

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	480MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, MDIO, MMC/SD/SDIO, QSPI, SAI, SPDIF, SPI, SWPMI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	140
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1M x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 36x16b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32h743iit6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 Memories

3.3.1 Embedded Flash memory

The STM32H743xI devices embed up to 2 Mbytes of Flash memory that can be used for storing programs and data.

The Flash memory is organized as 266-bit Flash words memory that can be used for storing both code and data constants. Each word consists of:

- One Flash word (8 words, 32 bytes or 256 bits)
- 10 ECC bits.

The Flash memory is divided into two independent banks. Each bank is organized as follows:

- A 1-Mbyte user Flash memory block containing eight user sectors of 128 Kbytes(4 K Flash words)
- 128 Kbytes of System Flash memory from which the device can boot
- 2 Kbytes (64 Flash words) of user option bytes for user configuration

3.3.2 Embedded SRAM

All devices feature:

- 512 Kbytes of AXI-SRAM mapped onto AXI bus on D1 domain.
- SRAM1 mapped on D2 domain: 128 Kbytes
- SRAM2 mapped on D2 domain: 128 Kbytes
- SRAM3 mapped on D2 domain: 32 Kbytes
- SRAM4 mapped on D3 domain: 64 Kbytes
- 4 Kbytes of backup SRAM

The content of this area is protected against possible unwanted write accesses, and is retained in Standby or V_{BAT} mode.

RAM mapped to TCM interface (ITCM and DTCM):

Both ITCM and DTCM RAMs are 0 wait state memories. either They can be accessed either from the CPU or the MDMA (even in Sleep mode) through a specific AHB slave of the CPU(AHBP):

- 64 Kbytes of ITCM-RAM (instruction RAM)
 This RAM is connected to ITCM 64-bit interface designed for execution of critical real-times routines by the CPU.
- 128 Kbytes of DTCM-RAM (2x 64-Kbyte DTCM-RAMs on 2x32-bit DTCM ports) The DTCM-RAM could be used for critical real-time data, such as interrupt service routines or stack/heap memory. Both DTCM-RAMs can be used in parallel (for load/store operations) thanks to the Cortex[®]-M7 dual issue capability.

The MDMA can be used to load code or data in ITCM or DTCM RAMs.

The $V_{\mbox{CORE}}$ domain is split into the following power domains that can be independently switch off.

- D1 domain containing some peripherals and the Cortex[®]-M7 core.
- D2 domain containing a large part of the peripherals.
- D3 domain containing some peripherals and the system control.

During power-up and power-down phases, the following power sequence requirements must be respected (see *Figure 2*):

- When V_{DD} is below 1 V, other power supplies (V_{DDA} , $V_{DD33USB}$, $V_{DD50USB}$) must remain below V_{DD} + 300 mV.
- When V_{DD} is above 1 V, all power supplies are independent.

During the power-down phase, V_{DD} can temporarily become lower than other supplies only if the energy provided to the microcontroller remains below 1 mJ. This allows external decoupling capacitors to be discharged with different time constants during the power-down transient phase.

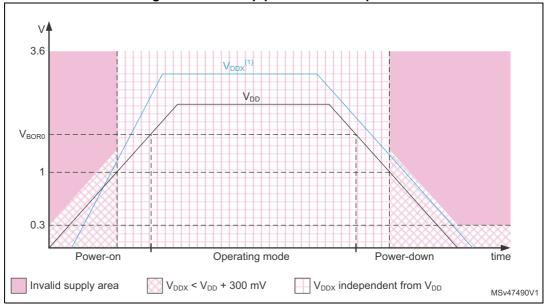


Figure 2. Power-up/power-down sequence

1. V_{DDx} refers to any power supply among V_{DDA} , $V_{DD33USB}$, $V_{DD50USB}$.

3.5.2 Power supply supervisor

The devices have an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry:

- Power-on reset (POR)
 The POR supervisor monitors V_{DD} power supply and compares it to a fixed threshold.
 The devices remain in Reset mode when V_{DD} is below this threshold,
- Power-down reset (PDR)
 The PDR supervisor monitors V_{DD} power supply. A reset is generated when V_{DD} drops below a fixed threshold.

The PDR supervisor can be enabled/disabled through PDR_ON pin.

Brownout reset (BOR)

The BOR supervisor monitors V_{DD} power supply. Three BOR thresholds (from 2.1 to 2.7 V) can be configured through option bytes. A reset is generated when V_{DD} drops below this threshold.

3.5.3 Voltage regulator

The same voltage regulator supplies the 3 power domains (D1, D2 and D3). D1 and D2 can be independently switched off.

Voltage regulator output can be adjusted according to application needs through 5 power supply levels:

- Run mode (VOS1 to VOS3)
 - Scale 1: high performance
 - Scale 2: medium performance and consumption
 - Scale 3: optimized performance and low-power consumption
- Stop mode (SVOS3 to SVOS5)
 - Scale 3: peripheral with wakeup from Stop mode capabilities (UART, SPI, I2C, LPTIM) are operational
 - Scale 4 and 5 where the peripheral with wakeup from Stop mode is disabled The peripheral functionality is disabled but wakeup from Stop mode is possible through GPIO or asynchronous interrupt.

3.25 LCD-TFT controller

The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue) and delivers all signals to interface directly to a broad range of LCD and TFT panels up to XGA (1024x768) resolution with the following features:

- 2 display layers with dedicated FIFO (64x64-bit)
- Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
- Up to 8 input color formats selectable per layer
- Flexible blending between two layers using alpha value (per pixel or constant)
- Flexible programmable parameters for each layer
- Color keying (transparency color)
- Up to 4 programmable interrupt events
- AXI master interface with burst of 16 words

3.26 JPEG Codec (JPEG)

The JPEG Codec can encode and decode a JPEG stream as defined in the **ISO/IEC 10918-1** specification. It provides an fast and simple hardware compressor and decompressor of JPEG images with full management of JPEG headers.

The JPEG codec main features are as follows:

- 8-bit/channel pixel depths
- Single clock per pixel encoding and decoding
- Support for JPEG header generation and parsing
- Up to four programmable quantization tables
- Fully programmable Huffman tables (two AC and two DC)
- Fully programmable minimum coded unit (MCU)
- Encode/decode support (non simultaneous)
- Single clock Huffman coding and decoding
- Two-channel interface: Pixel/Compress In, Pixel/Compressed Out
- Support for single greyscale component
- Ability to enable/disable header processing
- Fully synchronous design
- Configuration for High-speed decode mode

3.27 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

3.28 Timers and watchdogs

The devices include one high-resolution timer, two advanced-control timers, ten generalpurpose timers, two basic timers, five low-power timers, two watchdogs and a SysTick timer.

3.28.2 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (Edge- or Center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100%).

The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

TIM1 and TIM8 support independent DMA request generation.

3.28.3 General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32H743xI devices (see *Table 5* for differences).

• TIM2, TIM3, TIM4, TIM5

The devices include 4 full-featured general-purpose timers: TIM2, TIM3, TIM4 and TIM5. TIM2 and TIM5 are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler while TIM3 and TIM4 are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. All timers feature 4 independent channels for input capture/output compare, PWM or One-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

TIM2, TIM3, TIM4 and TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

• TIM12, TIM13, TIM14, TIM15, TIM16, TIM17

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13, TIM14, TIM16 and TIM17 feature one independent channel, whereas TIM12 and TIM15 have two independent channels for input capture/output compare, PWM or One-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers or used as simple timebases.

All USART have a clock domain independent from the CPU clock, allowing the USARTx to wake up the MCU from Stop mode. The wakeup from Stop mode is programmable and can be done on:

- Start bit detection
- Any received data frame
- A specific programmed data frame
- Specific TXFIFO/RXFIFO status when FIFO mode is enabled.

All USART interfaces can be served by the DMA controller.

USART modes/features ⁽¹⁾	USART1/2/3/6	UART4/5/7/8
Hardware flow control for modem	Х	Х
Continuous communication using DMA	Х	х
Multiprocessor communication	Х	Х
Synchronous mode (Master/Slave)	Х	-
Smartcard mode	Х	-
Single-wire Half-duplex communication	Х	Х
IrDA SIR ENDEC block	Х	Х
LIN mode	Х	Х
Dual clock domain and wakeup from low power mode	Х	х
Receiver timeout interrupt	Х	Х
Modbus communication	Х	Х
Auto baud rate detection	Х	х
Driver Enable	Х	Х
USART data length	7, 8 an	d 9 bits
Tx/Rx FIFO	Х	Х
Tx/Rx FIFO size	1	6

Table 6. USART features

1. X = supported.

3.32 Low-power universal asynchronous receiver transmitter (LPUART)

The device embeds one Low-Power UART (LPUART1). The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode is enabled by software and is disabled by default.

_

3.37 Management Data Input/Output (MDIO) slaves

The devices embed an MDIO slave interface it includes the following features:

- 32 MDIO Registers addresses, each of which is managed using separate input and output data registers:
 - 32 x 16-bit firmware read/write, MDIO read-only output data registers
 - 32 x 16-bit firmware read-only, MDIO write-only input data registers
- Configurable slave (port) address
- Independently maskable interrupts/events:
 - MDIO Register write
 - MDIO Register read
 - MDIO protocol error
- Able to operate in and wake up from Stop mode

3.38 SD/SDIO/MMC card host interfaces (SDMMC)

Two SDMMC host interfaces are available. They support *MultiMediaCard System Specification Version 4.51* in three different databus modes: 1 bit (default), 4 bits and 8 bits.

Both interfaces support the *SD memory card specifications version 4.1.* and the *SDIO card specification version 4.0.* in two different databus modes: 1 bit (default) and 4 bits.

Each SDMMC host interface supports only one SD/SDIO/MMC card at any one time and a stack of MMC Version 4.51 or previous.

The SDMMC host interface embeds a dedicated DMA controller allowing high-speed transfers between the interface and the SRAM.

3.39 Controller area network (FDCAN1, FDCAN2)

The controller area network (CAN) subsystem consists of two CAN modules, a shared message RAM memory and a clock calibration unit.

Both CAN modules (FDCAN1 and FDCAN2) are compliant with ISO 11898-1 (CAN protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0.

FDCAN1 supports time triggered CAN (TTCAN) specified in ISO 11898-4, including event synchronized time-triggered communication, global system time, and clock drift compensation. The FDCAN1 contains additional registers, specific to the time triggered feature. The CAN FD option can be used together with event-triggered and time-triggered CAN communication.

A 10-Kbyte message RAM memory implements filters, receive FIFOs, receive buffers, transmit event FIFOs, transmit buffers (and triggers for TTCAN). This message RAM is shared between the two FDCAN1 and FDCAN2 modules.

The common clock calibration unit is optional. It can be used to generate a calibrated clock for both FDCAN1 and FDCAN2 from the HSI internal RC oscillator and the PLL, by evaluating CAN messages received by the FDCAN1.

			Pin/ba	all nam	e								
LQFP100	TFBGA100	LQFP144	UFBGA169	UFBGA176+25	LQFP176	LQFP208	TFBGA240 +25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
1	A3	1	A2	A2	1	1	C3	PE2	I/O	FT_h	-	TRACECLK, SAI1_CK1, SPI4_SCK, SAI1_MCLK_A, SAI4_MCLK_A, QUADSPI_BK1_IO2, SAI4_CK1, ETH_MII_TXD3, FMC_A23, EVENTOUT	-
2	В3	2	B2	A1	2	2	D3	PE3	I/O	FT_h	-	TRACED0, TIM15_BKIN, SAI1_SD_B, SAI4_SD_B, FMC_A19, EVENTOUT	-
3	C3	3	A1	B1	3	3	D2	PE4	I/O	FT_h	-	TRACED1, SAI1_D2, DFSDM_DATIN3, TIM15_CH1N, SPI4_NSS, SAI1_FS_A, SAI4_FS_A, SAI4_D2, FMC_A20, DCMI_D4, LCD_B0, EVENTOUT	-
4	D3	4	C3	B2	4	4	D1	PE5	I/O	FT_h	-	TRACED2, SAI1_CK2, DFSDM_CKIN3, TIM15_CH1, SPI4_MISO, SAI1_SCK_A, SAI4_SCK_A, SAI4_CK2, FMC_A21, DCMI_D6, LCD_G0, EVENTOUT	-
5	E3	5	C2	В3	5	5	E5	PE6	I/O	FT_h	-	TRACED3, TIM1_BKIN2, SAI1_D1, TIM15_CH2, SPI4_MOSI, SAI1_SD_A, SAI4_SD_A, SAI4_D1, SAI2_MCK_B, TIM1_BKIN2_COMP12, FMC_A22, DCMI_D7, LCD_G1, EVENTOUT	-
-	-	-	M4	H10	-	-	A1	VSS	S	-	-	-	-
-	-	-	A3	-	-	-	-	VDD	S	-	-	-	-
6	B2	6	E3	C1	6	6	B1	VBAT	S	-	-	-	-
-	-	-	-	J6	-	-	B2	VSS	-	-	-	-	-
-	-	-	-	D2	7	7	E4	PI8	I/O	FT	-	EVENTOUT	RTC_TAMP_2/ RTC_TS/ WKUP3
7	A2	7	D3	D1	8	8	E3	PC13	I/O	FT	-	EVENTOUT	RTC_TAMP_1/ RTC_TS/ WKUP2
-	-	-	-	J7	-	-	B6	VSS	-	-	-	-	-

Table 8. STM32H743xI pin/ball definition

STM32H743xI

DS12110 Rev 5

577

85/231

						Table '	11. Port (C alterna	ate funct	tions						
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Port	SYS	TIM1/2/16/1 7/LPTIM1/ HRTIM1	SAI1/TIM3/ 4/5/12/ HRTIM1	LPUART/ TIM8/ LPTIM2/3/4 /5/HRTIM1/ DFSDM	I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM/CEC	SPI1/2/3/4/ 5/6/CEC	SPI2/3/SAI1 /3/I2C4/ UART4/ DFSDM	SPI2/3/6/ USART1/2/ 3/6/UART7/ SDMMC1	SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX	SAI4/ FDCAN1/2/ TIM13/14/ QUADSPI/ FMC/ SDMMC2/ LCD/ SPDIFRX	SAI2/4/ TIM8/ QUADSPI/ SDMMC2/ OTG1_HS/ OTG2_FS/ LCD	I2C4/ UART7/ SWPMI1/ TIM1/8/ DFSDM/ SDMMC2/ MDIOS/ ETH	TIM1/8/FMC /SDMMC1/ MDIOS/ OTG1_FS/ LCD	TIM1/DCMI /LCD/ COMP	UART5/ LCD	SYS
PC0	-	-	-	DFSDM_ CKIN0	-	-	DFSDM_ DATIN4	-	SAI2_FS_B	-	OTG_HS_ ULPI_STP	-	FMC_ SDNWE	-	LCD_R5	EVEN OUT
PC1	TRACED0	-	SAI1_D1	DFSDM_ DATIN0	DFSDM_ CKIN4	SPI2_ MOSI/I2S2 _SDO	SAI1_SD_A	-	SAI4_SD_ A	SDMMC2_ CK	SAI4_D1	ETH_MDC	MDIOS_ MDC	-	-	EVENT OUT
PC2	-	-	-	DFSDM_ CKIN1	-	SPI2_ MISO/I2S2 _SDI	DFSDM_CK OUT	-	-	-	OTG_HS_ ULPI_DIR	ETH_MII_ TXD2	FMC_SDNE 0	-	-	EVEN OUT
PC3	-	-	-	DFSDM_ DATIN1	-	SPI2_ MOSI/I2S2 _SDO	-	-	-	-	OTG_HS_ ULPI_NXT	ETH_MII_ TX_CLK	FMC_SDCK E0	-	-	EVEN OUT
PC4	-	-	-	DFSDM_ CKIN2	-	I2S1_MCK	-	-	-	SPDIFRX_ IN2	-	ETH_MII_ RXD0/ETH_ RMII_RXD0	FMC_SDNE 0	-	-	EVEN OUT
PC5	-	-	SAI1_D3	DFSDM_ DATIN2	-	-	-	-		SPDIFRX_ IN3	SAI4_D3	ETH_MII_ RXD1/ETH_ RMII_RXD1	FMC_SDCK E0	COMP_1_ OUT	-	EVEN OUT
PC6	-	HRTIM_CH A1	TIM3_CH1	TIM8_CH1	DFSDM_ CKIN3	I2S2_MCK	-	USART6_ TX	SDMMC1_ D0DIR	FMC_ NWAIT	SDMMC2_ D6	-	SDMMC1_ D6	DCMI_D0	LCD_ HSYNC	EVEN OUT
PC7	TRGIO	HRTIM_CH A2	TIM3_CH2	TIM8_CH2	DFSDM_ DATIN3	-	I2S3_MCK	USART6_ RX	SDMMC1_ D123DIR	FMC_NE1	SDMMC2_ D7	SWPMI_TX	SDMMC1_ D7	DCMI_D1	LCD_G6	EVEN OUT
PC8	TRACED1	HRTIM_CH B1	TIM3_CH3	TIM8_CH3	-	-	-	USART6_ CK	UART5_ RTS	FMC_NE2/ FMC_NCE	-	SWPMI_RX	SDMMC1_ D0	DCMI_D2	-	EVEN OUT
PC9	MCO2	-	TIM3_CH4	TIM8_CH4	I2C3_SDA	I2S_CKIN	-	-	UART5_ CTS	QUADSPI_ BK1_IO0	LCD_G3	SWPMI_ SUSPEND	SDMMC1_ D1	DCMI_D3	LCD_B2	EVEN OUT
PC10	-	-	HRTIM_ EEV1	DFSDM_ CKIN5	-	-	SPI3_SCK/ I2S3_CK	USART3_ TX	UART4_TX	QUADSPI_ BK1_IO1	-	-	SDMMC1_ D2	DCMI_D8	LCD_R2	EVEN OUT
PC11	-	-	HRTIM_ FLT2	DFSDM_ DATIN5	-	-	SPI3_MISO/ I2S3_SDI	USART3_ RX	UART4_RX	QUADSPI_ BK2_NCS	-	-	SDMMC1_ D3	DCMI_D4	-	EVEN OUT
PC12	TRACED3	-	HRTIM_ EEV2	-	-	-	SPI3_MOSI/ I2S3_SDO	USART3_ CK	UART5_TX	-	-	-	SDMMC1_ CK	DCMI_D9	-	EVEN OUT
PC13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN OUT

Pin descriptions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{REFINT_DIV1}	1/4 reference voltage	-	-	25	-		
V _{REFINT_DIV2}	1/2 reference voltage	-	-	50	-	% Vreeint	
V _{REFINT_DIV3}	3/4 reference voltage	-	-	75	-	VREFINT	

Table 27. Embedded reference voltage (continued)

1. The shortest sampling time for the application can be determined by multiple iterations.

2. Guaranteed by design.

Table 28.	Internal	reference	voltage	calibration values	s
	meena	101010100	vonago		•

Symbol	Parameter	Memory address
V_{REFIN} CAL	Raw data acquired at temperature of 30 °C, V_{DDA} = 3.3 V	1FF1E860 - 1FF1E861

6.3.6 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 15: Current consumption measurement scheme*.

All the run-mode current consumption measurements given in this section are performed with a CoreMark code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode.
- All peripherals are disabled except when explicitly mentioned.
- The Flash memory access time is adjusted with the minimum wait states number, depending on the f_{ACLK} frequency (refer to the table "Number of wait states according to CPU clock (f_{rcc c ck}) frequency and V_{CORE} range" available in the reference manual).
- When the peripherals are enabled, the AHB clock frequency is the CPU frequency divided by 2 and the APB clock frequency is AHB clock frequency divided by 2.

The parameters given in *Table 29* to *Table 37* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 23: General operating conditions*.

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are in analog input configuration.
- All peripherals are disabled unless otherwise mentioned.
- The I/O compensation cell is enabled.
- $f_{rcc_c_ck}$ is the CPU clock. $f_{PCLK} = f_{rcc_c_ck}/4$, and $f_{HCLK} = f_{rcc_c_ck}/2$.
 - The given value is calculated by measuring the difference of current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
 - $f_{rcc_c_ck} = 400 \text{ MHz} \text{ (Scale 1), } f_{rcc_c_ck} = 300 \text{ MHz} \text{ (Scale 2),} \\ f_{rcc_c_ck} = 200 \text{ MHz} \text{ (Scale 3)}$
- The ambient operating temperature is 25 $^\circ$ C and V_{DD}=3.3 V.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
		Program/erase parallelism x 8	-	290	580 ⁽²⁾	
+	Word (266 bits) programming	Program/erase parallelism x 16	-	180	360	
t _{prog}	time	Program/erase parallelism x 32	-	130	260	μs
		Program/erase parallelism x 64	-	100	200	
		Program/erase parallelism x 8	-	2	4	
t _{ERASE128KB}	Sector (128 KB) erase time	Program/erase parallelism x 16	-	1.8	3.6	
		Program/erase parallelism x 32	-			
	Mass erase time	Program/erase parallelism x 8	-	13	26	s
+		Program/erase parallelism x 16	-	8	16	
t _{ME}		Program/erase parallelism x 32	-	6	12	
		Program/erase parallelism x 64	-	5	10	
		Program parallelism x 8				
V	Brogramming voltage	Program parallelism x 16	1.62	-	3.6	V
V _{prog}	Programming voltage	Program parallelism x 32				v
		Program parallelism x 64	1.8	-	3.6	

Table 52. Flash memory programming	(single bank configuration nDBANK=1)

1. Guaranteed by characterization results.

2. The maximum programming time is measured after 10K erase operations.

Querra ha a l	Devenuetor	Conditions	Value	Unit	
Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit	
N _{END}	Endurance	$T_J = -40$ to +125 °C (6 suffix versions)	10	kcycles	
+	Data retention	1 kcycle at T _A = 85 °C	30	Years	
^t RET		10 kcycles at T _A = 55 °C	20	Teals	

Table 53. Flash memory endurance and data retention

1. Guaranteed by characterization results.

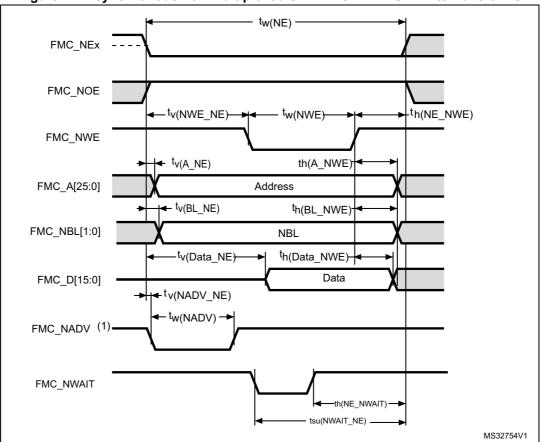


Figure 24. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

Table 66. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings ⁽¹⁾
--

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	3T _{fmc_ker_ck} − 1	3T _{fmc_ker_ck}	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{fmc_ker_ck}	T _{fmc_ker_ck} + 1	
t _{w(NWE)}	FMC_NWE low time	T _{fmc_ker_ck} - 0.5	T _{fmc_ker_ck} + 0.5	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{fmc_ker_ck}	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid -		2	
t _{h(A_NWE)}	Address hold time after FMC_NWE high T _{fmc_ke}		-	20
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	0.5	ns
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{fmc_ker_ck} - 0.5	-	
t _{v(Data_NE)}	Data to FMC_NEx low to Data valid	-	T _{fmc_ker_ck} + 2.5	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{fmc_ker_ck} +0.5	-	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0	
t _{w(NADV)}	FMC_NADV low time	-	T _{fmc_ker_ck} + 1	

1. Guaranteed by characterization results.

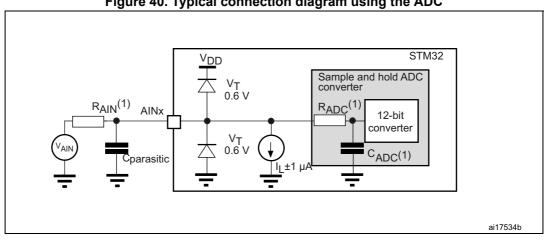


Figure 40. Typical connection diagram using the ADC

- Refer to *Table 85* for the values of R_{AIN} , R_{ADC} and C_{ADC} . 1.
- $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high $C_{parasitic}$ value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

6.3.21 DAC electrical characteristics

Symbol	Parameter	Cond	Min	Тур	Max	Unit	
V _{DDA}	Analog supply voltage	-		1.8	3.3	3.6	
V _{REF+}	Positive reference voltage	-		1.80	-	V _{DDA}	v
V _{REF-}	Negative reference voltage	-		-	V _{SSA}	-	
RL	Resistive Load	DAC output	connected to V _{SSA}	5	-	-	kΩ
		buffer ON	connected to V _{DDA}	25	-	-	
$R_0^{(2)}$	Output Impedance	DAC output	t buffer OFF	10.3	13	16	
	Output impedance sample	DAC output buffer ON	V _{DD} = 2.7 V	-	-	1.6	kΩ
R _{BON}	and hold mode, output buffer ON		V _{DD} = 2.0 V	-	-	2.6	
R _{BOFF}	Output impedance sample and hold mode, output buffer OFF	DAC output buffer OFF	V _{DD} = 2.7 V	-	-	17.8	kΩ
			V _{DD} = 2.0 V	-	-	18.7	
C _L ⁽²⁾		DAC output buffer OFF		-	-	50	pF
C _{SH} ⁽²⁾	Capacitive Load Sample and Hold mode		Hold mode	-	0.1	1	μF
V _{DAC_OUT}	Voltage on DAC_OUT	DAC output buffer ON		0.2	-	V _{REF+} -0.2	v
	ouipui	DAC output buffer OFF		0	-	V_{REF^+}	
tSETTLING	Settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes when DAC_OUT reaches the final value of ±0.5LSB, ±1LSB, ±2LSB, ±4LSB, ±8LSB)	Normal mode, D OFF, ±1LS	-	1.7 ⁽²⁾	2 ⁽²⁾	μs	
t _{WAKEUP} ⁽³⁾	Wakeup time from off state (setting the Enx bit in the DAC Control register) until the ±1LSB final value	Normal mode, D ON, C _L ≤ 50	-	5	7.5	μs	
V _{offset} ⁽²⁾	Middle code offset for 1	V _{REF+} = 3.6 V		-	850	-	μV
⊻offset` ′	trim code step	V _{REF+} = 1.8 V		-	425	-	μν

Table 87.	DAC	characteristics ⁽¹⁾
-----------	-----	--------------------------------

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
en	Voltage noise density	at 1 KHz	output loaded	-	140	-	nV/√ Hz
		at 10 KHz	with 4 kΩ	-	55	-	
I _{DDA(OPAMP)}	OPAMP consumption from	Normal mode	no Load,	-	570	1000	
	V _{DDA}	High- speed mode	quiescent mode, follower	-	610	1200	μA

Table 96. OPAMP characteristics⁽¹⁾ (continued)

1. Guaranteed by design, unless otherwise specified.

2. R_{LOAD} is the resistive load connected to VSSA or to VDDA.

3. R2 is the internal resistance between the OPAMP output and th OPAMP inverting input. R1 is the internal resistance between the OPAMP inverting input and ground. PGA gain = 1 + R2/R1.

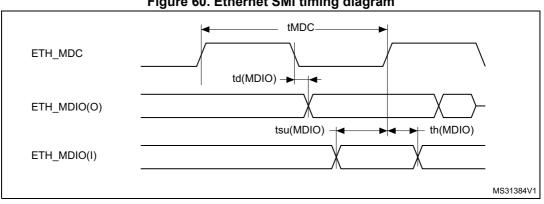


Figure 60. Ethernet SMI timing diagram

Table 112 gives the list of Ethernet MAC signals for the RMII and Figure 61 shows the corresponding timing diagram.

Symbol	Parameter	Min	Тур	Мах	Unit
t _{su(RXD)}	Receive data setup time	2	-	-	
t _{ih(RXD)}	Receive data hold time	3	-	-	
t _{su(CRS)}	Carrier sense setup time	2.5	-	-	ns
t _{ih(CRS)}	Carrier sense hold time	2	-	-	115
t _{d(TXEN)}	Transmit enable valid delay time	4	4.5	7	
t _{d(TXD)}	Transmit data valid delay time	7	7.5	11.5	

Table 112. Dynamics characteristics: Ethernet MAC signals for RMII⁽¹⁾

1. Guaranteed by characterization results.

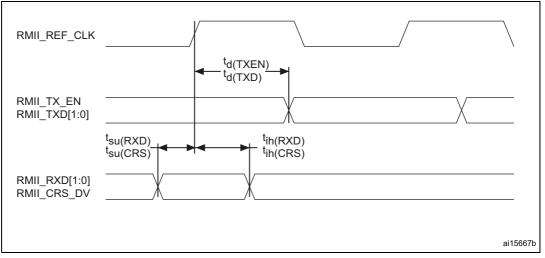
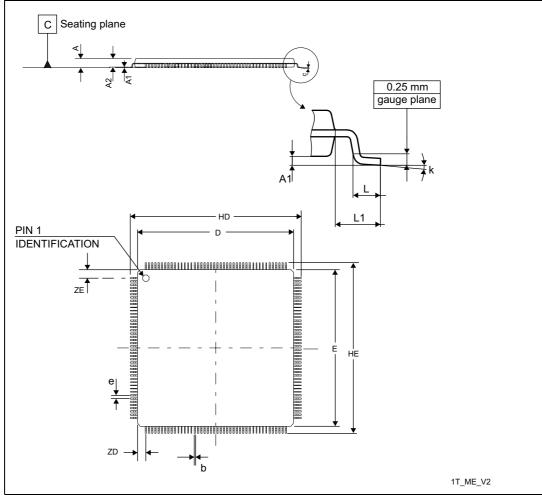


Table 113 gives the list of Ethernet MAC signals for MII and Figure 62 shows the corresponding timing diagram.



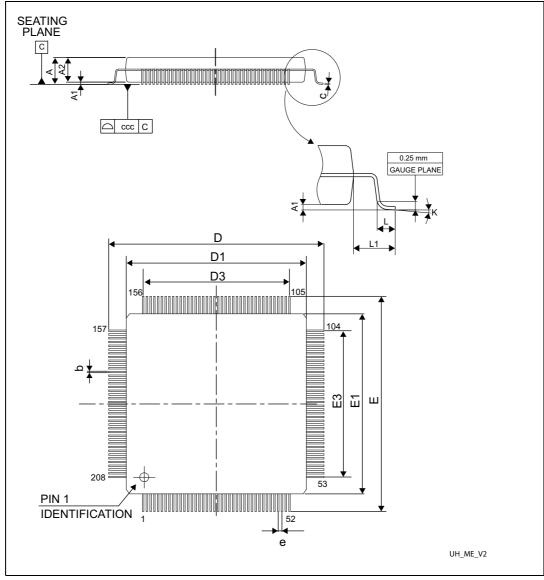
9···· ··· · · · · · · · · · · · · · · ·							
Symbol	millimeters			inches ⁽¹⁾			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
F	0.450	0.500	0.550	0.0177	0.0197	0.0217	
ddd	-	-	0.100	-	-	0.0039	
eee	-	-	0.150	-	-	0.0059	
fff	-	-	0.050	-	-	0.0020	

Table 120. UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ballgrid array package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

7.5 LQFP176 package information

Figure 75. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline


1. Drawing is not to scale.

DS12110 Rev 5

7.6 LQFP208 package information

Figure 78. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package outline

1. Drawing is not to scale.

7.8 **TFBGA240+25** package information

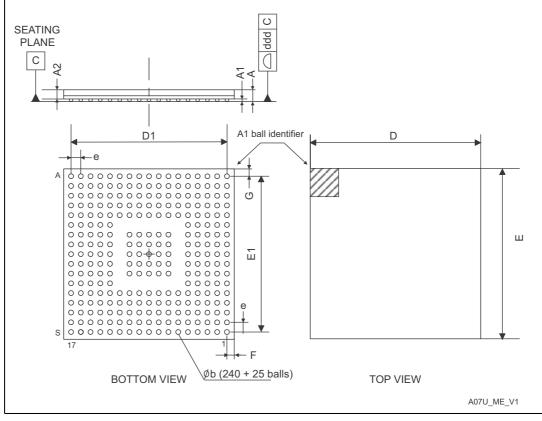


Figure 84. TFBGA - 240+25 ball, 14x14 mm, 0.8 mm pitch, fine pitch ball grid array package outline

1. Dimensions are expressed in millimeters.

