          |
| PA6      | TXD1             |              |               |          |          |
| PA7      | SCK1             | SPI0_NPCS1   |               |          |          |
| PA8      | RTS1             | SPI0_NPCS2   |               |          |          |
| PA9      | CTS1             | SPI0_NPCS3   |               |          |          |
| PA10     | TWD              |              |               |          |          |
| PA11     | TWCK             |              |               |          |          |
| PA12     | SPI_NPCS0        |              |               |          |          |
| PA13     | SPI0_NPCS1       | PCK1         |               |          |          |
| PA14     | SPI0_NPCS2       | IRQ1         |               |          |          |
| PA15     | SPI0_NPCS3       | TCLK2        |               |          |          |
| PA16     | SPI0_MISO        |              |               |          |          |
| PA17     | SPI0_MOSI        |              |               |          |          |
| PA18     | SPI0_SPCK        |              |               |          |          |
| PA19     | CANRX            |              |               |          |          |
| PA20     | CANTX            |              |               |          |          |
| PA21     | TF               | SPI1_NPCS0   |               |          |          |
| PA22     | ТК               | SPI1_SPCK    |               |          |          |
| PA23     | TD               | SPI1_MOSI    |               |          |          |
| PA24     | RD               | SPI1_MISO    |               |          |          |
| PA25     | RK               | SPI1_NPCS1   |               |          |          |
| PA26     | RF               | SPI1_NPCS2   |               |          |          |
| PA27     | DRXD             | РСК3         |               |          |          |
| PA28     | DTXD             |              |               |          |          |
| PA29     | FIQ              | SPI1_NPCS3   |               |          |          |
| PA30     | IRQ0             | PCK2         |               |          |          |

## Table 10-2. Multiplexing on PIO Controller A

## 10.5 PIO Controller B Multiplexing

|          | PIO Co       | ontroller B  |          | Application U | sage     |
|----------|--------------|--------------|----------|---------------|----------|
| I/O Line | Peripheral A | Peripheral B | Comments | Function      | Comments |
| PB0      | ETXCK/EREFCK | PCK0         |          |               |          |
| PB1      | ETXEN        |              |          |               |          |
| PB2      | ETX0         |              |          |               |          |
| PB3      | ETX1         |              |          |               |          |
| PB4      | ECRS         |              |          |               |          |
| PB5      | ERX0         |              |          |               |          |
| PB6      | ERX1         |              |          |               |          |
| PB7      | ERXER        |              |          |               |          |
| PB8      | EMDC         |              |          |               |          |
| PB9      | EMDIO        |              |          |               |          |
| PB10     | ETX2         | SPI1_NPCS1   |          |               |          |
| PB11     | ETX3         | SPI1_NPCS2   |          |               |          |
| PB12     | ETXER        | TCLK0        |          |               |          |
| PB13     | ERX2         | SPI0_NPCS1   |          |               |          |
| PB14     | ERX3         | SPI0_NPCS2   |          |               |          |
| PB15     | ERXDV/ECRSDV |              |          |               |          |
| PB16     | ECOL         | SPI1_NPCS3   |          |               |          |
| PB17     | ERXCK        | SPI0_NPCS3   |          |               |          |
| PB18     | EF100        | ADTRG        |          |               |          |
| PB19     | PWM0         | TCLK1        |          |               |          |
| PB20     | PWM1         | PCK0         |          |               |          |
| PB21     | PWM2         | PCK1         |          |               |          |
| PB22     | PWM3         | PCK2         |          |               |          |
| PB23     | TIOA0        | DCD1         |          |               |          |
| PB24     | TIOB0        | DSR1         |          |               |          |
| PB25     | TIOA1        | DTR1         |          |               |          |
| PB26     | TIOB1        | RI1          |          |               |          |
| PB27     | TIOA2        | PWM0         | AD0      |               |          |
| PB28     | TIOB2        | PWM1         | AD1      |               |          |
| PB29     | PCK1         | PWM2         | AD2      |               |          |
| PB30     | PCK2         | PWM3         | AD3      |               |          |

Table 10-3. Multiplexing on PIO Controller B





## 10.11 Timer Counter

- Three 16-bit Timer Counter Channels
  - Two output compare or one input capture per channel
- Wide range of functions including:
  - Frequency measurement
  - Event counting
  - Interval measurement
  - Pulse generation
  - Delay timing
  - Pulse Width Modulation
  - Up/down capabilities
- Each channel is user-configurable and contains:
  - Three external clock inputs
- Five internal clock inputs, as defined in Table 10-4

#### Table 10-4. Timer Counter Clocks Assignment

| TC Clock input | Clock    |
|----------------|----------|
| TIMER_CLOCK1   | MCK/2    |
| TIMER_CLOCK2   | MCK/8    |
| TIMER_CLOCK3   | MCK/32   |
| TIMER_CLOCK4   | MCK/128  |
| TIMER_CLOCK5   | MCK/1024 |

- Two multi-purpose input/output signals
- Two global registers that act on all three TC channels

### 10.12 Pulse Width Modulation Controller

- Four channels, one 16-bit counter per channel
- · Common clock generator, providing thirteen different clocks
  - One Modulo n counter providing eleven clocks
  - Two independent linear dividers working on modulo n counter outputs
- Independent channel programming
  - Independent enable/disable commands
  - Independent clock selection
  - Independent period and duty cycle, with double buffering
  - Programmable selection of the output waveform polarity
  - Programmable center or left aligned output waveform

## 10.13 USB Device Port

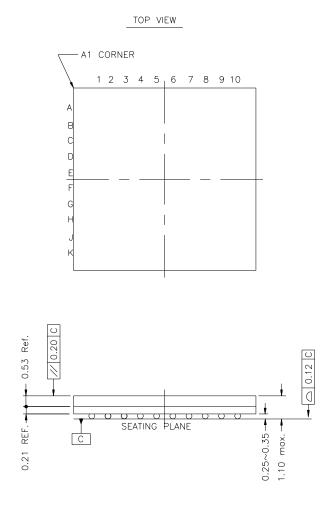
- USB V2.0 full-speed compliant,12 Mbits per second
- Embedded USB V2.0 full-speed transceiver
- Embedded 1352-byte dual-port RAM for endpoints
- Six endpoints
  - Endpoint 0: 8 bytes
  - Endpoint 1 and 2: 64 bytes ping-pong
  - Endpoint 3: 64 bytes
  - Endpoint 4 and 5: 256 bytes ping-pong
  - Ping-pong Mode (two memory banks) for bulk endpoints
- Suspend/resume logic

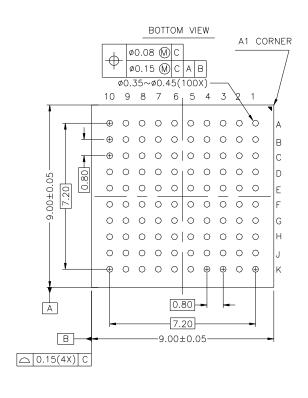
## 10.14 CAN Controller

- Fully compliant with CAN 2.0A and 2.0B
- Bit rates up to 1Mbit/s
- Eight object oriented mailboxes each with the following properties:
  - CAN Specification 2.0 Part A or 2.0 Part B Programmable for each Message
  - Object configurable to receive (with overwrite or not) or transmit
  - Local tag and mask filters up to 29-bit identifier/channel
  - 32-bit access to data registers for each mailbox data object
  - Uses a 16-bit time stamp on receive and transmit message
  - Hardware concatenation of ID unmasked bitfields to speedup family ID processing
  - 16-bit internal timer for time stamping and network synchronization
  - Programmable reception buffer length up to 8 mailbox objects
  - Priority management between transmission mailboxes
  - Autobaud and listening mode
  - Low power mode and programmable wake-up on bus activity or by the application
  - Data, remote, error and overload frame handling

## 10.15 128-bit Advanced Encryption Standard

- Compliant with FIPS Publication 197, Advanced Encryption Standard (AES)
- 128-bit (AT91SAM7XC256/128) or 128-bit/192-bit/256-bit (AT91SAM7XC512) Cryptographic Key
- 12-clock Cycles Encryption/Decryption Processing Time (AT91SAM7XC256/128)
- 12/13/14-clock Cycles Encryption/Decryption Processing Time (AT91SAM7XC512)
- Support of the Five Standard Modes of Operation specified in the NIST Special Publication 800-38A:
  - Electronic Codebook (ECB)
  - Cipher Block Chaining (CBC)
  - Cipher Feedback (CFB)
  - Output Feedback (OFB)





|        |      | Millimeter |                | Inch      |           |       |  |
|--------|------|------------|----------------|-----------|-----------|-------|--|
| Symbol | Min  | Nom        | Max            | Min       | Nom       | Max   |  |
| A      |      |            | 1.60           |           |           | 0.63  |  |
| A1     | 0.05 |            | 0.15           | 0.002     |           | 0.006 |  |
| A2     | 1.35 | 1.40       | 1.45           | 0.053     | 0.055     | 0.057 |  |
| D      |      | 16.00 BSC  |                |           | 0.630 BSC | I     |  |
| D1     |      | 14.00 BSC  |                |           | 0.551 BSC |       |  |
| E      |      | 16.00 BSC  |                |           | 0.630 BSC |       |  |
| E1     |      | 14.00 BSC  |                |           | 0.551 BSC |       |  |
| R2     | 0.08 |            | 0.20           | 0.003     |           | 0.008 |  |
| R1     | 0.08 |            |                | 0.003     |           |       |  |
| Q      | 0.   | 3.5.       | 7.             | 0.        | 3.5.      | 7∙    |  |
| θ1     | 0.   |            |                | 0.        |           |       |  |
| θ2     | 11.  | 12·        | 13·            | 11.       | 12·       | 13·   |  |
| θ3     | 11.  | 12·        | 13·            | 11.       | 12·       | 13·   |  |
| С      | 0.09 |            | 0.20           | 0.004     |           | 0.008 |  |
| L      | 0.45 | 0.60       | 0.75           | 0.018     | 0.024     | 0.030 |  |
| L1     |      | 1.00 REF   |                | 0.039 REF |           |       |  |
| S      | 0.20 |            |                | 0.008     |           |       |  |
| b      | 0.17 | 0.20       | 0.27           | 0.007     | 0.008     | 0.011 |  |
| е      |      | 0.50 BSC   |                |           | 0.020 BSC |       |  |
| D2     |      | 12.00      |                |           | 0.472     |       |  |
| E2     |      | 12.00      |                |           | 0.472     |       |  |
|        |      | Toleranc   | es of Form and | Position  |           |       |  |
| aaa    | 0.20 |            | 0.008          |           |           |       |  |
| bbb    |      | 0.20       |                | 0.008     |           |       |  |
| CCC    |      | 0.08       |                |           | 0.003     |       |  |
| ddd    |      | 0.08       |                |           | 0.003     |       |  |





#### Figure 11-2. 100-TFBGA Package Drawing





| Ball Pitch          | 0.80 |
|---------------------|------|
| Substrate Thickness | 0.21 |
| Ball Diameter       | 0.4  |
| Mold Thickness      | 0.53 |

All dimensions are in mm



## **Revision History**

| Table 13-1. | <b>Revision History</b> |
|-------------|-------------------------|
|             |                         |

| Doc. Rev | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Change<br>Request<br>Ref.                                    |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 6209S    | First issue - Unqualified on Intranet<br>Legal page updated.Qualified on Intranet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              |
| 6209BS   | Added AT91SAM7XC512 to product family."Features" on page 1 and global<br>Reformatted Memories Section 8. "Memory" on page 18.<br>Reordered sub sections in Peripherals Section 10. "Peripherals" on page 32<br>Consolidated Memory Mapping in Figure 8-1 on page 19.<br>Added package drawings Section 11. "Package Drawings" on page 42.<br>Consolidated Memory Mapping in Figure 8-1 on page 19.<br>Added TFBGA information Section 4.3 "100-ball TFBGA Package Outline" on page 11. and Section 4.4 on<br>page 10 and "Features" on page 1<br>Added LQFP and TFBGA package drawings Section 11. on page 42.<br>System Controller block diagram Figure 9-1 on page 26, "ice_nreset" signals changed to "power_on_reset".                                                                                                                                                                                                                                                                           | 2729                                                         |
| 6209CS   | <ul> <li>"Features", TWI updated to include Atmel TWI compatibility with I<sup>2</sup>C Standard.</li> <li>"Features", "Debug Unit (DBGU)" added "Mode for General Purpose 2-wire UART Serial Communication".</li> <li>Section 10.8 "Two-wire Interface", updated.</li> <li>Section 10.11 "Timer Counter", The TC has Two output compare or one input capture per channel.</li> <li>Section 10.17 "Analog-to-Digital Converter", INL and DNL updated.</li> <li>Figure 3-1,"Signal Description List", footnote added to JTAGSEL, ERASE and TST pin comments</li> <li>Section 6.1 "JTAG Port Pins", Section 6.2 "Test Pin" and Section 6.4 "ERASE Pin"updated.</li> <li>Figure 9-1,"System Controller Block Diagram", RTT is reset by power_on_reset.</li> <li>Figure 8-1,"AT91SAM7XC512/256/128 Memory Mapping", TDES base address is 0xFFFA 8000</li> <li>Section 8.4.3 "Internal Flash", updated: "At any time, the Flash is mapped if GPNVM bit 2 is set and before the Remap Command."</li> </ul> | 4247<br>5846<br>4211<br>4008<br>5068<br>5225<br>5257<br>5850 |
| 6209DS   | Section 12. "AT91SAM7XC512/256/128 Ordering Information", MLR B chip revision added to ordering information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6064                                                         |

 $\leq$ 



#### Headquarters

*Atmel Corporation* 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

#### International

Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

#### Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

#### **Product Contact**

#### Web Site

www.atmel.com www.atmel.com/AT91SAM www.atmel.com/lproducts/ASIC

Literature Requests www.atmel.com/literature **Technical Support** AT91SAM Support Atmel techincal support Sales Contacts www.atmel.com/contacts/

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNTIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.



© 2008 Atmel Corporation. All rights reserved. Atmel<sup>®</sup>, Atmel logo and combinations thereof, DataFlash<sup>®</sup>, SAM-BA<sup>®</sup> and others, are registered trademarks of Atmel Corporation or its subsidiaries. Windows<sup>®</sup> and others, are registered trademarks of Microsoft Corporation in the US and/or other countries. ARM<sup>®</sup>, the ARM Powered<sup>®</sup> logo and others, are registered trademarks or trademarks of ARM Limited. Other terms and product names may be the trademarks of others.