

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	C1665V2
Core Size	16-Bit
Speed	20MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	PWM, WDT
Number of I/O	79
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 2.7V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	PG-TQFP-100-16
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc164n-16f20f-bb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Summary of Features 1
2 2.1 2.2	General Device Information 4 Introduction 4 Pin Configuration and Definition 5
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16	Functional Description14Memory Subsystem and Organization15External Bus Controller17Central Processing Unit (CPU)18Interrupt System20On-Chip Debug Support (OCDS)25Capture/Compare Units (CAPCOM1/2)26The Capture/Compare Unit CAPCOM629General Purpose Timer (GPT12E) Unit30Real Time Clock33Asynchronous/Synchronous Serial Interfaces (ASC0/ASC1)36High Speed Synchronous Serial Channels (SSC0/SSC1)36Watchdog Timer37Parallel Ports37Power Management40Instruction Set Summary41
4 4.1 4.2 4.3 4.4 4.5	Electrical Parameters43Absolute Maximum Ratings43Package Properties43Operating Conditions44Parameter Interpretation45DC Parameters46
5 5.1 5.2 5.3 5.4	Timing Parameters52Definition of Internal Timing52External Clock Drive XTAL155Testing Waveforms56AC Characteristics57
6	Packaging

Table 2 Pin Definitions and Functions				
Symbo I	Pin Num.	Input Outp.	Function	
RSTIN	1	1	Reset Input with Schmitt-Trigger characteristics. A low level at this pin while the oscillator is running resets the XC164N. A spike filter suppresses input pulses <10 ns. Input pulses >100 ns safely pass the filter. The minimum duration for a safe recognition should be 100 ns + 2 CPU clock cycles. <i>Note: The reset duration must be sufficient to let the hardware configuration signals settle.</i> <u>External circuitry must guarantee low level at the RSTIN pin at least until both power supply voltages have reached the operating range.</u>	
P20.12	2	10	For details, please refer to the description of P20.	
NMI	3	1	Non-Maskable Interrupt Input. A high to low transition at this pin causes the CPU to vector to the NMI trap routine. When the PWRDN (power down) instruction is executed, the NMI pin must be low in order to force the XC164N into power down mode. If NMI is high, when PWRDN is executed, the part will continue to run in normal mode. If not used, pin NMI should be pulled high externally.	
P0H.0- P0H.3	47	Ю	For details, please refer to the description of PORT0 .	

Table 2	Pi	n Definit	finitions and Functions (cont'd)					
Symbo I	Pin Num.	Input Outp.	Function	Function				
P9		IO	programm state) or or driver). The or special)	Port 9 is a 6-bit bidirectional I/O port. Each pin can be programmed for input (output driver in high-impedance state) or output (configurable as push/pull or open drain driver). The input threshold of Port 9 is selectable (standard or special).				
P9.0	10	I/O	CC16IO	ing Port 9 pins also serve for alternate functions: CAPCOM2: CC16 Capture Inp./Compare Outp.,				
P9.1	11	I I/O	EX7IN CC17IO	Fast External Interrupt 7 Input (alternate pin B) CAPCOM2: CC17 Capture Inp./Compare Outp.,				
P9.2	12	I I/O	EX6IN CC18IO	Fast External Interrupt 6 Input (alternate pin B) CAPCOM2: CC18 Capture Inp./Compare Outp.,				
P9.3	13	I I/O	EX7IN CC19IO	Fast External Interrupt 7 Input (alternate pin A) CAPCOM2: CC19 Capture Inp./Compare Outp.,				
P9.4 P9.5	14 15	 /O /O	EX6IN CC20IO CC21IO	Fast External Interrupt 6 Input (alternate pin A) CAPCOM2: CC20 Capture Inp./Compare Outp. CAPCOM2: CC21 Capture Inp./Compare Outp.				
P5		I	Port 5 is a 14-bit input-only port. Some pins of Port 5 serve as timer inputs:					
P5.0	18	I	No Alterna	te Function beside General Purpose Input				
P5.1	19	I		te Function beside General Purpose Input				
P5.2	20			te Function beside General Purpose Input				
P5.3	21			te Function beside General Purpose Input				
P5.4	22			te Function beside General Purpose Input				
P5.5 P5.10	23 24		T6EUD T5EUD	GPT2 Timer T6 Ext. Up/Down Ctrl. Inp. GPT2 Timer T5 Ext. Up/Down Ctrl. Inp.				
P5.10 P5.11	24 25							
P5.6	26							
P5.7	27		T6IN	GPT2 Timer T6 Count/Gate Input				
P5.12	30	1	T5IN	GPT2 Timer T5 Count/Gate Input				
P5.13	31	1	T4EUD	GPT1 Timer T4 Ext. Up/Down Ctrl. Inp.				
P5.14	32	I	T2EUD	GPT1 Timer T2 Ext. Up/Down Ctrl. Inp.				
P5.15	33	Ι						

., ., . : 4 : ----. . .. , -

Table 2	Pi	n Definit	tions and F	u nctions (cont'd)		
Symbo I	Pin Num.	Input Outp.	Function			
P4		IO	Port 4 is an 8-bit bidirectional I/O port. Each pin can be programmed for input (output driver in high-impedance state) or output (configurable as push/pull or open drain driver). The input threshold of Port 4 is selectable (standard or special). Port 4 can be used to output the segment address lines, the optional chip select lines, and for serial interface lines:			
P4.0	53	0 0	<u>A16</u> CS3	Least Significant Segment Address Line, Chip Select 3 Output		
P4.1	54	0 0	<u>A17</u> CS2	Segment Address Line, Chip Select 2 Output		
P4.2	55	0 0	A18 CS1	Segment Address Line, Chip Select 1 Output		
P4.3	56	0 0	<u>A19</u> CS0	Segment Address Line, Chip Select 0 Output		
P4.4	57	0	A20	Segment Address Line,		
P4.5	58	I O	EX5IN A21	Fast External Interrupt 5 Input (alternate pin B) Segment Address Line,		
P4.6	59	I O	EX4IN A22	Fast External Interrupt 4 Input (alternate pin B) Segment Address Line,		
P4.7	60	I O	EX5IN A23	Fast External Interrupt 5 Input (alternate pin A) Most Significant Segment Address Line,		
		I	EX4IN	Fast External Interrupt 4 Input (alternate pin A)		

Table 2	Pi	n Definit	ions and Functions (cont'd)			
Symbo I	Pin Num.	Input Outp.	Function			
PORT1		IO	continued			
(cont'd)						
P1H.0	89	I		CAPCOM6: Position 0 Input,		
		I		Fast External Interrupt 0 Input (default pin),		
		I/O		CAPCOM2: CC23 Capture Inp./Compare Outp.		
P1H.1	90			CAPCOM6: Position 1 Input,		
				Fast External Interrupt 1 Input (default pin),		
DALLO	A 4	I/O		SSC1 Master-Receive/Slave-Transmit In/Out.		
P1H.2	91			CAPCOM6: Position 2 Input,		
		 /O		Fast External Interrupt 2 Input (default pin),		
P1H.3	92			SSC1 Master-Transmit/Slave-Receive Out/Inp. CAPCOM2: Timer T7 Count Input,		
г іп.э	92	1/O		SSC1 Master Clock Output / Slave Clock Input,		
		1/0		Fast External Interrupt 3 Input (default pin),		
				Fast External Interrupt 0 Input (alternate pin A)		
P1H.4	93	1/0		CAPCOM2: CC24 Capture Inp./Compare Outp.,		
	00	1		Fast External Interrupt 4 Input (default pin)		
P1H.5	94	I/O		CAPCOM2: CC25 Capture Inp./Compare Outp.,		
		1		Fast External Interrupt 5 Input (default pin)		
P1H.6	95	I/O		CAPCOM2: CC26 Capture Inp./Compare Outp.,		
		I	EX6IN	Fast External Interrupt 6 Input (default pin)		
P1H.7	96	I/O	CC27IO	CAPCOM2: CC27 Capture Inp./Compare Outp.,		
		1	EX7IN	Fast External Interrupt 7 Input (default pin)		
XTAL2	99	0	XTAL2:	Output of the oscillator amplifier circuit		
XTAL1	100	1	XTAL1:	Input to the oscillator amplifier and input to		
			1	the internal clock generator		
			To clock the	device from an external source, drive XTAL1,		
			-	g XTAL2 unconnected. Minimum and maximum		
			-	rise/fall times specified in the AC		
			Characterist	ics must be observed.		
res	28	-	pin is reserv	pin is reserved and connected to $V_{\rm DDP}$		
res	29	-	pin is reserv	ed and connected to V_{SSP}		
V_{DDI}	35, 97	-	Digital Core Supply Voltage (On-Chip Modules):			
			+2.5 V during normal operation and idle mode.			
			Please refer	to the Operating Conditions		

Table 2	Table 2Pin Definitions and Functions (cont'd)						
Symbo I	Pin Num.	Input Outp.	Function				
V_{DDP}	9, 17, 38, 61, 87	-	Digital Pad Supply Voltage (Pin Output Drivers): +5 V during normal operation and idle mode. Please refer to the Operating Conditions				
$V_{\rm SSI}$	34, 98	-	Digital Ground.				
$V_{\rm SSP}$	8, 16, 37,62, 88	-	Connect decoupling capacitors to adjacent $V_{\rm DD}/V_{\rm SS}$ pin pairs as close as possible to the pins. All $V_{\rm SS}$ pins must be connected to the ground-line or ground- plane.				

3.2 External Bus Controller

All of the external memory accesses are performed by a particular on-chip External Bus Controller (EBC). It can be programmed either to Single Chip Mode when no external memory is required, or to one of four different external memory access modes¹), which are as follows:

- 16 ... 24-bit Addresses, 16-bit Data, Demultiplexed
- 16 ... 24-bit Addresses, 16-bit Data, Multiplexed
- 16 ... 24-bit Addresses, 8-bit Data, Multiplexed
- 16 ... 24-bit Addresses, 8-bit Data, Demultiplexed

In the demultiplexed bus modes, addresses are output on PORT1 and data is input/output on PORT0 or P0L, respectively. In the multiplexed bus modes both addresses and data use PORT0 for input/output. The high order address (segment) lines use Port 4. The number of active segment address lines is selectable, restricting the external address space to 8 Mbytes ... 64 Kbytes. This is required when interface lines are assigned to Port 4.

Up to 4 external \overline{CS} signals (3 windows plus default) can be generated in order to save external glue logic. External modules can directly be connected to the common address/data bus and their individual select lines.

Important timing characteristics of the external bus interface have been made programmable (via registers TCONCSx/FCONCSx) to allow the user the adaption of a wide range of different types of memories and external peripherals.

In addition, up to 4 independent address windows may be defined (via registers ADDRSELx) which control the access to different resources with different bus characteristics. These address windows are arranged hierarchically where window 4 overrides window 3, and window 2 overrides window 1. All accesses to locations not covered by these 4 address windows are controlled by TCONCS0/FCONCS0. The currently active window can generate a chip select signal.

The external bus timing is related to the rising edge of the reference clock output CLKOUT. The external bus protocol is compatible with that of the standard C166 Family.

The EBC also controls accesses to resources connected to the on-chip LXBus. The LXBus is an internal representation of the external bus and allows accessing integrated peripherals and modules in the same way as external components.

¹⁾ Bus modes are switched dynamically if several address windows with different mode settings are used.

3.4 Interrupt System

With an interrupt response time of typically 8 CPU clocks (in case of internal program execution), the XC164N is capable of reacting very fast to the occurrence of non-deterministic events.

The architecture of the XC164N supports several mechanisms for fast and flexible response to service requests that can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

In contrast to a standard interrupt service where the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source, or the destination pointer, or both. An individual PEC transfer counter is implicitly decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source related vector location. PEC services are very well suited, for example, for supporting the transmission or reception of blocks of data. The XC164N has 8 PEC channels each of which offers such fast interrupt-driven data transfer capabilities.

A separate control register which contains an interrupt request flag, an interrupt enable flag and an interrupt priority bitfield exists for each of the possible interrupt nodes. Via its related register, each node can be programmed to one of sixteen interrupt priority levels. Once having been accepted by the CPU, an interrupt service can only be interrupted by a higher prioritized service request. For the standard interrupt processing, each of the possible interrupt nodes has a dedicated vector location.

Fast external interrupt inputs are provided to service external interrupts with high precision requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling edge, or both edges).

Software interrupts are supported by means of the 'TRAP' instruction in combination with an individual trap (interrupt) number.

Table 4 shows all of the possible XC164N interrupt sources and the corresponding hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.

Note: Interrupt nodes which are not assigned to peripherals (unassigned nodes), may be used to generate software controlled interrupt requests by setting the respective interrupt request bit (xIR).

Table 4XC164N Interrupt Nodes (cont'd)

Source of Interrupt or PEC Service Request	Control Register	Vector Location ¹⁾	Trap Number
CAPCOM6 Timer T13	CCU6_T13IC	xx'0138 _H	4E _H / 78 _D
CAPCOM6 Emergency	CCU6_EIC	xx'013C _H	4F _H / 79 _D
CAPCOM6	CCU6_IC	xx'0140 _H	50 _H / 80 _D
SSC1 Transmit	SSC1_TIC	xx'0144 _H	51 _H / 81 _D
SSC1 Receive	SSC1_RIC	xx'0148 _H	52 _H / 82 _D
SSC1 Error	SSC1_EIC	xx'014C _H	53 _H / 83 _D
Unassigned node		xx'0150 _H	54 _H / 84 _D
Unassigned node		xx'0154 _H	55 _H / 85 _D
Unassigned node		xx'0158 _H	56 _H / 86 _D
Unassigned node		xx'015C _H	57 _H / 87 _D
Unassigned node		xx'0164 _H	59 _H / 89 _D
Unassigned node		xx'0168 _H	5A _H / 90 _D
Unassigned node		xx'016C _H	5B _H / 91 _D
Unassigned node		xx'0170 _H	5C _H / 92 _D
Unassigned node		xx'0174 _H	5D _H / 93 _D
Unassigned node		xx'0100 _H	40 _H / 64 _D
Unassigned node		xx'0104 _H	41 _H / 65 _D
Unassigned node		xx'012C _H	4B _H / 75 _D
Unassigned node		xx'00FC _H	3F _H / 63 _D
Unassigned node		xx'0160 _H	58 _H / 88 _D

 Register VECSEG defines the segment where the vector table is located to. Bitfield VECSC in register CPUCON1 defines the distance between two adjacent vectors. This table represents the default setting, with a distance of 4 (two words) between two vectors.

2) The interrupt nodes assigned to ASC1 are only available in derivatives including the ASC1. Otherwise, they are unassigned nodes.

The XC164N also provides an excellent mechanism to identify and to process exceptions or error conditions that arise during run-time, so-called 'Hardware Traps'. Hardware traps cause immediate non-maskable system reaction which is similar to a standard interrupt service (branching to a dedicated vector table location). The occurence of a hardware trap is additionally signified by an individual bit in the trap flag register (TFR). Except when another higher prioritized trap service is in progress, a hardware trap will interrupt any actual program execution. In turn, hardware trap services can normally not be interrupted by standard or PEC interrupts.

Table 5 shows all of the possible exceptions or error conditions that can arise during runtime:

Exception Condition	Trap Flag	Trap Vector	Vector Location ¹⁾	Trap Number	Trap Priority
Reset Functions: – Hardware Reset – Software Reset – W-dog Timer Overflow	-	RESET RESET RESET	xx'0000 _H xx'0000 _H xx'0000 _H	00 _H 00 _H 00 _H	
Class A Hardware Traps: – Non-Maskable Interrupt – Stack Overflow – Stack Underflow – Software Break	NMI STKOF STKUF SOFTBRK	NMITRAP STOTRAP STUTRAP SBRKTRAP	xx'0008 _H xx'0010 _H xx'0018 _H xx'0020 _H	02 _H 04 _H 06 _H 08 _H	
 Class B Hardware Traps: Undefined Opcode PMI Access Error Protected Instruction Fault Illegal Word Operand Access 	UNDOPC PACER PRTFLT ILLOPA	BTRAP BTRAP BTRAP BTRAP	xx'0028 _H xx'0028 _H xx'0028 _H xx'0028 _H	OA _H OA _H OA _H OA _H	
Reserved	_	-	[2C _H – 3C _H]	[0B _H – 0F _H]	-
Software Traps TRAP Instruction 	_	-	Any [$xx'0000_H - xx'01FC_H$] in steps of 4_H	Any [00 _н – 7F _н]	Current CPU Priority

Table 5Hardware Trap Summary

1) Register VECSEG defines the segment where the vector table is located to.

3.5 On-Chip Debug Support (OCDS)

The On-Chip Debug Support system provides a broad range of debug and emulation features built into the XC164N. The user software running on the XC164N can thus be debugged within the target system environment.

The OCDS is controlled by an external debugging device via the debug interface, consisting of the IEEE-1149-conforming JTAG port and a break interface. The debugger controls the OCDS via a set of dedicated registers accessible via the JTAG interface. Additionally, the OCDS system can be controlled by the CPU, e.g. by a monitor program. An injection interface allows the execution of OCDS-generated instructions by the CPU.

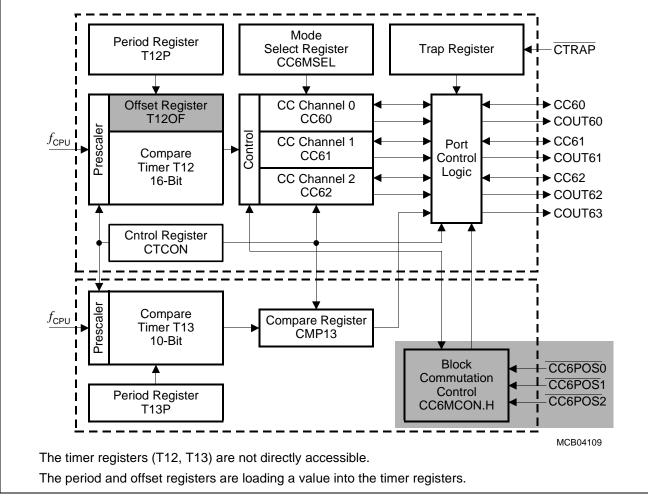
Multiple breakpoints can be triggered by on-chip hardware, by software, or by an external trigger input. Single stepping is supported as well as the injection of arbitrary instructions and read/write access to the complete internal address space. A breakpoint trigger can be answered with a CPU-halt, a monitor call, a data transfer, or/and the activation of an external signal.

Tracing data can be obtained via the JTAG interface or via the external bus interface for increased performance.

The debug interface uses a set of 6 interface signals (4 JTAG lines, 2 break lines) to communicate with external circuitry. These interface signals are realized as alternate functions on Port 3 pins.

Complete system emulation is supported by the New Emulation Technology (NET) interface. Via this full-featured emulation interface (including internal buses, control, status, and pad signals) the XC164N chip can be connected to a NET carrier chip.

The use of the XC164N production chip together with the carrier chip provides superior emulation behavior, because the emulation system shows exactly the same functionality as the production chip (use of the identical silicon).


3.7 The Capture/Compare Unit CAPCOM6

The CAPCOM6 unit supports generation and control of timing sequences on up to three 16-bit capture/compare channels plus one independent 10-bit compare channel.

In compare mode the CAPCOM6 unit provides two output signals per channel which have inverted polarity and non-overlapping pulse transitions (deadtime control). The compare channel can generate a single PWM output signal and is further used to modulate the capture/compare output signals.

In capture mode the contents of compare timer T12 is stored in the capture registers upon a signal transition at pins CCx.

Compare timers T12 (16-bit) and T13 (10-bit) are free running timers which are clocked by the prescaled system clock.

Figure 6 CAPCOM6 Block Diagram

For motor control applications both subunits may generate versatile multichannel PWM signals which are basically either controlled by compare timer T12 or by a typical hall sensor pattern at the interrupt inputs (block commutation).

3.16 Instruction Set Summary

 Table 8 lists the instructions of the XC164N in a condensed way.

The various addressing modes that can be used with a specific instruction, the operation of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the "Instruction Set Manual".

This document also provides a detailled description of each instruction.

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16-16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
(X)OR(B)	Bitwise (exclusive)OR, (word/byte operands)	2/4
BCLR / BSET	Clear/Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND / BOR / BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH / BFLDL	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL / SHR	Shift left/right direct word GPR	2
ROL / ROR	Rotate left/right direct word GPR	2
ASHR	Arithmetic (sign bit) shift right direct word GPR	2
MOV(B)	Move word (byte) data	2/4
MOVBS/Z	Move byte operand to word op. with sign/zero extension	2/4

Table 8 Instruction Set Summary

4.3 Operating Conditions

The following operating conditions must not be exceeded to ensure correct operation of the XC164N. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Parameter	Symbol	Limit	Values	Unit	Notes
		min.	max.		
Digital supply voltage for the core	V _{DDI}	2.35	2.7	V	Active mode, $f_{CPU} = f_{CPUmax}^{1)}$
Digital supply voltage for IO pads	V_{DDP}	4.4	5.5	V	Active mode
Supply Voltage Difference	$\Delta V_{\rm DD}$	-0.5	-	V	$V_{\rm DDP}$ - $V_{\rm DDI}^{4)}$
Digital ground voltage	V _{SS}		0	V	Reference voltage
Overload current	I _{OV}	-5	5	mA	Per IO pin ⁵⁾⁶⁾
		-2	5	mA	Per analog input pin ⁵⁾⁶⁾
Overload current coupling	K _{OVA}	_	1.0 × 10 ⁻⁴	_	<i>I</i> _{OV} > 0
factor for analog inputs ⁷⁾		_	1.5 × 10 ⁻³	-	<i>I</i> _{OV} < 0
Overload current coupling	K _{OVD}	-	5.0 × 10 ⁻³	-	<i>I</i> _{OV} > 0
factor for digital I/O pins ⁷⁾		-	1.0 × 10 ⁻²	-	<i>I</i> _{OV} < 0
Absolute sum of overload currents	$\Sigma I_{OV} $	_	50	mA	6)
External Load Capacitance	CL	_	50	pF	Pin drivers in default mode ⁸⁾
Ambient temperature	T _A	0	70	°C	SAB-XC164N
		-40	85	°C	SAF-XC164N
		-40	125	°C	SAK-XC164N

Table 11	Operating	Condition	Parameters
	J		

1) $f_{CPUmax} = 40 \text{ MHz}$ for devices marked ...40F, $f_{CPUmax} = 20 \text{ MHz}$ for devices marked ...20F.

2) External circuitry must guarantee low level at the RSTIN pin at least until both power supply voltages have reached the operating level.

3) The specified voltage range is allowed for operation. The range limits may be reached under extreme operating conditions. However, specified parameters, such as leakage currents, refer to the standard operating voltage range of V_{DDP} = 4.75 V to 5.25 V.

4) This limitation must be fulfilled under all operating conditions including power-ramp-up, power-ramp-down, and power-save modes.

4.5 DC Parameters

DC Characteristics

(Operating Conditions apply)¹⁾

Parameter	Symbol		Limit Values		Unit	Test Condition	
			min.	max.			
Input low voltage TTL (all except XTAL1)	V_{IL}	SR	-0.5	0.2×V _{DDP} - 0.1	V	-	
Input low voltage XTAL1	V_{ILC}	SR	-0.5	$0.3 imes V_{ m DDI}$	V	-	
Input low voltage (Special Threshold)	V _{ILS}	SR	-0.5	$0.45 \times V_{\text{DDP}}$	V	2)	
Input high voltage TTL (all except XTAL1)	V_{IH}	SR	0.2×V _{DDP} + 0.9	V _{DDP} + 0.5	V	-	
Input high voltage XTAL1	V _{IHC}	SR	$0.7 \times V_{ m DDI}$	V _{DDI} + 0.5	V	_	
Input high voltage (Special Threshold)	V _{IHS}	SR	0.8×V _{DDP} - 0.2	V _{DDP} + 0.5	V	2)	
Input Hysteresis (Special Threshold)	HYS		$0.04 \times V_{\text{DDP}}$	_	V	V_{DDP} in [V], Series resis- tance = 0 Ω^{2}	
Output low voltage	V_{OL}	CC	_	1.0	V	$I_{\rm OL} \leq I_{\rm OLmax}^{3)}$	
			-	0.45	V	$I_{\rm OL} \leq I_{\rm OLnom}^{3) 4)$	
Output high voltage ⁵⁾	V _{OH}	CC	V _{DDP} - 1.0	-	V	$I_{\rm OH} \ge I_{\rm OHmax}^{3)}$	
			V _{DDP} - 0.45	_	V	$I_{\text{OH}} \ge I_{\text{OHnom}}^{3) 4}$	
Input leakage current (Port 5) ⁶⁾	I _{OZ1}	CC	-	±300	nA	$0 V < V_{IN} < V_{DDP,}$ $T_A \le 125 \text{ °C}$	
				±200	nA	$0 V < V_{IN} < V_{DDP,}$ $T_A \le 85 \ ^{\circ}C^{12)}$	
Input leakage current (all other) ⁶⁾	I _{OZ2}		_	±500	nA	$0.45 \text{ V} < V_{\text{IN}} < V_{\text{DDP}}$	
Configuration pull-up current ⁷⁾	I _{CPUF}	8) I	_	-10	μA	$V_{\rm IN} = V_{\rm IHmin}$	
	I _{CPUL}	9)	-100	-	μA	$V_{\rm IN} = V_{\rm ILmax}$	

DC Characteristics (cont'd)

(Operating Conditions apply)¹⁾

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	max.			
Configuration pull-down	I _{CPDL} ⁸⁾	_	10	μA	$V_{\rm IN} = V_{\rm ILmax}$	
current ¹⁰⁾	I _{CPDH} ⁹⁾	120	_	μA	$V_{\rm IN} = V_{\rm IHmin}$	
Level inactive hold current ¹¹⁾	I _{LHI} ⁸⁾	-	-10	μA	$V_{\text{OUT}} = 0.5 \times V_{\text{DDP}}$	
Level active hold current ¹¹⁾	$I_{\rm LHA}^{(9)}$	-100	_	μA	$V_{\rm OUT}$ = 0.45 V	
XTAL1 input current	I _{IL} CC	_	±20	μA	$0 V < V_{IN} < V_{DDI}$	
Pin capacitance ¹²⁾ (digital inputs/outputs)	C _{IO} CC	_	10	pF		

1) Keeping signal levels within the limits specified in this table, ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current I_{OV} .

2) This parameter is tested for P2, P3, P4, P9.

 The maximum deliverable output current of a port driver depends on the selected output driver mode, see Table 12, Current Limits for Port Output Drivers. The limit for pin groups must be respected.

4) As a rule, with decreasing output current the output levels approach the respective supply level ($V_{OL} \rightarrow V_{SS}$, $V_{OH} \rightarrow V_{DDP}$). However, only the levels for nominal output currents are guaranteed.

- 5) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.
- 6) An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor K_{OV} .
- 7) This specification is valid during Reset for configuration on \overline{RD} , \overline{WR} , \overline{EA} , PORT0.
- 8) The maximum current may be drawn while the respective signal line remains inactive.
- 9) The minimum current must be drawn to drive the respective signal line active.
- 10) This specification is valid during Reset for configuration on ALE.
- 11) This specification is valid during Reset for pins P4.3-0, which can act as \overline{CS} outputs.
- 12) Not subject to production test verified by design/characterization.

Port Output Driver Mode	Maximum Output Current $(I_{OLmax}, -I_{OHmax})^{1}$	Nominal Output Current (<i>I</i> _{OLnom} , - <i>I</i> _{OHnom})
Strong driver	10 mA	2.5 mA
Medium driver	4.0 mA	1.0 mA
Weak driver	0.5 mA	0.1 mA

Table 12 Current Limits for Port Output Drivers

1) An output current above $|I_{OXnom}|$ may be drawn from up to three pins at the same time. For any group of 16 neighboring port output pins the total output current in each direction (ΣI_{OL} and ΣI_{OH}) must remain below 50 mA.

Power Consumption XC164N

(Operating Conditions apply)

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	max.			
Power supply current (active) with all peripherals active	I _{DDI}	-	15 + 2.6 × f _{CPU}	mA	¹⁾ f _{CPU} in [MHz] ²⁾	
Pad supply current	I _{DDP}	-	5	mA	3)	
Idle mode supply current with all peripherals active	I _{IDX}	-	15 + 1.2 × f _{CPU}	mA	$f_{\rm CPU}$ in [MHz] ²⁾	
Sleep and Power-down mode supply current caused by leakage ⁴⁾	I _{PDL} ⁵⁾	_	128,000 × e ^{-α}	mA	$V_{\text{DDI}} = V_{\text{DDImax}}^{6)}$ $T_{\text{J}} \text{ in [°C]}$ $\alpha =$ $4670/(273+T_{\text{J}})$	
Sleep and Power-down mode supply current caused by leakage and the RTC running, clocked by the main oscillator ⁴⁾	<i>I</i> _{PDM} ⁷⁾	-	0.6 + 0.02×f _{OSC} + I _{PDL}	mA	$V_{\text{DDI}}=V_{\text{DDImax}}$ f_{OSC} in [MHz]	

1) During Flash programming or erase operations the supply current is increased by max. 5 mA.

2) The supply current is a function of the operating frequency. This dependency is illustrated in Figure 10. These parameters are tested at V_{DDImax} and maximum CPU clock frequency with all outputs disconnected and all inputs at V_{IL} or V_{IH} .

- 3) The pad supply voltage pins (V_{DDP}) mainly provides the current consumed by the pin output drivers. A small amount of current is consumed even though no outputs are driven, because the drivers' input stages are switched and also the Flash module draws some power from the V_{DDP} supply.
- 4) The total supply current in Sleep and Power-down mode is the sum of the temperature dependent leakage current and the frequency dependent current for RTC and main oscillator (if active).

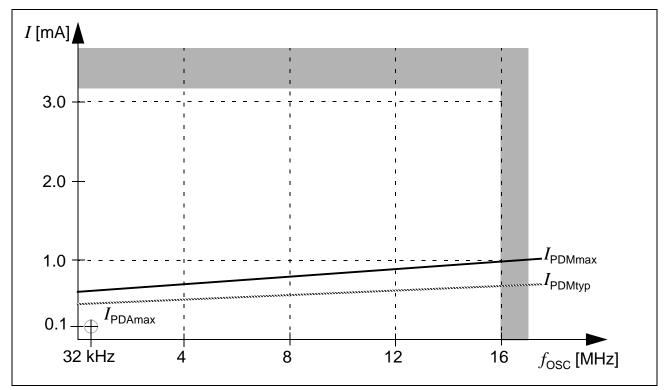


Figure 11 Sleep and Power Down Supply Current due to RTC and Oscillator running, as a Function of Oscillator Frequency

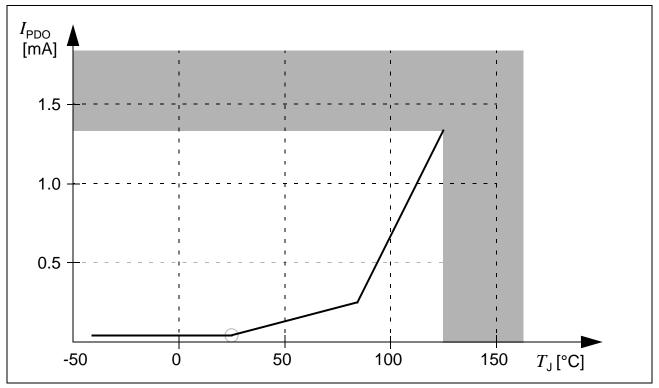


Figure 12 Sleep and Power Down Leakage Supply Current as a Function of Temperature

Timing Parameters

5 Timing Parameters

5.1 Definition of Internal Timing

The internal operation of the XC164N is controlled by the internal master clock f_{MC} .

The master clock signal $f_{\rm MC}$ can be generated from the oscillator clock signal $f_{\rm OSC}$ via different mechanisms. The duration of master clock periods (TCMs) and their variation (and also the derived external timing) depend on the used mechanism to generate $f_{\rm MC}$. This influence must be regarded when calculating the timings for the XC164N.

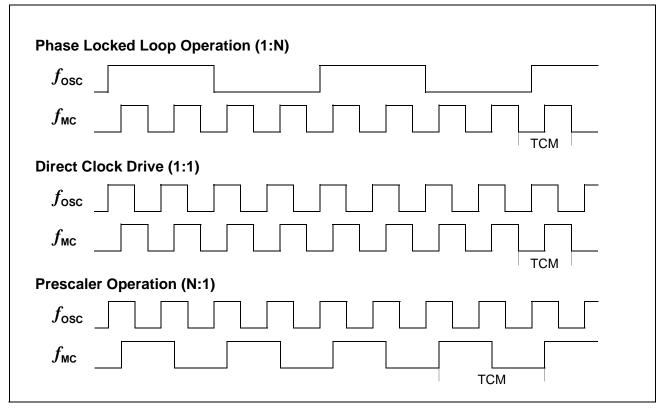


Figure 13 Generation Mechanisms for the Master Clock

Note: The example for PLL operation shown in **Figure 13** refers to a PLL factor of 1:4, the example for prescaler operation refers to a divider factor of 2:1.

The used mechanism to generate the master clock is selected by register PLLCON.

CPU and EBC are clocked with the CPU clock signal f_{CPU} . The CPU clock can have the same frequency as the master clock ($f_{CPU} = f_{MC}$) or can be the master clock divided by two: $f_{CPU} = f_{MC}$ / 2. This factor is selected by bit CPSYS in register SYSCON1.

The specification of the external timing (AC Characteristics) depends on the period of the CPU clock, called "TCP".

The other peripherals are supplied with the system clock signal f_{SYS} which has the same frequency as the CPU clock signal f_{CPU} .

Timing Parameters

Table 17 External Bus Cycle Timing (Operating Conditions apply)

Parameter	Symbol		Limits		Unit
			min.	max.	
Output valid delay for: RD, WR(L/H)	<i>tc</i> ₁₀	CC	1	15	ns
Output valid delay for: BHE, ALE	<i>tc</i> ₁₁	CC	-1	8	ns
Output valid delay for: A23A16, A15A0 (on PORT1)	<i>tc</i> ₁₂	CC	3	18	ns
Output valid delay for: A15A0 (on PORT0)	<i>tc</i> ₁₃	CC	3	18	ns
Output valid delay for: CS	<i>tc</i> ₁₄	CC	3	16	ns
Output valid delay for: D15D0 (write data, mux-mode)	<i>tc</i> ₁₅	CC	3	19	ns
Output valid delay for: D15D0 (write data, demux-mode)	<i>tc</i> ₁₆	CC	2	16	ns
Output hold time for: RD, WR(L/H)	<i>tc</i> ₂₀	CC	-3	4	ns
Output hold time for: BHE, ALE	<i>tc</i> ₂₁	CC	0	11	ns
Output hold time for: A23A16, A15A0 (on PORT0)	<i>tc</i> ₂₃	CC	1	13	ns
Output hold time for: CS	<i>tc</i> ₂₄	CC	-2	4	ns
Output hold time for: D15D0 (write data)	<i>tc</i> ₂₅	CC	1	13	ns
Input setup time for: D15D0 (read data)	<i>tc</i> ₃₀	SR	29	-	ns
Input hold time D15…D0 (read data) ¹⁾	<i>tc</i> ₃₁	SR	-5	-	ns

 Read data are latched with the same (internal) clock edge that triggers the address change and the rising edge of RD. Therefore address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can be removed after the rising edge of RD

Note: The shaded parameters have been verified by characterization. They are not subject to production test.