Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | | | | Product Status | Obsolete | | Core Processor | ARM7® | | Core Size | 16/32-Bit | | Speed | 55MHz | | Connectivity | CANbus, Ethernet, I ² C, SPI, SSC, UART/USART, USB | | Peripherals | Brown-out Detect/Reset, DMA, POR, PWM, WDT | | Number of I/O | 62 | | Program Memory Size | 128KB (128K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 32K x 8 | | Voltage - Supply (Vcc/Vdd) | 1.65V ~ 1.95V | | Data Converters | A/D 8x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 100-TFBGA | | Supplier Device Package | 100-TFBGA (9x9) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/at91sam7xc128-cu | ## 1. Description Atmel's AT91SAM7XC512/256/128 is a member of a series of highly integrated Flash microcontrollers based on the 32-bit ARM RISC processor. It features 512/256/128 Kbyte high-speed Flash and 128/64/32 Kbyte SRAM, a large set of peripherals, including an 802.3 Ethernet MAC, a CAN controller, an AES 128 Encryption accelerator and a Triple Data Encryption System. A complete set of system functions minimizes the number of external components. The embedded Flash memory can be programmed in-system via the JTAG-ICE interface or via a parallel interface on a production programmer prior to mounting. Built-in lock bits and a security bit protect the firmware from accidental overwrite and preserve its confidentiality. The AT91SAM7XC512/256/128 system controller includes a reset controller capable of managing the power-on sequence of the microcontroller and the complete system. Correct device operation can be monitored by a built-in brownout detector and a watchdog running off an integrated RC oscillator. By combining the ARM7TDMI processor with on-chip Flash and SRAM, and a wide range of peripheral functions, including USART, SPI, CAN Controller, Ethernet MAC, AES 128 accelerator, TDES, Timer Counter, RTT and Analog-to-Digital Converters on a monolithic chip, the AT91SAM7XC512/256/128 is a powerful device that provides a flexible, cost-effective solution to many embedded control applications requiring secure communication over, for example, Ethernet, CAN wired and Zigbee™ wireless networks. ## 1.1 Configuration Summary of the AT91SAM7XC512/256/128 The AT91SAM7XC512, AT91SAM7XC256 and AT91SAM7XC128 differ only in memory sizes. Table 1-1 summarizes the configurations of the two devices. **Table 1-1.** Configuration Summary | Device | Flash | Flash Organization | SRAM | AES | TDES | |---------------|------------|--------------------|------------|-------------------|------| | AT91SAM7XC512 | 512K bytes | dual plane | 128K bytes | 1 AES 256/192/128 | 1 | | AT91SAM7XC256 | 256K bytes | single plane | 64K bytes | 1 AES 128 | 1 | | AT91SAM7XC128 | 128K bytes | single plane | 32K bytes | 1 AES 128 | 1 | ## 2. AT91SAM7XC512/256/128 Block Diagram TDI TDO TMS TCK ICE ARM7TDMI SCAN Processor JTAGSEL 1.8 V VDDIN Voltage GND System Controller Regulato VDDOUT TST FIQ VDDCORE AIC - VDDIO Memory Controller SRAM Embedded Address 128/64/32 PDC DRXD Decoder Kbytes DBGU Controlle DTXD PDC Abort Misalignmen PCK0-PCK3 Status Detection VDDFLASH PLLRC PLL Flash ERASE 512/256/128 PMC osc XOUT -Kbytes Peripheral Bridge RCOSC Peripheral DMA ROM BOD **VDDFLASH** Controller PGMRDY PGMRDY PGMNVALID PGMNOE PGMCK PGMM0-PGMM3 PGMD0-PGMD15 PGMNCMD PGMEN0-PGMEN1 Reset 17 Channels Fast Flash POR VDDCORE Controller Programming Interface NRST PIT APB SAM-BA WDT RTT ETXCK-ERXCK-EREFCK ETXEN-ETXER ECRS-ECOL, ECRSDV ERXER-ERXDV ERXO-ERX3 ETX0-ETX3 EMDIC EMDIO EF100 DMA Ethernet MAC 10/100 PDC TXD0 SCK0 RTS0 USART0 PDC PDC CTS0 RXD1 TXD1 SCK1 RTS1 CTS1 DCD1 DSR1 DTR1 RI1 VDDFLASH FIFO DDM USB Device USART1 PWM0 PWM1 PWM2 PWM3 TF TK TD RD RK RF PDC **PWMC** SPIO_NPCS0 SPIO_NPCS0 SPIO_NPCS2 SPIO_NPCS3 SPIO_MISO SPIO_MOSI SPIO_SPCK PDC PDC SPI0 SSC PDC SPI1_NPCS0 SPI1_NPCS1 SPI1_NPCS2 SPI1_NPCS3 SPI1_MISO SPI1_MOSI SPI1_SPCK PDC TCLK0 TCLK1 TCLK2 TIOA0 TIOB0 Timer Counter SPI1 TC0 PDC PDC TIOA1 TIOB1 TC1 ADTRG AD0 AD1 AD2 AD3 TIOA2 TIOB2 TC2 TWD TWCK TWI ADC AD4 AD5 AD6 AD7 CAN PDC ADVREF **AES 128** PDC PDC TDES PDC Figure 2-1. AT91SAM7XC512/256/128 Block Diagram # 3. Signal Description Table 3-1.Signal Description List | Signal Name | Function | Туре | Active
Level | Comments | |-------------|--|----------------|-----------------|--------------------------------------| | | Po | wer | | | | VDDIN | Voltage Regulator and ADC Power Supply Input | Power | | 3V to 3.6V | | VDDOUT | Voltage Regulator Output | Power | | 1.85V | | VDDFLASH | Flash and USB Power Supply | Power | | 3V to 3.6V | | VDDIO | I/O Lines Power Supply | Power | | 3V to 3.6V | | VDDCORE | Core Power Supply | Power | | 1.65V to 1.95V | | VDDPLL | PLL | Power | | 1.65V to 1.95V | | GND | Ground | Ground | | | | | Clocks, Oscilla | ators and PLLs | 1 | | | XIN | Main Oscillator Input | Input | | | | XOUT | Main Oscillator Output | Output | | | | PLLRC | PLL Filter | Input | | | | PCK0 - PCK3 | Programmable Clock Output | Output | | | | | ICE an | d JTAG | | | | TCK | Test Clock | Input | | No pull-up resistor | | TDI | Test Data In | Input | | No pull-up resistor | | TDO | Test Data Out | Output | | | | TMS | Test Mode Select | Input | | No pull-up resistor | | JTAGSEL | JTAG Selection | Input | | Pull-down resistor ⁽¹⁾ | | | Flash I | Memory | 1 | | | ERASE | Flash and NVM Configuration Bits Erase Command | Input | High | Pull-down resistor ⁽¹⁾ | | | Rese | t/Test | | | | NRST | Microcontroller Reset | I/O | Low | Pull-Up resistor, Open Drain Output. | | TST | Test Mode Select | Input | High | Pull-down resistor ⁽¹⁾ | | | Debu | g Unit | 1 | | | DRXD | Debug Receive Data | Input | | | | DTXD | Debug Transmit Data | Output | | | | | A | IC | | | | IRQ0 - IRQ1 | External Interrupt Inputs | Input | | | | FIQ | Fast Interrupt Input | Input | | | | | Р | 10 | | | | PA0 - PA30 | Parallel IO Controller A | I/O | | Pulled-up input at reset. | | PB0 - PB30 | Parallel IO Controller B | I/O | | Pulled-up input at reset. | Table 3-1. Signal Description List (Continued) | Signal Name | Function | Туре | Active
Level | Comments | |------------------|-----------------------------------|--------------------|-----------------|----------| | - | USB De | evice Port | <u>I</u> | | | DDM | USB Device Port Data - | Analog | | | | DDP | USB Device Port Data + | Analog | | | | | US | ART | | | | SCK0 - SCK1 | Serial Clock | I/O | | | | TXD0 - TXD1 | Transmit Data | I/O | | | | RXD0 - RXD1 | Receive Data | Input | | | | RTS0 - RTS1 | Request To Send | Output | | | | CTS0 - CTS1 | Clear To Send | Input | | | | DCD1 | Data Carrier Detect | Input | | | | DTR1 | Data Terminal Ready | Output | | | | DSR1 | Data Set Ready | Input | | | | RI1 | Ring Indicator | Input | | | | | Synchronous | Serial Controller | 1 | | | TD | Transmit Data | Output | | | | RD | Receive Data | Input | | | | TK | Transmit Clock | I/O | | | | RK | Receive Clock | I/O | | | | TF | Transmit Frame Sync | I/O | | | | RF | Receive Frame Sync | I/O | | | | | Timer/ | Counter | 1 | | | TCLK0 - TCLK2 | External Clock Inputs | Input | | | | TIOA0 - TIOA2 | I/O Line A | I/O | | | | TIOB0 - TIOB2 | I/O Line B | I/O | | | | | PWM C | ontroller | l | | | PWM0 - PWM3 | PWM Channels | Output | | | | | Serial Periphera | al Interface - SPI | K | | | SPIx_MISO | Master In Slave Out | I/O | | | | SPIx_MOSI | Master Out Slave In | I/O | | | | SPIx_SPCK | SPI Serial Clock | I/O | | | | SPIx_NPCS0 | SPI Peripheral Chip Select 0 | I/O | Low | | | SPIx_NPCS1-NPCS3 | SPI Peripheral Chip Select 1 to 3 | Output | Low | | | | Two-wire | e Interface | | | | TWD | Two-wire Serial Data | I/O | | | | TWCK | Two-wire Serial Clock | I/O | | | ## 5. Power Considerations ## 5.1 Power Supplies The AT91SAM7XC512/256/128 has six types of power supply pins and integrates a voltage regulator, allowing the device to be supplied with only one voltage. The six power supply pin types are: - VDDIN pin. It powers the voltage regulator and the ADC; voltage ranges from 3.0V to 3.6V, 3.3V nominal. In order to decrease current consumption, if the voltage regulator and the ADC are not used, VDDIN, ADVREF,AD4, AD5, AD6 and AD7 should be connected to GND. In this case, VDDOUT should be left unconnected. - VDDOUT pin. It is the output of the 1.8V voltage regulator. - VDDIO pin. It powers the I/O lines; voltage ranges from 3.0V to 3.6V, 3.3V nominal. - VDDFLASH pin. It powers the USB transceivers and a part of the Flash and is required for the Flash to operate correctly; voltage ranges from 3.0V to 3.6V, 3.3V nominal. - VDDCORE pins. They power the logic of the device; voltage ranges from 1.65V to 1.95V, 1.8V typical. It can be connected to the VDDOUT pin with decoupling capacitor. VDDCORE is required for the device, including its embedded Flash, to operate correctly. - VDDPLL pin. It powers the oscillator and the PLL. It can be connected directly to the VDDOUT pin. No separate ground pins are provided for the different power supplies. Only GND pins are provided and should be connected as shortly as possible to the system ground plane. ## 5.2 Power Consumption The AT91SAM7XC512/256/128 has a static current of less than 60 μ A on VDDCORE at 25°C, including the RC oscillator, the voltage regulator and the power-on reset when the brownout detector is deactivated. Activating the brownout detector adds 28 μ A static current. The dynamic power consumption on VDDCORE is less than 90 mA at full speed when running out of the Flash. Under the same conditions, the power consumption on VDDFLASH does not exceed 10 mA. ## 5.3 Voltage Regulator The AT91SAM7XC512/256/128 embeds a voltage regulator that is managed by the System Controller. In Normal Mode, the voltage regulator consumes less than 100 μA static current and draws 100 mA of output current. The voltage regulator also has a Low-power Mode. In this mode, it consumes less than 25 μ A static current and draws 1 mA of output current. Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscillations. The best way to achieve this is to use two capacitors in parallel: one external 470 pF (or 1 nF) NPO capacitor should be connected between VDDOUT and GND as close to the chip as possible. One external 2.2 μ F (or 3.3 μ F) X7R capacitor should be connected between VDDOUT and GND. ## 6. I/O Lines Considerations #### 6.1 JTAG Port Pins TMS, TDI and TCK are schmitt trigger inputs and are not 5-V tolerant. TMS, TDI and TCK do not integrate a pull-up resistor. TDO is an output, driven at up to VDDIO, and has no pull-up resistor. The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. The JTAGSEL pin integrates a permanent pull-down resistor of about 15 k Ω To eliminate any risk of spuriously entering the JTAG boundary scan mode due to noise on JTAGSEL, it should be tied externally to GND if boundary scan is not used, or pulled down with an external low-value resistor (such as 1 $k\Omega$). #### 6.2 Test Pin The TST pin is used for manufacturing test or fast programming mode of the AT91SAM7XC512/256/128 when asserted high. The TST pin integrates a permanent pull-down resistor of about 15 k Ω to GND. To eliminate any risk of entering the test mode due to noise on the TST pin, it should be tied to GND if the FFPI is not used, or pulled down with an external low-value resistor (such as $1 \text{ k}\Omega$). To enter fast programming mode, the TST pin and the PA0 and PA1 pins should be tied high and PA2 tied to low. Driving the TST pin at a high level while PA0 or PA1 is driven at 0 leads to unpredictable results. ## 6.3 Reset Pin The NRST pin is bidirectional with an open drain output buffer. It is handled by the on-chip reset controller and can be driven low to provide a reset signal to the external components or asserted low externally to reset the microcontroller. There is no constraint on the length of the reset pulse, and the reset controller can guarantee a minimum pulse length. This allows connection of a simple push-button on the NRST pin as system user reset, and the use of the signal NRST to reset all the components of the system. The NRST pin integrates a permanent pull-up resistor to VDDIO. #### 6.4 ERASE Pin The ERASE pin is used to re-initialize the Flash content and some of its NVM bits. It integrates a permanent pull-down resistor of about 15 k Ω to GND. To eliminate any risk of erasing the Flash due to noise on the ERASE pin, it shoul be tied externally to GND, which prevents erasing the Flash from the application, or pulled down with an external low-value resistor (such as 1 $k\Omega$). This pin is debounced by the RC oscillator to improve the glitch tolerance. Minimum debouncing time is 200 ms. ### 6.5 PIO Controller Lines All the I/O lines, PA0 to PA30 and PB0 to PB30, are 5V-tolerant and all integrate a programmable pull-up resistor. Programming of this pull-up resistor is performed independently for each I/O line through the PIO controllers. ## AT91SAM7XC512/256/128 5V-tolerant means that the I/O lines can drive voltage level according to VDDIO, but can be driven with a voltage of up to 5.5V. However, driving an I/O line with a voltage over VDDIO while the programmable pull-up resistor is enabled will create a current path through the pull-up resistor from the I/O line to VDDIO. Care should be taken, in particular at reset, as all the I/O lines default to input with pull-up resistor enabled at reset. ## 6.6 I/O Lines Current Drawing The PIO lines PA0 to PA3 are high-drive current capable. Each of these I/O lines can drive up to 16 mA permanently. The remaining I/O lines can draw only 8 mA. However, the total current drawn by all the I/O lines cannot exceed 200 mA. - Embedded Flash Controller - Embedded Flash interface, up to three programmable wait states - Prefetch buffer, buffering and anticipating the 16-bit requests, reducing the required wait states - Key-protected program, erase and lock/unlock sequencer - Single command for erasing, programming and locking operations - Interrupt generation in case of forbidden operation ## 7.4 Peripheral DMA Controller - Handles data transfer between peripherals and memories - Seventeen channels - Two for each USART - Two for the Debug Unit - Two for the Serial Synchronous Controller - Two for each Serial Peripheral Interface - Two for the Advanced Encryption Standard 128-bit accelerator - Two for the Triple Data Encryption Standard 128-bit accelerator - One for the Analog-to-digital Converter - · Low bus arbitration overhead - One Master Clock cycle needed for a transfer from memory to peripheral - Two Master Clock cycles needed for a transfer from peripheral to memory - Next Pointer management for reducing interrupt latency requirements Flash Programming Interface, is forbidden. This ensures the confidentiality of the code programmed in the Flash. This security bit can only be enabled, through the Command "Set Security Bit" of the EFC User Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full flash erase is performed. When the security bit is deactivated, all accesses to the flash are permitted. It is important to note that the assertion of the ERASE pin should always be longer than 220 ms. As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal operation. However, it is safer to connect it directly to GND for the final application. #### 8.5.5 Non-volatile Brownout Detector Control Two general purpose NVM (GPNVM) bits are used for controlling the brownout detector (BOD), so that even after a power loss, the brownout detector operations remain in their state. These two GPNVM bits can be cleared or set respectively through the commands "Clear General-purpose NVM Bit" and "Set General-purpose NVM Bit" of the EFC User Interface. - GPNVM Bit 0 is used as a brownout detector enable bit. Setting the GPNVM Bit 0 enables the BOD, clearing it disables the BOD. Asserting ERASE clears the GPNVM Bit 0 and thus disables the brownout detector by default. - The GPNVM Bit 1 is used as a brownout reset enable signal for the reset controller. Setting the GPNVM Bit 1 enables the brownout reset when a brownout is detected, Clearing the GPNVM Bit 1 disables the brownout reset. Asserting ERASE disables the brownout reset by default. #### 8.5.6 Calibration Bits Eight NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are factory configured and cannot be changed by the user. The ERASE pin has no effect on the calibration bits. ## 8.6 Fast Flash Programming Interface The Fast Flash Programming Interface allows programming the device through either a serial JTAG interface or through a multiplexed fully-handshaked parallel port. It allows gang-programming with market-standard industrial programmers. The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands. The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered when the TST pin and the PA0 and PA1 pins are all tied high. #### 8.7 SAM-BA Boot Assistant The SAM-BA Boot Assistant is a default Boot Program that provides an easy way to program insitu the on-chip Flash memory. The SAM-BA Boot Assistant supports serial communication via the DBGU or the USB Device Port. Communication via the DBGU supports a wide range of crystals from 3 to 20 MHz via software auto-detection. ## 9.2 Clock Generator The Clock Generator embeds one low-power RC Oscillator, one Main Oscillator and one PLL with the following characteristics: - RC Oscillator ranges between 22 KHz and 42 KHz - Main Oscillator frequency ranges between 3 and 20 MHz - Main Oscillator can be bypassed - PLL output ranges between 80 and 200 MHz It provides SLCK, MAINCK and PLLCK. Figure 9-2. Clock Generator Block Diagram • Programmable 16-bit prescaler for SLCK accuracy compensation #### 9.9 PIO Controllers - Two PIO Controllers, each controlling 31 I/O lines - Fully programmable through set/clear registers - Multiplexing of two peripheral functions per I/O line - For each I/O line (whether assigned to a peripheral or used as general-purpose I/O) - Input change interrupt - Half a clock period glitch filter - Multi-drive option enables driving in open drain - Programmable pull-up on each I/O line - Pin data status register, supplies visibility of the level on the pin at any time - Synchronous output, provides Set and Clear of several I/O lines in a single write ## 9.10 Voltage Regulator Controller The purpose of this controller is to select the Power Mode of the Voltage Regulator between Normal Mode (bit 0 is cleared) or Standby Mode (bit 0 is set). ## 10.3 Peripheral Multiplexing on PIO Lines The AT91SAM7XC512/256/128 features two PIO controllers, PIOA and PIOB, that multiplex the I/O lines of the peripheral set. Each PIO Controller controls 31 lines. Each line can be assigned to one of two peripheral functions, A or B. Some of them can also be multiplexed with the analog inputs of the ADC Controller. Table 10-2 on page 34 and Table 10-3 on page 35 defines how the I/O lines of the peripherals A, B or the analog inputs are multiplexed on the PIO Controller A and PIO Controller B. The two columns "Function" and "Comments" have been inserted for the user's own comments; they may be used to track how pins are defined in an application. Note that some peripheral functions that are output only, may be duplicated in the table. At reset, all I/O lines are automatically configured as input with the programmable pull-up enabled, so that the device is maintained in a static state as soon as a reset is detected. ## 10.4 PIO Controller A Multiplexing Table 10-2. Multiplexing on PIO Controller A | | PIO Controller A | | Application Usage | | | |----------|------------------|--------------|-------------------|----------|----------| | I/O Line | Peripheral A | Peripheral B | Comments | Function | Comments | | PA0 | RXD0 | | High-Drive | | | | PA1 | TXD0 | | High-Drive | | | | PA2 | SCK0 | SPI1_NPCS1 | High-Drive | | | | PA3 | RTS0 | SPI1_NPCS2 | High-Drive | | | | PA4 | CTS0 | SPI1_NPCS3 | | | | | PA5 | RXD1 | | | | | | PA6 | TXD1 | | | | | | PA7 | SCK1 | SPI0_NPCS1 | | | | | PA8 | RTS1 | SPI0_NPCS2 | | | | | PA9 | CTS1 | SPI0_NPCS3 | | | | | PA10 | TWD | | | | | | PA11 | TWCK | | | | | | PA12 | SPI_NPCS0 | | | | | | PA13 | SPI0_NPCS1 | PCK1 | | | | | PA14 | SPI0_NPCS2 | IRQ1 | | | | | PA15 | SPI0_NPCS3 | TCLK2 | | | | | PA16 | SPI0_MISO | | | | | | PA17 | SPI0_MOSI | | | | | | PA18 | SPI0_SPCK | | | | | | PA19 | CANRX | | | | | | PA20 | CANTX | | | | | | PA21 | TF | SPI1_NPCS0 | | | | | PA22 | TK | SPI1_SPCK | | | | | PA23 | TD | SPI1_MOSI | | | | | PA24 | RD | SPI1_MISO | | | | | PA25 | RK | SPI1_NPCS1 | | | | | PA26 | RF | SPI1_NPCS2 | | | | | PA27 | DRXD | PCK3 | | | | | PA28 | DTXD | | | | | | PA29 | FIQ | SPI1_NPCS3 | | | | | PA30 | IRQ0 | PCK2 | | | | ### 10.8 Two-wire Interface - · Master Mode only - Compatibility with I²C compatible devices (refer to the TWI section of the datasheet) - One, two or three bytes internal address registers for easy Serial Memory access - 7-bit or 10-bit slave addressing - Sequential read/write operations #### **10.9 USART** - Programmable Baud Rate Generator - 5- to 9-bit full-duplex synchronous or asynchronous serial communications - 1, 1.5 or 2 stop bits in Asynchronous Mode - 1 or 2 stop bits in Synchronous Mode - Parity generation and error detection - Framing error detection, overrun error detection - MSB or LSB first - Optional break generation and detection - By 8 or by 16 over-sampling receiver frequency - Hardware handshaking RTS CTS - Modem Signals Management DTR-DSR-DCD-RI on USART1 - Receiver time-out and transmitter timeguard - Multi-drop Mode with address generation and detection - RS485 with driver control signal - ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards - NACK handling, error counter with repetition and iteration limit - IrDA modulation and demodulation - Communication at up to 115.2 Kbps - Test Modes - Remote Loopback, Local Loopback, Automatic Echo ## 10.10 Serial Synchronous Controller - Provides serial synchronous communication links used in audio and telecom applications - · Contains an independent receiver and transmitter and a common clock divider - Offers a configurable frame sync and data length - Receiver and transmitter can be programmed to start automatically or on detection of different event on the frame sync signal - Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal #### 10.11 Timer Counter - Three 16-bit Timer Counter Channels - Two output compare or one input capture per channel - Wide range of functions including: - Frequency measurement - Event counting - Interval measurement - Pulse generation - Delay timing - Pulse Width Modulation - Up/down capabilities - Each channel is user-configurable and contains: - Three external clock inputs - Five internal clock inputs, as defined in Table 10-4 Table 10-4. Timer Counter Clocks Assignment | TC Clock input | Clock | |----------------|----------| | TIMER_CLOCK1 | MCK/2 | | TIMER_CLOCK2 | MCK/8 | | TIMER_CLOCK3 | MCK/32 | | TIMER_CLOCK4 | MCK/128 | | TIMER_CLOCK5 | MCK/1024 | - Two multi-purpose input/output signals - Two global registers that act on all three TC channels ## 10.12 Pulse Width Modulation Controller - Four channels, one 16-bit counter per channel - · Common clock generator, providing thirteen different clocks - One Modulo n counter providing eleven clocks - Two independent linear dividers working on modulo n counter outputs - Independent channel programming - Independent enable/disable commands - Independent clock selection - Independent period and duty cycle, with double buffering - Programmable selection of the output waveform polarity - Programmable center or left aligned output waveform - Counter (CTR) - 8-, 16-, 32-, 64- and 128-bit Data Sizes Possible in CFB Mode - Last Output Data Mode allowing Message Authentication Code (MAC) generation - Hardware Countermeasures against Differential Power Analysis attacks - Connection to PDC Channel Capabilities Optimizes Data Transfers for all Operating Modes: - One Channel for the Receiver, One Channel for the Transmitter - Next Buffer Support ## 10.16 Triple Data Encryption Standard - Single Data Encryption Standard (DES) and Triple Data Encryption - Algorithm (TDEA or TDES) supports - Compliant with FIPS Publication 46-3, Data Encryption Standard (DES) - 64-bit Cryptographic Key - Two-key or Three-key Algorithms - 18-clock Cycles Encryption/Decryption Processing Time for DES - 50-clock Cycles Encryption/Decryption Processing Time for TDES - Support the Four Standard Modes of Operation specified in the FIPS Publication 81, DES - Modes of Operation: - Electronic Codebook (ECB) - Cipher Block Chaining (CBC) - Cipher Feedback (CFB) - Output Feedback (OFB) - 8-, 16-, 32- and 64- Data Sizes Possible in CFB Mode - Last Output Data Mode allowing Optimized Message (Data) Authentication Code (MAC) generation - Connection to PDC Channel Capabilities Optimizes Data Transfers for all Operating Modes: - One Channel for the Receiver, One Channel for the Transmitter - Next Buffer Support ## 10.17 Analog-to-Digital Converter - 8-channel ADC - 10-bit 384 Ksamples/sec. Successive Approximation Register ADC - ±2 LSB Integral Non Linearity, ±1 LSB Differential Non Linearity - Integrated 8-to-1 multiplexer, offering eight independent 3.3V analog inputs - External voltage reference for better accuracy on low voltage inputs - Individual enable and disable of each channel - Multiple trigger sources - Hardware or software trigger - External trigger pin - Timer Counter 0 to 2 outputs TIOA0 to TIOA2 trigger - Sleep Mode and conversion sequencer # AT91SAM7XC512/256/128 - Automatic wakeup on trigger and back to sleep mode after conversions of all enabled channels - Four of eight analog inputs shared with digital signals Table 11-1. 100-lead LQFP Package Dimensions | | Millimeter | | | Inch | | | | |--------|------------|-----------|---------------|------------|-----------|-------|--| | Symbol | Min | Nom | Max | Min | Nom | Max | | | Α | | | 1.60 | | | 0.63 | | | A1 | 0.05 | | 0.15 | 0.002 | | 0.006 | | | A2 | 1.35 | 1.40 | 1.45 | 0.053 | 0.055 | 0.057 | | | D | | 16.00 BSC | | | 0.630 BSC | | | | D1 | | 14.00 BSC | | | 0.551 BSC | | | | Е | | 16.00 BSC | | | 0.630 BSC | | | | E1 | | 14.00 BSC | | | 0.551 BSC | | | | R2 | 0.08 | | 0.20 | 0.003 | | 0.008 | | | R1 | 0.08 | | | 0.003 | | | | | Q | 0. | 3.5 | 7⋅ | 0. | 3.5 | 7⋅ | | | θ1 | 0. | | | 0. | | | | | θ2 | 11. | 12⋅ | 13⋅ | 11. | 12· | 13. | | | θ3 | 11. | 12. | 13⋅ | 11. | 12· | 13. | | | С | 0.09 | | 0.20 | 0.004 | | 0.008 | | | L | 0.45 | 0.60 | 0.75 | 0.018 | 0.024 | 0.030 | | | L1 | | 1.00 REF | | | 0.039 REF | | | | S | 0.20 | | | 0.008 | | | | | b | 0.17 | 0.20 | 0.27 | 0.007 | 0.008 | 0.011 | | | е | | 0.50 BSC | | 0.020 BSC | | | | | D2 | 12.00 | | | 0.472 | | | | | E2 | 12.00 | | | 0.472 | | | | | | | Tolerance | es of Form an | d Position | | | | | aaa | 0.20 | | | 0.008 | | | | | bbb | 0.20 | | | 0.008 | | | | | CCC | 0.08 | | | 0.003 | | | | | ddd | | 80.0 | | | 0.003 | | | # **Revision History** Table 13-1. Revision History | Doc. Rev | Comments | Change
Request
Ref. | |----------|--|---------------------------| | 6209S | First issue - Unqualified on Intranet Legal page updated.Qualified on Intranet | | | 6209BS | Added AT91SAM7XC512 to product family. "Features" on page 1 and global Reformatted Memories Section 8. "Memory" on page 18. Reordered sub sections in Peripherals Section 10. "Peripherals" on page 32 Consolidated Memory Mapping in Figure 8-1 on page 19. Added package drawings Section 11. "Package Drawings" on page 42. Consolidated Memory Mapping in Figure 8-1 on page 19. Added TFBGA information Section 4.3 "100-ball TFBGA Package Outline" on page 11. and Section 4.4 on page 10 and "Features" on page 1 Added LQFP and TFBGA package drawings Section 11. on page 42. System Controller block diagram Figure 9-1 on page 26, "ice_nreset" signals changed to "power_on_reset". | 2729 | | 6209CS | "Features", TWI updated to include Atmel TWI compatibility with I ² C Standard. "Features", "Debug Unit (DBGU)" added "Mode for General Purpose 2-wire UART Serial Communication". Section 10.8 "Two-wire Interface", updated. | 4247
5846 | | | Section 10.11 "Timer Counter", The TC has Two output compare or one input capture per channel. Section 10.17 "Analog-to-Digital Converter", INL and DNL updated. Figure 3-1, "Signal Description List", footnote added to JTAGSEL, ERASE and TST pin comments Section 6.1 "JTAG Port Pins", Section 6.2 "Test Pin" and Section 6.4 "ERASE Pin" updated. | 4211
4008
5068 | | | Figure 9-1,"System Controller Block Diagram", RTT is reset by power_on_reset. Figure 8-1,"AT91SAM7XC512/256/128 Memory Mapping",TDES base address is 0xFFFA 8000 Section 8.4.3 "Internal Flash",updated: "At any time, the Flash is mapped if GPNVM bit 2 is set and before the Remap Command." | 5225
5257
5850 | | 6209DS | Section 12. "AT91SAM7XC512/256/128 Ordering Information", MLR B chip revision added to ordering information. | 6064 | ### Headquarters Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 #### International Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 #### **Product Contact** Web Site www.atmel.com www.atmel.com/AT91SAM www.atmel.com/lproducts/ASIC **Technical Support** AT91SAM Support Atmel techincal support Sales Contacts www.atmel.com/contacts/ Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Afmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. © 2008 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, DataFlash®, SAM-BA® and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Windows® and others, are registered trademarks of Microsoft Corporation in the US and/or other countries. ARM®, the ARM Powered® logo and others, are registered trademarks or trademarks of ARM Limited. Other terms and product names may be the trademarks of others.