

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	M8C
Core Size	8-Bit
Speed	12MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	24
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	A/D 12x14b; D/A 2x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c24423a-12pvxet

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CY8C24223A, CY8C24423A

Contents

PSoC Functional Overview	3
PSoC Core	3
Digital System	3
Analog System	4
Additional System Resources	5
PSoC Device Characteristics	5
Getting Started	5
Application Notes	5
Development Kits	5
Training	5
CYPros Consultants	5
Solutions Library	5
Technical Support	5
Development Tools	6
PSoC Designer Software Subsystems	6
Designing with PSoC Designer	7
Select User Modules	7
Configure User Modules	7
Organize and Connect	7
Generate, Verify, and Debug	7
Document Conventions	8
Acronyms Used	8
Units of Measure	8
Numeric Naming	8
Pinouts	9
20-Pin Part Pinout	9
28-Pin Part Pinout	10

Registers	11
Register Conventions	11
Register Mapping Tables	11
Electrical Specifications	14
Absolute Maximum Ratings	15
Operating Temperature	15
DC Electrical Characteristics	16
AC Electrical Characteristics	21
Packaging Information	28
Thermal Impedances	29
Capacitance on Crystal Pins	29
Solder Reflow Specifications	29
Development Tool Selection	30
Software	30
Development Kits	30
Evaluation Tools	30
Device Programmers	31
Accessories (Emulation and Programming)	31
Ordering Information	32
Ordering Code Definitions	32
Document History Page	33
Sales, Solutions, and Legal Information	34
Worldwide Sales and Design Support	34
Products	34
PSoC® Solutions	34
Cypress Developer Community	34
Technical Support	34

PSoC Functional Overview

The PSoC family consists of many programmable system-on-chips with on-chip Controller devices. These devices are designed to replace multiple traditional microcontroller unit (MCU)-based system components with one, low cost single-chip programmable device. PSoC devices include configurable blocks of analog and digital logic, and programmable interconnects. This architecture enables the user to create customized peripheral configurations that match the requirements of each individual application. Additionally, a fast CPU, Flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts and packages.

The PSoC architecture, as shown in the Logic Block Diagram on page 1, is comprised of four main areas: PSoC Core, Digital System, Analog System, and System Resources. Configurable global buses allow all the device resources to be combined into a complete custom system. Each CY8C24x23A PSoC device includes four digital blocks and six analog blocks. Depending on the PSoC package, up to 24 GPIO are also included. The GPIO provide access to the global digital and analog interconnects.

PSoC Core

The PSoC Core is a powerful engine that supports a rich feature set. The core includes a CPU, memory, clocks, and configurable GPIO.

The M8C CPU core is a powerful processor with speeds up to 12 MHz, providing a two MIPS 8-bit Harvard architecture microprocessor. The CPU uses an interrupt controller with multiple vectors, to simplify programming of real time embedded events. Program execution is timed and protected using the included Sleep Timer and Watchdog Timer (WDT).

Memory includes 4 KB of Flash for program storage and 256 bytes of SRAM for data storage. Program Flash uses four protection levels on blocks of 64 bytes, allowing customized software IP protection.

The PSoC device incorporates flexible internal clock generators, including a 24 MHz IMO (internal main oscillator) accurate to $\pm 4\%$ over temperature and voltage. A low power 32 kHz internal low speed oscillator (ILO) is provided for the Sleep Timer and WDT. If crystal accuracy is desired, the ECO (32.768 kHz external crystal oscillator) is available for use as a Real Time Clock (RTC) and can optionally generate a crystal-accurate 24 MHz system clock using a PLL. The clocks, together with programmable clock dividers (as a System Resource), provide the flexibility to integrate almost any timing requirement into the PSoC device.

PSoC GPIOs provide connection to the CPU, digital, and analog resources of the device. Each pin's drive mode may be selected from eight options, allowing great flexibility in external interfacing. Every pin also has the capability to generate a system interrupt.

Digital System

The Digital System is composed of four digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to form 8, 16, 24, and 32-bit peripherals, which are called user modules.

Digital peripheral configurations include:

- PWMs (8- and 16-bit)
- PWMs with Dead Band (8- and 16-bit)
- Counters (8 to 32 bit)
- Timers (8 to 32 bit)
- Full or Half-Duplex 8-bit UART with selectable parity
- SPI master and slave
- I²C master, slave, or multi-master
- Cyclical Redundancy Checker/Generator (16 bit)
- IrDA

Pseudo Random Sequence Generators (8 to 32 bit)

The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This allows the optimum choice of system resources for your application. Family resources are shown in Table 1 on page 5.

Analog System

The Analog System is composed of six configurable blocks, each comprised of an opamp circuit allowing the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the common PSoC analog functions for this device (most available as user modules) are:

- ADCs (up to two, with 6 to 14-bit resolution, selectable as Incremental, Delta-Sigma, and SAR)
- Filters (two and four pole band-pass, low-pass, and notch)
- Amplifiers (up to two, with selectable gain up to 48x)
- Instrumentation amplifiers (one with selectable gain up to 93x)
- Comparators (up to two, with 16 selectable thresholds)
- DACs (up to two, with 6 to 9-bit resolution)
- Multiplying DACs (up to two, with 6 to 9-bit resolution)
- High current output drivers (two with 30 mA drive)
- 1.3V reference (as a System Resource)
- DTMF Dialer
- Modulators
- Correlators
- Peak Detectors
- Many other topologies possible

Analog blocks are arranged in a column of three, which includes one Continuous Time (CT) and two Switched Capacitor (SC) blocks, as shown in Figure 2.

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is summarized in four steps:

- 1. Select User Modules.
- 2. Configure User Modules.
- 3. Organize and Connect.
- 4. Generate, Verify, and Debug.

Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a PWM User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information you may need to successfully implement your design.

Organize and Connect

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. You perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run-time and interrupt service routines that you can adapt as needed.

A complete code development environment allows you to develop and customize your applications in either C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's debugger (access by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer and allows you to define complex breakpoint events. These include monitoring address and data bus values, memory locations, and external signals.

Pinouts

The automotive CY8C24x23A PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of Digital I/O. However, Vss, Vdd, and XRES are not capable of Digital I/O.

20-Pin Part Pinout

Pin	Ту	pe	Pin	Description
No.	Digital	Analog	Name	Description
1	I/O	1	P0[7]	Analog column mux input
2	I/O	I/O	P0[5]	Analog column mux input and column output
3	I/O	I/O	P0[3]	Analog column mux input and column output
4	I/O	I	P0[1]	Analog column mux input
5	Po	wer	Vss	Ground connection
6	I/O		P1[7]	I ² C Serial Clock (SCL)
7	I/O		P1[5]	I ² C Serial Data (SDA)
8	I/O		P1[3]	
9	I/O		P1[1]	Crystal Input (XTALin), I ² C Serial Clock (SCL), ISSP-SCLK ^[5]
10	Po	wer	Vss	Ground connection
11	I/O		P1[0]	Crystal Output (XTALout), I ² C Serial Data (SDA), ISSP-SDATA ^[5]
12	I/O		P1[2]	
13	I/O		P1[4]	Optional External Clock Input (EXTCLK)
14	I/O		P1[6]	
15	Inj	put	XRES	Active high external reset with internal pull down
16	I/O	I	P0[0]	Analog column mux input
17	I/O	I	P0[2]	Analog column mux input
18	I/O	I	P0[4]	Analog column mux input
19	I/O	I	P0[6]	Analog column mux input
20	Po	wer	Vdd	Supply voltage

Table 3. 20-Pin Part Pinout (SSOP)

Figure 3. CY8C24223A 20-Pin PSoC Device

Note

5. These are the ISSP pins, which are not High Z when coming out of POR (Power On Reset). See the PSoC Technical Reference Manual for details.

LEGEND: A = Analog, I = Input, and O = Output.

CY8C24223A, CY8C24423A

28-Pin Part Pinout

Table 4. 28-Pin Part Pinout (SSOP)

Pin	Ту	pe	Pin	Description				
No.	Digital	Analog	Name	Description				
1	I/O	Ι	P0[7]	Analog column mux input				
2	I/O	I/O	P0[5]	Analog column mux input and column				
				output				
3	I/O	I/O	P0[3]	Analog column mux input and column output				
4	I/O	I	P0[1]	Analog column mux input				
5	I/O		P2[7]					
6	I/O		P2[5]					
7	I/O	-	P2[3]	Direct switched capacitor block input				
8	I/O	Ι	P2[1]	Direct switched capacitor block input				
9	Po	wer	Vss	Ground connection				
10	I/O		P1[7]	I ² C Serial Clock (SCL)				
11	I/O		P1[5]	I ² C Serial Data (SDA)				
12	I/O		P1[3]					
13	I/O		P1[1]	Crystal Input (XTALin), I ² C Serial Clock (SCL), ISSP-SCLK ^[5]				
14	Po	wer	Vss	Ground connection				
15	I/O		P1[0]	Crystal Output (XTALout), I ² C Serial Data (SDA), ISSP-SDATA ^[5]				
16	I/O		P1[2]					
17	I/O		P1[4]	Optional External Clock Input (EXTCLK)				
18	I/O		P1[6]					
19	Inj	put	XRES	Active high external reset with internal pull down				
20	I/O	I	P2[0]	Direct switched capacitor block input				
21	I/O	I	P2[2]	Direct switched capacitor block input				
22	I/O		P2[4]	External Analog Ground (AGND)				
23	I/O		P2[6]	External Voltage Reference (VRef)				
24	I/O	I	P0[0]	Analog column mux input				
25	I/O	I	P0[2]	Analog column mux input				
26	I/O	Ι	P0[4]	Analog column mux input				
27	I/O	Ι	P0[6]	Analog column mux input				
28	Po	wer	Vdd	Supply voltage				

Figure 4. CY8C24423A 28-Pin PSoC Device

LEGEND: A = Analog, I = Input, and O = Output.

Registers

Register Conventions

This section lists the registers of the automotive CY8C24x23A PSoC device. For detailed register information, refer to the *PSoC Technical Reference Manual*.

The register conventions specific to this section are listed in the following table.

Table 5. Abbreviations

Convention Description						
R	Read register or bit(s)					
W	Write register or bit(s)					
L	Logical register or bit(s)					
С	Clearable register or bit(s)					
#	Access is bit specific					

Register Mapping Tables

The PSoC device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks. The XIO bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XIO bit is set the user is in Bank 1.

Note In the following register mapping tables, blank fields are Reserved and must not be accessed.

Table 6. Register Map Bank 0 Table: User Space

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW		40		ASC10CR0	80	RW		C0	
PRT0IE	01	RW		41		ASC10CR1	81	RW		C1	
PRT0GS	02	RW		42		ASC10CR2	82	RW		C2	
PRT0DM2	03	RW		43		ASC10CR3	83	RW		C3	
PRT1DR	04	RW		44		ASD11CR0	84	RW		C4	
PRT1IE	05	RW		45		ASD11CR1	85	RW		C5	
PRT1GS	06	RW		46		ASD11CR2	86	RW		C6	
PRT1DM2	07	RW		47		ASD11CR3	87	RW		C7	
PRT2DR	08	RW		48			88			C8	
PRT2IE	09	RW		49			89			C9	
PRT2GS	0A	RW		4A			8A			CA	
PRT2DM2	0B	RW		4B			8B			CB	
	0C			4C			8C			CC	
	0D			4D			8D			CD	
	0E			4E			8E			CE	
	0F			4F			8F			CF	
	10			50		ASD20CR0	90	RW		D0	
	11			51		ASD20CR1	91	RW		D1	
	12			52		ASD20CR2	92	RW		D2	
	13			53		ASD20CR3	93	RW		D3	
	14			54		ASC21CR0	94	RW		D4	
	15			55		ASC21CR1	95	RW		D5	
	16			56		ASC21CR2	96	RW	I2C CEG	D6	RW
	17			57		ASC21CR3	97	RW	120_01 0	D7	#
	18		-	58		70021010	98	1.00	120_001	D8	# RW
	10		-	59			90		I2C_MSCR	D9	#
	10			50			95				# RW/
	1A 1B			5R			9A 9B		INT_CLR1	DR	RW
	10			5C			90				1.00
	10			50 5D							DW/
	1D 1E			55			9D 0E		INT_OLIKS	DE	RW/
	15			55			9L 0E			DE	1110
	20	#	ΔΜΧ ΙΝΙ	60	D\//		<u>۵</u> ۵		INT MSKO	EO	DW/
	20	# \\\/		61	NVV		A0		INT_WSRU	L0 E1	DW/
DBB00DR1	21			62			A1 A2			E1	RW BC
DBB00DR2	22	#	ADE CD	62			A2		DES WOT	E2	W
	23	#	ARF_CR	64	#		A3			E3	NV DC
	24	# \\\/	CIVIF_CRU	65	#		A4			E4	RC BC
	20			00	#		AG		DEC_DL	EJ	
DBB01DR2	20	KW	CIVIP_CRI	67	RW		A0		DEC_CRU	E0	RW
DBBUICRU	27	#		67			A7			E7	RW
	20	#		00 60			A0			E0	VV VV
DCB02DRT	29			69			A9		MUL_T	E9	VV
DCB02DR2	2A 2D	RW	-	6A			AA		MUL_DH	EA	R
DCB02CR0	2B	#	-	6B			AB		MUL_DL	EB	R
DCB03DR0	20	#	-	6C			AC		ACC_DR1	EC	RW
DCB03DR1	2D 25	VV		٥D			AD		ACC_DRU		
DCB03DR2	2E	KVV		0E			AE		ACC_DR3		KW DW
DCB03CR0	2F	#	1000000	6F	D14/	DDIADI	AF	DIM	ACC_DR2	EF	RW
	30		ACBUUCR3	/0	RW		R0	RW		F0	
	31		ACBOOCRO	71	RW	RDIUSYN	B1	RW		F1	
	32		ACB00CR1	72	RW	RDIOIS	B2	RW		F2	
	33		ACB00CR2	73	RW	RDIOLT0	B3	RW		F3	
	34		ACBUTCR3	/4	RW		В4 В5	RW		F4	
	35		ACB01CR0	/5	RW	KDIUKO0	B5	RW		+5	
	36		ACB01CR1	/6	RW	KDIUKO1	B6	RW		<u>⊢6</u>	<u> </u>
	37		ACB01CR2	77	RW		B7		CPU_F	F7	RL
	38			78			B8			F8	
	39			79			B9			F9	
	3A			7A			BA			FA	
	3B			7B			BB			FB	
	3C			7C			BC			FC	
	3D			7D			BD			FD	
	3E			7E			BE		CPU_SCR1	FE	#
	3F			7F			BF		CPU_SCR0	FF	#

Blank fields are Reserved and must not be accessed.

Access is bit specific.

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 9. Absolute Maximum Ratings

Symbol	Description	Min	Тур	Мах	Units	Notes
T _{STG}	Storage Temperature	-55	+25	+125	°C	Higher storage temperatures reduce data retention time. Recommended storage temper- ature is $+25^{\circ}C \pm 25^{\circ}C$. Storage temperatures above $65^{\circ}C$ degrades reliability. Maximum combined storage and opera- tional time at $+125^{\circ}C$ is 7000 hours.
T _{BAKETEMP}	Bake Temperature	-	125	See package label	°C	
T _{BAKETIME}	Bake Time	See package label	-	72	Hours	
T _A	Ambient Temperature with Power Applied	-40	-	+125	°C	
Vdd	Supply Voltage on Vdd Relative to Vss	-0.5	-	+6.0	V	
V _{IO}	DC Input Voltage	Vss - 0.5	-	Vdd + 0.5	V	
V _{IOZ}	DC Voltage Applied to Tri-state	Vss - 0.5	-	Vdd + 0.5	V	
I _{MIO}	Maximum Current into any Port Pin	-25	-	+25	mA	
ESD	Electro Static Discharge Voltage	2000	_	_	V	Human Body Model ESD.
LU	Latch up Current	_	_	200	mA	

Operating Temperature

Table 10. Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient Temperature	-40	-	+125	°C	
Т	Junction Temperature	-40	_	+135	°C	The temperature rise from ambient to junction is package specific. See Thermal Imped- ances on page 29. The user must limit the power consumption to comply with this requirement.

DC Electrical Characteristics

DC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 125°C. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 11. DC Chip-Level Specifications

Symbol	Description	Min	Тур	Мах	Units	Notes
Vdd	Supply Voltage	4.75	-	5.25	V	See table titled DC POR and LVD Specifications on page 20
I _{DD}	Supply Current	-	5	8	mA	$\begin{array}{l} \mbox{Conditions are Vdd} = 5.25V, -40^\circ C \leq T_A \\ \leq 125^\circ C, \mbox{ CPU} = 3 \mbox{ MHz}, 48 \mbox{ MHz} \\ \mbox{disabled}, \mbox{ VC1} = 1.5 \mbox{ MHz}, \\ \mbox{VC2} = 93.75 \mbox{ kHz}, \mbox{ VC3} = 93.75 \mbox{ kHz}, \\ \mbox{Analog power} = \mbox{off}. \end{array}$
I _{SB}	Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT. ^[6]	_	4	13	μA	Conditions are with internal low speed oscillator active, Vdd = 5.25V, -40°C $\leq T_A \leq 55$ °C. Analog power = off.
I _{SBH}	Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT at high temperature. ^[6]	_	4	100	μA	Conditions are with internal slow speed oscillator active, Vdd = 5.25V, $55^{\circ}C < T_A \le 125^{\circ}C$. Analog power = off.
I _{SBXTL}	Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT, and external crystal. ^[6]	-	6	15	μA	Conditions are with properly loaded, 1 μ W max, 32.768 kHz crystal. Vdd = 5.25V, -40°C \leq T _A \leq 55°C. Analog power = off.
I _{SBXTLH}	Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT, and external crystal at high temperature. ^[6]	-	6	100	μA	Conditions are with properly loaded, 1μ W max, 32.768 kHz crystal. Vdd = 5.25V, 55°C < T _A \leq 125°C. Analog power = off.
V _{REF}	Reference Voltage (Bandgap)	1.25	1.3	1.35	V	Trimmed for appropriate Vdd.

DC General Purpose I/O Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 125°C. Typical parameters apply to 5V at 25°C and are for design guidance.

Table 12. DC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull up Resistor	4	5.6	8	kΩ	
R _{PD}	Pull down Resistor	4	5.6	8	kΩ	
V _{OH}	High Output Level	3.5	_	_	V	I_{OH} = 10 mA, Vdd = 4.75 to 5.25V (maximum 40 mA on even port pins (for example, P0[2], P1[4]), maximum 40 mA on odd port pins (for example, P0[3], P1[5])). 80 mA maximum combined I _{OH} budget.
V _{OL}	Low Output Level	_	_	0.75	V	I_{OL} = 25 mA, Vdd = 4.75 to 5.25V (maximum 100 mA on even port pins (for example, P0[2], P1[4]), maximum 100 mA on odd port pins (for example, P0[3], P1[5])). 150 mA maximum combined I _{OL} budget.
I _{OH}	High Level Source Current	10	-	-	mA	$V_{OH} \ge$ Vdd-1.0V, see the limitations of the total current in the note for V_{OH} .
I _{OL}	Low Level Sink Current	25	_	-	mA	$V_{OL} \leq$ 0.75V, see the limitations of the total current in the note for V_{OL}
V _{IL}	Input Low Level	_	_	0.8	V	

Note

 Standby current includes all functions (POR, LVD, WDT, Sleep Timer) needed for reliable system operation. This must be compared with devices that have similar functions enabled.

Table 12. DC GPIO Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
V _{IH}	Input High Level	2.1	-		V	
V _H	Input Hysterisis	-	60	-	mV	
IIL	Input Leakage (Absolute Value)	-	1	-	nA	Gross tested to 1 µA
C _{IN}	Capacitive Load on Pins as Input	-	3.5	10	pF	Package and pin dependent. Temp = 25°C
C _{OUT}	Capacitive Load on Pins as Output	-	3.5	10	pF	Package and pin dependent. Temp = 25°C

DC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 125°C. Typical parameters apply to 5V at 25°C and are for design guidance only.

The Operational Amplifier is a component of both the Analog Continuous Time (CT) PSoC blocks and the Analog Switched Capacitor (SC) PSoC blocks. The guaranteed specifications are measured in the Analog Continuous Time (CT) PSoC blocks.

Table 13. DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input Offset Voltage (absolute value) Low Power Input Offset Voltage (absolute value) Mid Power Input Offset Voltage (absolute value) High Power	_ _ _	1.6 1.3 1.2	11 9 9	mV mV mV	
TCV _{OSOA}	Input Offset Voltage Drift	-	7.0	35.0	μV/°C	
I _{EBOA}	Input Leakage Current (Port 0 Analog Pins)	-	200	-	pА	Gross tested to 1 µA
C _{INOA}	Input Capacitance (Port 0 Analog Pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25°C.
V _{CMOA}	Common Mode Voltage Range Common Mode Voltage Range (high power or high opamp bias)	0.0 0.5		Vdd Vdd - 0.5	V _	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
G _{OLOA}	Open Loop Gain Power = Low Power = Medium Power = High		80 80 80		dB dB dB	Specification is applicable at high power. For all other bias modes (except high power, high opamp bias), minimum is 60 dB.
V _{OHIGHOA}	High Output Voltage Swing (worst case internal load) Power = Low Power = Medium Power = High	Vdd - 0.2 Vdd - 0.2 Vdd - 0.5	_ _ _	- - -	V V V	
V _{OLOWOA}	Low Output Voltage Swing (worst case internal load) Power = Low Power = Medium Power = High		_ _ _	0.2 0.2 0.5	V V V	
I _{SOA}	Supply Current (including associated AGND buffer) Power = Low, Opamp Bias = Low Power = Low, Opamp Bias = High Power = Medium, Opamp Bias = Low Power = Medium, Opamp Bias = High Power = High, Opamp Bias = Low Power = High, Opamp Bias = High	- - - - - -	150 300 600 1200 2400 4600	200 400 800 1600 3200 6400	μΑ μΑ μΑ μΑ μΑ	
PSRR _{OA}	Supply Voltage Rejection Ratio	_	80	_	dB	$Vss \le VIN \le (Vdd - 2.25)$ or $(Vdd - 1.25V) \le VIN \le Vdd$

AC Electrical Characteristics

AC Chip-Level Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 125°C. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 20.	AC Chip-Level	Specifications
-----------	---------------	----------------

Symbol	Description	Min	Тур	Мах	Units	Notes
F _{IMO24}	Internal Main Oscillator Frequency for 24 MHz	23.04 ^[12]	24	24.96 ^[12]	MHz	Trimmed using factory trim values.
F _{CPU1}	CPU Frequency (5V Vdd Nominal)	0.09 ^[12]	12	12.48 ^[12]	MHz	
F _{24M}	Digital PSoC Block Frequency	0	24	24.96 ^[12, 13]	MHz	
F _{32K1}	Internal Low Speed Oscillator Frequency	15	32	64	kHz	This specification applies when the ILO has been trimmed.
F _{32KU}	Internal Low Speed Oscillator (ILO) Untrimmed Frequency	5	-	-	kHz	After a reset and before the M8C processor starts to execute, the ILO is not trimmed.
F _{32K2}	External Crystal Oscillator	-	32.768	-	kHz	Accuracy is capacitor and crystal dependent. 50% duty cycle.
F _{PLL}	PLL Frequency	_	23.986	Ι	MHz	A multiple (x732) of crystal frequency.
Jitter24M2	24 MHz Period Jitter (PLL)	-	_	800	ps	Refer to Figure 9 on page 22.
T _{PLLSLEW}	PLL Lock Time	0.5	-	10	ms	Refer to Figure 6 on page 22.
T _{PLLSLEWSLOW}	PLL Lock Time for Low Gain Setting	0.5	_	50	ms	Refer to Figure 7 on page 22.
T _{OS}	External Crystal Oscillator Startup to 1%	_	1700	2620	ms	Refer to Figure 8 on page 22.
T _{OSACC}	External Crystal Oscillator Startup to 100 ppm	_	2800	3800	ms	
Jitter32k	32 kHz Period Jitter	-	100	-	ns	Refer to Figure 10 on page 22.
T _{XRST}	External Reset Pulse Width	10	-	-	μS	
DC24M	24 MHz Duty Cycle	40	50	60	%	
DC _{ILO}	Internal Low Speed Oscillator (ILO) Duty Cycle	20	50	80	%	
Step24M	24 MHz Trim Step Size	_	50	-	kHz	
Jitter24M1P	24 MHz Period Jitter (IMO) Peak-to-Peak	_	600	-	ps	Refer to Figure 9 on page 22.
Jitter24M1R	24 MHz Period Jitter (IMO) Root Mean Squared	-	-	600	ps	
F _{MAX}	Maximum frequency of signal on row input or row output.	_	-	12.48 ^[12]	MHz	
SR _{POWERUP}	Power Supply Slew Rate	_	-	250	V/ms	Vdd slew rate during power up.
TPOWERUP	Time between end of POR state and CPU code execution	-	16	100	ms	Power up from 0V.

Notes

Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.
 See the individual user module data sheets for information on maximum frequencies for user modules.

Figure 9. 24 MHz Period Jitter (IMO) Timing Diagram

Figure 10. 32 kHz Period Jitter (ECO) Timing Diagram

AC General Purpose I/O Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C $\leq T_A \leq 125$ °C. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 21. AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO Operating Frequency	0	-	12.48 ^[12]	MHz	Normal Strong Mode
TRiseF	Rise Time, Normal Strong Mode, Cload = 50 pF	2	_	22	ns	10% - 90%
TFallF	Fall Time, Normal Strong Mode, Cload = 50 pF	2	-	22	ns	10% - 90%
TRiseS	Rise Time, Slow Strong Mode, Cload = 50 pF	9	27	-	ns	10% - 90%
TFallS	Fall Time, Slow Strong Mode, Cload = 50 pF	9	22	-	ns	10% - 90%

Figure 11. GPIO Timing Diagram

AC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C $\leq T_A \leq 125^{\circ}$ C. Typical parameters apply to 5V at 25°C and are for design guidance only.

Note Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block.

Table 22. AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units
SR _{ROA}	Rising Slew Rate (20% to 80%) (10 pF load, Unity Gain)				
110/1	Power = Low, Opamp Bias = Low	0.15	-	-	V/μs
	Power = Low, Opamp Bias = High	0.15	—	-	V/µs
	Power = Medium, Opamp Bias = Low	0.15	_	-	V/μs
	Power = Medium, Opamp Bias = High	1.7	-	-	V/μs
	Power = High, Opamp Bias = Low	1.7	-	-	V/μs
	Power = High, Opamp Bias = High	6.5	-	-	V/μs
SR _{FOA}	Falling Slew Rate (80% to 20%) (10 pF load, Unity Gain)				
	Power = Low, Opamp Bias = Low	0.01	-	-	V/μs
	Power = Low, Opamp Bias = High	0.01	—	-	V/μs
	Power = Medium, Opamp Bias = Low	0.01	-	-	V/μs
	Power = Medium, Opamp Bias = High	0.5	-	-	V/μs
	Power = High, Opamp Bias = Low	0.5	-	-	V/μs
	Power = High, Opamp Bias = High	4.0	-	_	V/μs
BW _{OA}	Gain Bandwidth Product				
	Power = Low, Opamp Bias = Low	0.75	-	-	MHz
	Power = Low, Opamp Bias = High	0.75	-	-	MHz
	Power = Medium, Opamp Bias = Low	0.75	_	-	MHz
	Power = Medium, Opamp Bias = High	3.1	-	-	MHz
	Power = High, Opamp Bias = Low	3.1	-	-	MHz
	Power = High, Opamp Bias = High	5.4	-	—	MHz

AC Low Power Comparator Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C $\leq T_A \leq 125^{\circ}$ C. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 23. AC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RLPC}	LPC response time	-	-	50	μS	≥ 50 mV overdrive comparator
						reference set within V _{REFLPC} .

When bypassed by a capacitor on P2[4], the noise of the analog ground signal distributed to each block is reduced by a factor of up to 5 (14 dB). This is at frequencies above the corner frequency defined by the on-chip 8.1k resistance and the external capacitor.

Figure 12. Typical AGND Noise with P2[4] Bypass

At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high frequencies, increased power level reduces the noise spectrum level.

Figure 13. Typical Opamp Noise

AC Analog Output Buffer Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 125°C. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 25.	AC Analog	Output Buffer	Specifications
-----------	-----------	----------------------	----------------

Symbol	Description	Min	Тур	Max	Units
T _{ROB}	Rising Settling Time to 0.1%, 1V Step, 100 pF Load Power = Low Power = High	-	-	3	μs us
Т _{SOB}	Falling Settling Time to 0.1%, 1V Step, 100 pF Load Power = Low Power = High			3 3	μs μs
SR _{ROB}	Rising Slew Rate (20% to 80%), 1V Step, 100 pF Load Power = Low Power = High	0.6 0.6			V/μs V/μs
SR _{FOB}	Falling Slew Rate (80% to 20%), 1V Step, 100 pF Load Power = Low Power = High	0.6 0.6			V/μs V/μs
BW _{OB}	Small Signal Bandwidth, 20mV _{pp} , 3dB BW, 100 pF Load Power = Low Power = High	0.8 0.8			MHz MHz
BW _{OB}	Large Signal Bandwidth, 1V _{pp} , 3dB BW, 100 pF Load Power = Low Power = High	300 300		-	kHz kHz

AC External Clock Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C $\leq T_A \leq 125$ °C. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 26. AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
FOSCEXT	Frequency	0.093	—	24.24	MHz	
-	High Period	20.6	_	-	ns	
-	Low Period	20.6	-	-	ns	
-	Power Up IMO to Switch	150	-	-	μS	

AC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C $\leq T_A \leq 125$ °C. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 27. AC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RSCLK}	Rise Time of SCLK	1	-	20	ns	
T _{FSCLK}	Fall Time of SCLK	1	-	20	ns	
T _{SSCLK}	Data Set up Time to Falling Edge of SCLK	40	-	-	ns	
T _{HSCLK}	Data Hold Time from Falling Edge of SCLK	40	-	-	ns	
F _{SCLK}	Frequency of SCLK	0	-	8	MHz	
T _{ERASEB}	Flash Erase Time (Block)	-	20	80 ^[9]	ms	
T _{WRITE}	Flash Block Write Time	-	80	320 ^[9]	ms	
T _{DSCLK}	Data Out Delay from Falling Edge of SCLK	-	-	50	ns	
T _{PRGH}	Total Flash Block Program Time (T _{ERASEB} + T _{WRITE}), Hot	_	-	200 ^[9]	ms	$T_J \ge 0^{\circ}C$
T _{PRGC}	Total Flash Block Program Time (T _{ERASEB} + T _{WRITE}), Cold	_	_	400 ^[9]	ms	T _J < 0°C

Packaging Information

This section illustrates the packaging specifications for the automotive CY8C24x23A PSoC device, along with the thermal impedances for each package and the typical package capacitance on crystal pins.

Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the emulator pod drawings at http://www.cypress.com.

Figure 15. 20-Pin (210-Mil) SSOP

Device Programmers

All device programmers can be purchased from the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit allows a user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg Programming Unit
- MiniEval Socket Programming and Evaluation Board
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

Accessories (Emulation and Programming)

Table 29. Emulation and Programming Accessories

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment.

Note: CY3207ISSP needs special software and is not compatible with PSoC Programmer. This software is free and can be downloaded from http://www.cypress.com. The kit includes:

- CY3207 Programmer Unit
- PSoC ISSP Software CD
- 110 ~ 240V Power Supply, Euro-Plug Adapter
- USB 2.0 Cable

Part Number	Pin Package	Pod Kit ^[18]	Foot Kit ^[19]	Adapter ^[20]
CY8C24223A-12PVXE	20 SSOP	CY3250-24X23A	CY3250-20SSOP-FK	Adapters can be found at
CY8C24423A-12PVXE	28 SSOP	CY3250-24X23A	CY3250-28SSOP-FK	http://www.emulation.com.

Notes

- 19. Foot kit includes surface mount feet that can be soldered to the target PCB.
- 20. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com.

^{18.} Pod kit contains an emulation pod, a flex-cable (connects the pod to the ICE), two feet, and device samples.

Ordering Information

The following table lists the automotive CY8C24x23A PSoC device group's key package features and ordering codes.

Package	Ordering Code	Flash (Bytes)	RAM (Bytes)	Switch Mode Pump	Temperature Range	Digital Blocks	Analog Blocks	Digital I/O Pins	Analog Inputs	Analog Outputs	XRES Pin
20 Pin (210 Mil) SSOP	CY8C24223A-12PVXE	4K	256	No	-40°C to +125°C	4	6	16	8	2	Yes
20 Pin (210 Mil) SSOP (Tape and Reel)	CY8C24223A-12PVXET	4K	256	No	-40°C to +125°C	4	6	16	8	2	Yes
28 Pin (210 Mil) SSOP	CY8C24423A-12PVXE	4K	256	No	-40°C to +125°C	4	6	24	12 ^[1]	2	Yes
28 Pin (210 Mil) SSOP (Tape and Reel)	CY8C24423A-12PVXET	4K	256	No	-40°C to +125°C	4	6	24	12 ^[1]	2	Yes

Ordering Code Definitions

CY 8 C 24 xxx-12xx

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products	
Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
	cypress.com/go/plc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2004-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 38-12029 Rev. *L

Revised March 11, 2014

Page 34 of 34

PSoC Designer[™] and Programmable System-on-Chip[™] are trademarks and PSoC® and CapSense® are registered trademarks of Cypress Semiconductor Corporation. Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors. All products and company names mentioned in this document may be the trademarks of their respective holders.