

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	56800E
Core Size	16-Bit
Speed	32MHz
Connectivity	I²C, LINbus, SCI, SPI
Peripherals	POR, PWM, WDT
Number of I/O	26
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc56f8033vlc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

In Table 2-2, peripheral pins in bold identify reset state.

			Periph	erals:									
Pin #	Pin Name	Signal Name	GPIO	I2C	QSCI	QSPI	ADC	PWM	Quad Timer	Comp	Power & Ground	JTAG	Misc.
1	GPIOB6	GPIOB6, RXD0, SDA, CLKIN	B6	SDA	RXD0								CLKIN
2	GPIOB1	GPIOB1, SSO, SDA	B1	SDA		SS0							
3	GPIOB7	GPIOB7, TXD0, SCL	B7	SCL	TXD0								
4	GPIOB5	GPIOB5, TA1, FAULT3, CLKIN	B5					FAULT3	TA1				CLKIN
5	GPIOC4	GPIOC4, ANB0 & CMPBI3	C4				ANB0			CMPBI3			
6	GPIOC5	GPIOC5, ANB1	C5				ANB1						
7	GPIOC6	GPIOC6, ANB2, V _{REFHB}	C6				ANB2 V _{REFHB}						
8	VDDA	V _{DDA}									V _{DDA}		
9	VSSA	V _{SSA}									V _{SSA}		
10	GPIOC2	GPIOC2, ANA2, V _{REFHA}	C2				ANA2 V _{REFHA}						
11	GPIOC1	GPIOC1, ANA1	C1				ANA1						
12	GPIOC0	GPIOC0, ANA0 & CMPAI3	C0				ANA0			CMPAI3			
13	VSS	V _{SS}									V _{SS}		
14	тск	TCK, GPIOD2	D2									тск	
15	RESET	RESET, GPIOA7	A7										RESET
16	GPIOB3	GPIOB3, MOSI0, TA3, PSRC1	В3			MOSI0		PSRC1	TA3				
17	GPIOB2	GPIOB2, MISO0, TA2, PSRC0	B2			MISO0		PSRC0	TA2				
18	GPIOA6	GPIOA6, FAULT0, TA0	A6					FAULT0	TA0				
19	GPIOB4	GPIOB4, TA0, CLKO, PSRC2	B4					PSRC2	TA0				CLKO
20	GPIOA5	GPIOA5, PWM5, TA3, FAULT2	A5					PWM5 FAULT2	TA3				
21	GPIOB0	GPIOB0, SCLK0, SCL	В0	SCL		SCLK0							
22	GPIOA4	GPIOA4, PWM4, TA2, FAULT1	A4					PWM4 FAULT1	TA2				
23	GPIOA2	GPIOA2, PWM2	A2					PWM2					
24	GPIOA3	GPIOA3, PWM3	A3					PWM3					
25	VCAP	V _{CAP}									V _{CAP}		
26	VDD	V _{DD}									V _{DD}		
27	VSS	V _{SS}									V _{SS}		
28	GPIOA1	GPIOA1, PWM1	A1					PWM1					

Table 2-2 56F8033/56F8023 Pins

Table 2-3 56F8033/56F8023 Signal and Package Information for the 32-Pin LQFP

Signal Name	LQFP Pin No.	Туре	State During Reset	Signal Description
GPIOA5	20	Input/ Output	Input, internal pull-up	Port A GPIO — This GPIO pin can be individually programmed as an input or output pin.
(PWM5)		Output	enabled	PWM5 — This is one of the six PWM output pins.
(TA3 ³)		Input/ Output		TA3 — Timer A, Channel 3
(FAULT2 ⁴)		Input		Fault2 — This fault input pin is used for disabling selected PWM outputs in cases where fault conditions originate off-chip.
				After reset, the default state is GPIOA5. The peripheral functionality is controlled via the SIM. See Section 6.3.16 .
³ The TA3 signa ⁴ The Fault2 sig	al is also bi nal is also	rought out on th brought out on	ne GPIOB2-3 pin the GPIOB4 pin	
GPIOA6	18	Input/ Output	Input, internal pull-up	Port A GPIO — This GPIO pin can be individually programmed as an input or output pin.
(FAULT0)		Input	enabled	Fault0 — This fault input pin is used for disabling selected PWM outputs in cases where fault conditions originate off-chip.
(TA0 ⁵)				TA0 — Timer A, Channel 0.
				After reset, the default state is GPIOA6. The peripheral functionality is controlled via the SIM. See Section 6.3.16 .
⁵ The TA0 signa	al is also bi	rought out on th	ne GPIOB4 pin.	

Return to Table 2-2

Table 4-5 Data Memory Map¹ for 56F8033 (Continued)

Begin/End Address	Memory Allocation
X:\$00 FFFF X:\$00 F000	On-Chip Peripherals 4096 locations allocated
X:\$00 EFFF X:\$00 8800	RESERVED
X:\$00 87FF X:\$00 8000	RESERVED
X:\$00 7FFF X:\$00 1000	RESERVED
X:\$00 0FFF X:\$00 0000	On-Chip Data RAM 8KB ²

1. All addresses are 16-bit Word addresses.

2. This RAM is shared with Program space starting at P: \$00 8000; see Figure 4-1.

Table 4-6 Data Memory Map¹ for 56F8023

Begin/End Address	Memory Allocation
X:\$FF FFFF X:\$FF FF00	EOnCE 256 locations allocated
X:\$FF FEFF X:\$01 0000	RESERVED
X:\$00 FFFF X:\$00 F000	On-Chip Peripherals 4096 locations allocated
X:\$00 EFFF X:\$00 8800	RESERVED
X:\$00 87FF X:\$00 8000	RESERVED
X:\$00 7FFF X:\$00 0800	RESERVED
X:\$00 07FF X:\$00 0000	On-Chip Data RAM 4KB ²

1. All addresses are 16-bit Word addresses.

2. This RAM is shared with Program space starting at P: \$00 8000; see Figure 4-2.

	-	-
Register Acronym	Address Offset	Register Description
GPIOC_DATA	\$1	Data Register
GPIOC_DDIR	\$2	Data Direction Register
GPIOC_PEREN	\$3	Peripheral Enable Register
GPIOC_IASSRT	\$4	Interrupt Assert Register
GPIOC_IEN	\$5	Interrupt Enable Register
GPIOC_IEPOL	\$6	Interrupt Edge Polarity Register
GPIOC_IPEND	\$7	Interrupt Pending Register
GPIOC_IEDGE	\$8	Interrupt Edge-Sensitive Register
GPIOC_PPOUTM	\$9	Push-Pull Output Mode Control Register
GPIOC_RDATA	\$A	Raw Data Input Register
GPIOC_DRIVE	\$B	Output Drive Strength Control Register

Table 4-19 GPIOC Registers Address Map (GPIOC_BASE = \$00 F170)

Register Acronym	Address Offset	Register Description
FM_CLKDIV	\$0	Clock Divider Register
FM_CNFG	\$1	Configuration Register
	\$2	Reserved
FM_SECHI	\$3	Security High Half Register
FM_SECLO	\$4	Security Low Half Register
	\$5 - \$9	Reserved
FM_PROT	\$10	Protection Register
	\$11 - \$12	Reserved
FM_USTAT	\$13	User Status Register
FM_CMD	\$14	Command Register
	\$15 - \$17	Reserved
FM_DATA	\$18	Data Buffer Register
	\$19 - \$A	Reserved
FM_IFROPT_1	\$1B	Information Option Register 1
	\$1C	Reserved
FM_TSTSIG	\$1D	Test Array Signature Register

Table 4-29 Flash Module Registers Address Map (FM_BASE = \$00 F400)

Part 5 Interrupt Controller (ITCN)

5.1 Introduction

The Interrupt Controller (ITCN) module arbitrates between various interrupt requests (IRQs), signals to the 56800E core when an interrupt of sufficient priority exists, and to what address to jump in order to service this interrupt.

5.2 Features

The ITCN module design includes these distinctive features:

- Programmable priority levels for each IRQ
- Two programmable Fast Interrupts
- Notification to SIM module to restart clocks out of Wait and Stop modes
- Ability to drive initial address on the address bus after reset

For further information, see Table 4-2, Interrupt Vector Table Contents.

5.3 Functional Description

The Interrupt Controller is a slave on the IPBus. It contains registers that allow each of the 64 interrupt sources to be set to one of four priority levels (excluding certain interrupts that are of fixed priority). Next, all of the interrupt requests of a given level are priority encoded to determine the lowest numerical value of the active interrupt requests for that level. Within a given priority level, number 0 is the highest priority and number 63 is the lowest.

5.3.1 Normal Interrupt Handling

Once the INTC has determined that an interrupt is to be serviced and which interrupt has the highest priority, an interrupt vector address is generated. Normal interrupt handling concatenates the Vector Base Address (VBA) and the vector number to determine the vector address, generating an offset into the vector table for each interrupt.

5.3.2 Interrupt Nesting

Interrupt exceptions may be nested to allow an IRQ of higher priority than the current exception to be serviced. The 56800E core controls the masking of interrupt priority levels it will accept by setting the I0 and I1 bits in its status register.

SR[9] (I1)	SR[8] (10)	Exceptions Permitted	Exceptions Masked
0	0	Priorities 0, 1, 2, 3	None
0	1	Priorities 1, 2, 3	Priority 0
1	0	Priorities 2, 3	Priorities 0, 1
1	1	Priority 3	Priorities 0, 1, 2

Table 5-1 Interrupt Mask Bit Definition

The IPIC bits of the ICTRL register reflect the state of the priority level being presented to the 56800E core.

Table 5-2	Interrupt	Priority	Encoding
-----------	-----------	-----------------	----------

IPIC_VALUE[1:0]	Current Interrupt Priority Level	Required Nested Exception Priority
00	No interrupt or SWILP	Priorities 0, 1, 2, 3
01	Priority 0	Priorities 1, 2, 3
10	Priority 1	Priorities 2, 3

5.6.2 Interrupt Priority Register 1 (IPR1)

Base + \$1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	GPIO	ופו חי	0	0	0	0	0	0	0	0	EM C		EM C		EM E	RR IDI
Write											1 101_0		1 W_C			
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-4 Interrupt Priority Register 1 (IPR1)

5.6.2.1 GPIOD Interrupt Priority Level (GPIOD IPL)—Bits 15–14

This field is used to set the interrupt priority level for the GPIOD IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.2.2 Reserved—Bits 13–6

This bit field is reserved. Each bit must be set to 0.

5.6.2.3 FM Command, Data, Address Buffers Empty Interrupt Priority Level (FM_CBE IPL)—Bits 5–4

This field is used to set the interrupt priority level for the FM Command, Data Address Buffers Empty IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.2.4 FM Command Complete Interrupt Priority Level (FM_CC IPL)—Bits 3–2

This field is used to set the interrupt priority level for the FM Command Complete IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.2.5 FM Error Interrupt Priority Level (FM_ERR IPL)—Bits 1–0

This field is used to set the interrupt priority level for the FM Error IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3 Interrupt Priority Register 2 (IPR2)

Base + \$2	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	QSCI0_XMIT IPL		0	0	0	0	QSPI0_XMIT		_XMIT QSPI0_RCV		GPIOA IPI		GPIOB IPI		GPIOC IPI	
Write							IF	Ľ	IPL		IPL PL		0110		0110	
RESET	0	0	0	0	0	0	0	0 0		0	0	0	0	0	0	0

Figure 5-5 Interrupt Priority Register 2 (IPR2)

5.6.3.1 QSCI 0 Transmitter Empty Interrupt Priority Level (QSCI0_XMIT IPL)— Bits 15–14

This field is used to set the interrupt priority level for the QSCI0 Transmitter Empty IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.2 Reserved—Bits 13–10

This bit field is reserved. Each bit must be set to 0.

5.6.3.3 QSPI 0 Transmitter Empty Interrupt Priority Level (QSPI0_XMIT IPL)— Bits 9–8

This field is used to set the interrupt priority level for the QSPI0 Transmitter Empty IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.4 QSPI 0 Receiver Full Interrupt Priority Level (QSPI0_RCV IPL)—Bits 7–6

This field is used to set the interrupt priority level for the QSPI0 Receiver Full IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.5 GPIOA Interrupt Priority Level (GPIOA IPL)—Bits 5–4

This field is used to set the interrupt priority level for the GPIOA IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.6 GPIOB Interrupt Priority Level (GPIOB IPL)—Bits 3–2

This field is used to set the interrupt priority level for the GPIOB IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.7 GPIOC Interrupt Priority Level (GPIOC IPL)—Bits 1–0

This field is used to set the interrupt priority level for the GPIOC IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.4 Interrupt Priority Register 3 (IPR3)

Base + \$3	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	12C EI		0	0	0	0	0	0	0	0	QSCI	_RCV	QSCIO	_RER	QSCIC	_TIDL
Write	120_01	120_ERR IPL									IF	Ľ	RI	PL	IF	Ľ
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-6 Interrupt Priority Register 3 (IPR3)

5.6.7.5 ADC B Conversion Complete Interrupt Priority Level (ADCB_CC IPL)—Bits 5–4

This field is used to set the interrupt priority level for the ADC B Conversion Complete IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.7.6 ADC A Conversion Complete Interrupt Priority Level (ADCA_CC IPL)—Bits 3–2

This field is used to set the interrupt priority level for the ADC A Conversion Complete IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.7.7 Reserved—Bits 1–0

This bit field is reserved. Each bit must be set to 0.

5.6.8 Vector Base Address Register (VBA)

Base + \$7	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0		VECTOR BASE ADDRESS												
Write				VECTOR_BASE_ADDRESS												
RESET ¹	0	0	0	0 0 0 0 0 0 1 0 0 0 0 0 0												
. The 56F8033 resets to a value of 0 x 0000. This corresponds to reset addresses of 0 x 000000.																

The 56F8023 resets to a value of 0 x 0080. This corresponds to reset addresses of 0 x 004000.

Figure 5-10 Vector Base Address Register (VBA)

5.6.8.1 Reserved—Bits 15–14

This bit field is reserved. Each bit must be set to 0.

5.6.8.2 Vector Address Bus (VAB) Bits 13–0

The value in this register is used as the upper 14 bits of the interrupt vector VAB[20:0]. The lower 7 bits are determined based on the highest priority interrupt and are then appended onto VBA before presenting the full VAB to the Core.

5.6.19.5 Reserved—Bits 4-2

This bit field is reserved. Each bit must be set to 1.

5.6.19.6 Reserved—Bits 1–0

This bit field is reserved. Each bit must be set to 0.

5.7 Resets

5.7.1 General

Table 5-5 Reset Summary

Reset	Priority	Source	Characteristics
Core Reset		RST	Core reset from the SIM

5.7.2 Description of Reset Operation

5.7.2.1 Reset Handshake Timing

The ITCN provides the 56800E core with a reset vector address on the VAB pins whenever $\overline{\text{RESET}}$ is asserted from the SIM. The reset vector will be presented until the second rising clock edge after $\overline{\text{RESET}}$ is released. The general timing is shown in Figure 5-22.

Figure 5-22 Reset Interface

5.7.3 ITCN After Reset

After reset, all of the ITCN registers are in their default states. This means all interrupts are disabled, except the core IRQs with fixed priorities:

- Illegal Instruction
- SW Interrupt 3
- HW Stack Overflow
- Misaligned Long Word Access
- SW Interrupt 2
- SW Interrupt 1
- SW Interrupt 0

6.3.6 SIM Power Control Register (SIM_PWR)

This register controls the Standby mode of the large on-chip regulator. The large on-chip regulator derives the core digital logic power supply from the IO power supply. At a system bus frequency of 200kHz, the large regulator may be put in a reduced-power standby mode without interfering with device operation to reduce device power consumption. Refer to the overview of power-down modes and the overview of clock generation for more information on the use of large regulator standby.

Base + \$8	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	0	0	0	0	0	0	0	0	LRS	[DBY
Write															LKOTODT	
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 6-7 SIM Power Control Register (SIM_PWR)

6.3.6.1 Reserved—Bits 15–2

This bit field is reserved. Each bit must be set to 0.

6.3.6.2 Large Regulator Standby Mode[1:0] (LRSTDBY)—Bits 1–0

- 00 = Large regulator is in Normal mode
- 01 = Large regulator is in Standby (reduced-power) mode
- 10 = Large regulator is in Normal mode and the LRSTDBY field is write-protected until the next reset
- 11 = Large regulator is in Standby mode and the LRSTDBY field is write-protected until the next reset

6.3.7 Clock Output Select Register (SIM_CLKOUT)

The Clock Output Select register can be used to multiplex out selected clock sources generated inside the clock generation and SIM modules onto the muxed clock output pins. All functionality is for test purposes only. Glitches may be produced when the clock is enabled or switched. The delay from the clock source to the output is unspecified. The observability of the CLKO clock output signal at an output pad is subject to the frequency limitations of the associated IO cell.

GPIOA[3:0] can function as GPIO, PWM, or as clock output pins. If GPIOA[3:0] are programmed to operate as peripheral outputs, then the choice is between PWM and clock outputs. The default state is for the peripheral function of GPIOA[3:0] to be programmed as PWM (selected by bits [9:6] of the Clock Output Select register).

GPIOB4 can function as GPIO, or as other peripheral outputs, including clock output (CLKO). If GPIOB4 is programmed to operate as a peripheral output and CLKO is selected in the SIM_GPSB0 register, bits [4:0] decide if CLKO is enabled or disabled and which clock source is selected if CLKO is enabled. See **Figure 6-8** for details.

Add. Offset	Register Acronym		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
\$0	GPIOD_PUPEN	R W RS	0	0	0	0	0	0	0	0	1	1	1	1	1	PU[1	15:0] 1	1
\$1	GPIOD_DATA	R W RS	0	0	0	0	0	0	0	0	0	0	0	0	0	D[1 0	5:0] 0	0
\$2	GPIOD_DDIR	R W RS	0	0	0	0	0	0	0	0	0	0	0	0	0	DD[1 0	15:0] 0	0
\$3	GPIOD_PEREN	R W RS	0	0	0	0	0	0	0	0	0	0	0	0	1	PE[1 1	15:0] 1	1
\$4	GPIOD_IASSRT	R W RS	0	0	0	0	0	0	0	0	0	0	0	0	0	IA[1 0	5:0] 0	0
\$5	GPIOD_IEN	R W RS	0	0	0	0	0	0	0	0	0	0	0	0	0	IEN[⁻ 0	15:0] 0	0
\$6	GPIOD_IEPOL	R W RS	0	0	0	0	0	0	0	0	0	0	0	0	0	IEPOL 0	_[15:0] 0	0
\$7	GPIOD_IPEND	R W RS	0	0	0	0	0	0	0	0	0	0	0	0	0	IPR[[*] 0	15:0] 0	0
\$8	GPIOD_IEDGE	R W RS	0	0	0	0	0	0	0	0	0	0	0	0	0	IES[[^]	15:0] 0	0
\$9	GPIOD_PPOUTM	R W RS	0	0	0	0	0	0	0	0	1	1	1	1	1	OEN[1	[15:0] 1	1
\$A	GPIOD_RDATA	R W RS	0	0	0	0	0	0	0	0	X	X	Х	X	RA X	W DA	TA[15 X	:0] X
\$В	GPIOD_DRIVE	R W RS	0	0	0	0	0	0	0	0	0	0	0	0	0	DRIVE 0	[15:0] 0	0
		R W RS	0	Read Rese Reset	l as 0 rved													

Figure 8-4 GPIOD Register Map Summary

56F8033/56F8023 Data Sheet, Rev. 6

10.8 Reset, Stop, Wait, Mode Select, and Interrupt Timing

Note:

All address and data buses described here are internal.

Table 10-13 Reset, Stop, Wait, Mode Select, and Interrupt Timing^{1,2}

Characteristic	Symbol	Typical Min	Typical Max	Unit	See Figure
Minimum RESET Assertion Duration	t _{RA}	4T	_	ns	_
Minimum GPIO pin Assertion for Interrupt	t _{IW}	2T	—	ns	10-6
RESET deassertion to First Address Fetch ³	t _{RDA}	96T _{OSC} + 64T	97T _{OSC} + 65T	ns	_
Delay from Interrupt Assertion to Fetch of first instruction (exiting Stop)	t _{IF}	—	6T	ns	_

In the formulas, T = system clock cycle and T_{osc} = oscillator clock cycle. For an operating frequency of 32MHz, T = 31.25ns. At 8MHz (used during Reset and Stop modes), T = 125ns.

2. Parameters listed are guaranteed by design.

3. During Power-On Reset, it is possible to use the 56F8033/56F8023 internal reset stretching circuitry to extend this period to 2^21T.

Figure 10-6 GPIO Interrupt Timing (Negative Edge-Sensitive)

10.12 Inter-Integrated Circuit Interface (I²C) Timing

Ohannatariatia	O	Standa	rd Mode	Fast	Mode	Unit	
Characteristic	Symbol	Minimum	Maximum	Minimum	Maximum	Unit	
SCL Clock Frequency	f _{SCL}	0	100	0	400	kHz	
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	^t HD; STA	4.0	_	0.6	_	μs	
LOW period of the SCL clock	t _{LOW}	4.7	—	1.3	_	μs	
HIGH period of the SCL clock	t _{HIGH}	4.0	—	0.6	_	μs	
Set-up time for a repeated START condition	t _{SU; STA}	4.7	—	0.6	_	μs	
Data hold time for I ² C bus devices	t _{HD; DAT}	01	3.45 ²	0 ¹	0.9 ²	μs	
Data set-up time	t _{SU; DAT}	250 ³	—	100 ^{3, 4}	—	ns	
Rise time of both SDA and SCL signals	t _r	_	1000	20 +0.1C _b ⁵	300	ns	
Fall time of both SDA and SCL signals	t _f	_	300	20 +0.1C _b ⁵	300	ns	
Set-up time for STOP condition	t _{SU; STO}	4.0	_	0.6	_	μs	
Bus free time between STOP and START condition	t _{BUF}	4.7	_	1.3	_	μs	
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns	

Table 10-17 I²C Timing

1. The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, a negative hold time can result, depending on the edge rates of the SDA and SCL lines.

2. The maximum t_{HD: DAT} must be met only if the device does not stretch the LOW period (t_{LOW}) of the SCL signal.

3. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.

4. A Fast mode l²C bus device can be used in a Standard mode l²C bus system, but the requirement $t_{SU; DAT} > = 250$ ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line $t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250$ ns (according to the Standard mode l²C bus specification) before the SCL line is released.

5. C_b = total capacitance of the one bus line in pF.

10.14 Analog-to-Digital Converter (ADC) Parameters

Parameter	Symbol	Min	Тур	Max	Unit
DC Specifications				•	
Resolution	R _{ES}	12	—	12	Bits
ADC internal clock	f _{ADIC}	0.1	_	5.33	MHz
Conversion range	R _{AD}	V _{REFL}	_	V _{REFH}	V
ADC power-up time ²	t _{ADPU}	—	6	13	t _{AIC} cycles ³
Recovery from auto standby	t _{REC}	—	0	1	t _{AIC} cycles ³
Conversion time	t _{ADC}	—	6	—	t _{AIC} cycles ³
Sample time	t _{ADS}	—	1	—	t _{AIC} cycles ³
Accuracy					•
Integral non-linearity ⁴ (Full input signal range)	INL	_	+/- 3	+/- 5	LSB ⁵
Differential non-linearity	DNL	—	+/6	+/- 1	LSB ⁵
Monotonicity			GUARANTEED		
Offset Voltage Internal Ref	V _{OFFSET}	—	+/- 4	+/- 9	mV
Offset Voltage External Ref	V _{OFFSET}	—	+/- 6	+/- 12	mV
Gain Error (transfer gain)	E _{GAIN}	—	.998 to 1.002	1.01 to .99	—
ADC Inputs ⁶ (Pin Group 3)					
Input voltage (external reference)	V _{ADIN}	V _{REFL}	_	V _{REFH}	V
Input voltage (internal reference)	V _{ADIN}	V _{SSA}	—	V _{DDA}	V
Input leakage	Ι _{ΙΑ}	—	0	+/- 2	μΑ
V _{REFH} current	I _{VREFH}	—	0	—	μΑ
Input injection current ⁷ , per pin	I _{ADI}	—	_	3	mA
Input capacitance	C _{ADI}	—	See Figure 10-17	—	pF
Input impedance	X _{IN}	—	See Figure 10-17	—	Ohms
AC Specifications					•
Signal-to-noise ratio	SNR	60	65		dB
Total Harmonic Distortion	THD	60	64		dB
Spurious Free Dynamic Range	SFDR	61	66		dB
Signal-to-noise plus distortion	SINAD	58	62		dB
Effective Number Of Bits	ENOB	—	10.0		Bits

Table 10-19 ADC Parameters¹

1. All measurements were made at V_{DD} = 3.3V, V_{REFH} = 3.3V, and V_{REFL} = ground

2. Includes power-up of ADC and V_{REF}

3. ADC clock cycles

4. INL measured from V_{IN} = V_{REFL} to V_{IN} = V_{REFH}

5. LSB = Least Significant Bit = 0.806mV

6. Pin groups are detailed following Table 10-1.

Part 11 Packaging

11.1 56F8033/56F8023 Package and Pin-Out Information

This section contains package and pin-out information for the 56F8033/56F8023. This device comes in a 32-pin Low-profile Quad Flat Pack (LQFP). Figure 11-1 shows the package outline, Figure 11-2 shows the mechanical parameters and Table 11-1 lists the pin-out.

Figure 11-1 Top View, 56F8033/56F8023 32-Pin LQFP Package

The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

When heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimizing the size of the clearance is important to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back-calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

12.2 Electrical Design Considerations

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate voltage level.

Use the following list of considerations to assure correct operation of the 56F8033/56F8023:

- Provide a low-impedance path from the board power supply to each V_{DD} pin on the 56F8033/56F8023 and from the board ground to each V_{SS} (GND) pin
- The minimum bypass requirement is to place $0.01-0.1\mu$ F capacitors positioned as close as possible to the package supply pins. The recommended bypass configuration is to place one bypass capacitor on each of the V_{DD}/V_{SS} pairs, including V_{DDA}/V_{SSA} . Ceramic and tantalum capacitors tend to provide better tolerances.
- Ensure that capacitor leads and associated printed circuit traces that connect to the chip V_{DD} and V_{SS} (GND) pins are as short as possible
- Bypass the V_{DD} and V_{SS} with approximately 100µF, plus the number of 0.1µF ceramic capacitors
- PCB trace lengths should be minimal for high-frequency signals
- Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the V_{DD} and V_{SS} circuits.

Part 14 Appendix

Register acronyms are revised from previous device data sheets to provide a cleaner register description. A cross reference to legacy and revised acronyms are provided in the following table.

Note: This table comprises all peripherals used in the 56F803x and 56F802x family; some of the peripherals described here may not be present on this device.

Register Name	Peripheral Mar	Reference nual	Data	Sheet	Processor Expert	Men Add	nory ress				
negister Name	New Acronym	Legacy Acronym	New Acronym	Legacy Acronym	Acronym	Start	End				
		Analo	g-to-Digital Converte	er (ADC) Module							
Control 1 Register	CTRL1	ADCR1	ADC_CTRL1	ADC_ADCR1	ADC_ADCR1	0xF080					
Control 2 Register	CTRL2	ADCR2	ADC_CTRL2	ADC_ADCR2	ADC_ADCR2	0xF	081				
Zero Crossing Control Register	ZXCTRL	ADZCC	ADC_ZXCTRL	ADC_ADZCC	ADC_ADZCC	0xF	082				
Channel List 1 Register	CLIST1	ADLST1	ADC_CLIST1	ADC_ADLST1	ADC_ADLST1	0xF	083				
Channel List 2 Register	CLIST2	ADLST2	ADC_CLIST2	ADC_ADLST2	ADC_ADLST2	0xF	084				
Channel List 3 Register	CLIST3		ADC_CLIST3	ADC_ADCLST3	ADC_ADCLST3	0xF	085				
Channel List 4 Register	CLIST4		ADC_CLIST4	ADC_ADCLST4	ADC_ADCLST4	0xF	086				
Sample Disable Register	SDIS	ADSDIS	ADC_SDIS	ADC_ADSDIS	ADC_ADSDIS	0xF	087				
Status Register	STAT	ADSTAT	ADC_STAT	ADC_ADSTAT	ADC_ADSTAT	0xF	088				
Conversion Ready Register	RDY		ADC_CNRDY	ADC_ADCNRDY	ADC_ADCNRDY	0xF	089				
Limit Status Register	LIMSTAT	ADLSTAT	ADC_LIMSTAT	ADC_ADLSTAT	ADC_ADLSTAT	0xF	08A				
Zero Crossing Status Register	ZXSTAT	ADZCSTAT	ADC_ZXSTAT	ADC_ADZCSTAT	ADC_ADZCSTAT	0xF	08B				
Result 0-7 Registers	RSLT0-7	ADRSLT0-7	ADC_RSLT0-7	ADC_ADRSLT0-7	ADC_ADRSLT0-7	0xF08C	0XF093				
Result 8-15 Registers	RSLT8-15		ADC_RSLT8-15	ADC_ADRSLT8-15	ADC_ADRSLT8-15	0xF094	0XF09B				
Low Limit 0-7 Registers	LOLIM0-7	ADLLMT0-7	ADC_LOLIM0-7	ADC_ADLLMT0-7	ADC_ADLLMT0-7	0XF09C	0XF0A3				
High Limit 0-7 Registers	HILIM0-7	ADHLMT0-7	ADC_HILIM0-7	ADC_ADHLMT0-7	ADC_ADHLMT0-7	0XF0A4	0XF0AB				
Offset 0-7 Registers	OFFST0-7	ADOFS0-7	ADC_OFFST0-7	ADC_ADOFS0-7	ADC_ADOFS0-7	0XF0AC	0XF0B3				
Power Control Register	PWR	ADPOWER	ADC_PWR	ADC_ADPOWER	ADC_ADPOWER	0XF	0B4				
Calibration Register	CAL		ADC_CAL	ADC_ADCAL	ADC_ADCAL	AL 0XF0B5					
Computer Operating Properly (COP) Module											
Control Register	CTRL	COPCTL	COP_CTRL	COPCTL	COPCTL	0XF	120				

Table 14-1 Legacy and Revised Acronyms

Pogiotor Nomo	Periphera Ma	l Reference nual	Data	a Sheet	Processor Expert	Memory Address		
Register Name	New Acronym	Legacy Acronym	New Acronym	Legacy Acronym	Acronym	Start	End	
		Puls	e Width Modulator	(PWM) Module				
Control Register	CTRL	PMCTL	PWM_CTRL	PWM_PMCTL	PWM_PMCTL	0xF	0C0	
Fault Control Register	FCTRL	PMFCTL	PWM_FCTRL	PWM_PMFCTL	PWM_PMFCTL	0xF	0C1	
Fault Status/Acknowledge Regis.	FLTACK	PMFSA	PWM_FLTACK	PWM_PMFSA	PWM_PMFSA	0xF	0C2	
Output Control Register	OUT	PMOUT	PWM_OUT	PWM_PMOUT	PWM_PMOUT	0xF	0C3	
Counter Register	CNTR	PMCNT	PWM_CNTR	PWM_PMCNT	PWM_PMCNT	0xF	0C4	
Counter Modulo Register	CMOD	MCM	PWM_CMOD	PWM_MCM	PWM_MCM	0xF	0C5	
Value 0-5 Registers	VALO-5	PMVAL0-5	PWM_VAL0-5	PWM_PMVAL0-5	PWM_PMVAL0-5	0xF0C6	0xF0CB	
Deadtime 0-1 Registers	DTIM0-1	PMDEADTM0-1	PWM_DTIM0-1	PWM_PMDEADTM0-1	PWM_PMDEADTM0-1	0xF0CC	0xF0CD	
Disable Mapping 1-2 Registers	DMAP1-2	PMDISMAP1-2	PWM_DMAP1-2	PWM_PMDISMAP1-2	PWM_PMDISMAP1-2	0xF0CE	0xF0CF	
Configure Register	CNFG	PMCFG	PWM_CNFG	PWM_PMCFG	PWM_PMCFG	0xF	0D0	
Channel Control Register	CCTRL	PMCCR	PWM_CCTRL	PWM_PMCCR	PWM_PMCCR	0xF	0D1	
Port Register	PORT	PMPORT	PWM_PORT	PWM_PMPORT	PWM_PMPORT	0xF	0D2	
Internal Correction Control Register	ICCTRL	PMICCR	PWM_ICCTRL	PWM_PMICCR	PWM_PMICCR	0xF	0D3	
Source Control Register	SCTRL	PMSRC	PWM_SCTRL	PWM_PMSRC	PWM_PMSRC	0xF	0D4	
Synchronization Window Register	SYNC		PWM_SYNC	PWM_SYNC	PWM_SYNC	0xF	0D5	
Fault Filter 0-3 Register	FFILT0-3		PWM_FFILT0-3	PWM_FFILT0-3	PWM_FFILT0-3	0xF0D6	0xF0D9	
		Multi-Scalable	e Controller Area Ne	twork (MSCAN) Modu	e			
Control 0 Register	CTRL0		CAN_CTRL0		CANCTRL0	0XF	800	
Control 1 Register	CTRL1		CAN_CTRL1		CANCTRL1	0XF	801	
Bus Timing 0 Register	BTR0		CAN_BTR0		CANBTR0	0XF	802	
Bus Timing 1 Register	BTR1		CAN_BTR1		CANBTR1	0XF	803	
Receive Flag Register	RFLG		CAN_RFLG		CANRFLG	0XF	804	
Receiver Interrupt Enable Register	RIER		CAN_RIER		CANRIER	0XF	805	
Transmitter Flag Register	TFLG		CAN_TFLG		CANTFLG	0XF	806	
Transmitter Interrupt Enable Register.	TIER		CAN_TIER		CANTIER	0XF	807	
Transmitter Msg Abort Request Register	TARQ		CAN_TARQ		CANTARQ	0XF	808	

Table 14-1 Legacy and Revised Acronyms (Continued)