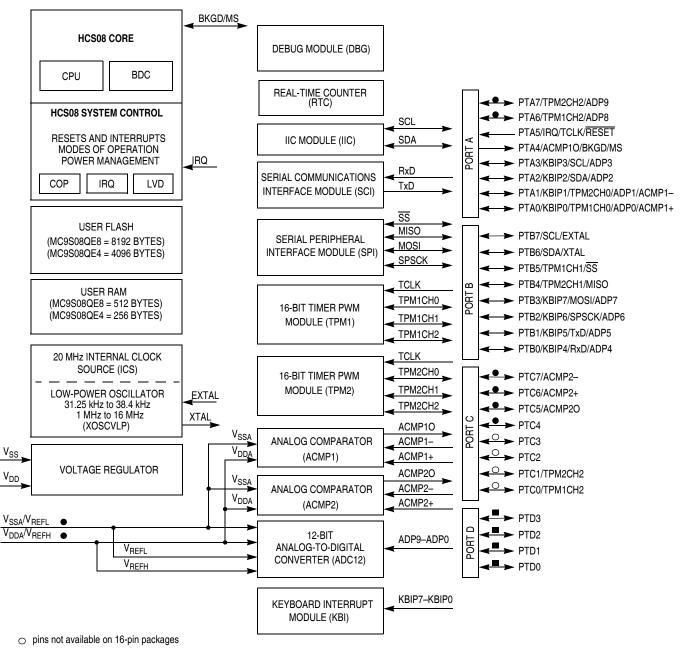


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, PWM, WDT
Number of I/O	12
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	16-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08qe4ctg

1 MCU Block Diagram

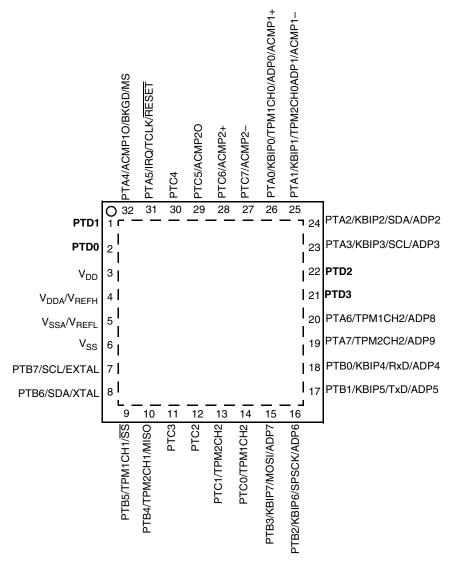
The block diagram, Figure 1, shows the structure of MC9S08QE8 series MCU.

- pins not available on 16-pin or 20-pin packages
- pins not available on 16-pin, 20-pin or 28-pin packages

Notes: When PTA5 is configured as RESET, pin becomes bi-directional with output being open-drain drive containing an internal pullup device. When PTA4 is configured as BKGD, pin becomes bi-directional.

For the 16-pin and 20-pin packages, V_{SSA}/V_{REFL} and V_{DDA}/V_{REFH} are double bonded to V_{SS} and V_{DD} respectively.

Figure 1. MC9S08QE8 Series Block Diagram



4

Pin Assignments

2 Pin Assignments

This section shows the pin assignments for the MC9S08QE8 series devices.

Pins shown in bold type are lost in the next lower pin count package.

Figure 2. MC9S08QE8 Series in 32-Pin LQFP/QFN Package

MC9S08QE8 Series Data Sheet, Rev. 8

Pin Assignments

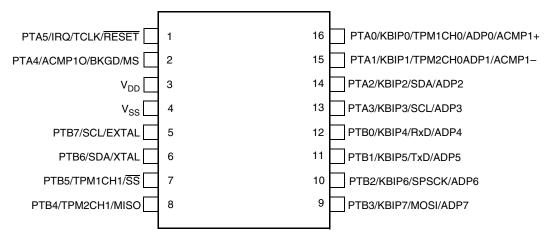


Figure 5. MC9S08QE8 Series in 16-pin PDIP and TSSOP Packages

Table 1. Pin Availability by Package Pin-Count

	Pin N	umber			< Lowest Priority			
32	28	20	16	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1		_	_	PTD1				
2		_	_	PTD0				
3	5	3	3					V_{DD}
4	6	_	_					V _{DDA} /V _{REFH}
5	7	_	_					V _{SSA} /V _{REFL}
6	8	4	4					V _{SS}
7	9	5	5	PTB7	SCL ¹			EXTAL
8	10	6	6	PTB6	SDA ¹			XTAL
9	11	7	7	PTB5	TPM1CH1	SS		
10	12	8	8	PTB4	TPM2CH1	MISO		
11	13	9	_	PTC3				
12	14	10	_	PTC2				
13	15	11	_	PTC1	TPM2CH2 ²			
14	16	12	_	PTC0	TPM1CH2 ³			
15	17	13	9	PTB3	KBIP7	MOSI	ADP7	
16	18	14	10	PTB2	KBIP6	SPSCK	ADP6	
17	19	15	11	PTB1	KBIP5	TxD	ADP5	
18	20	16	12	PTB0	KBIP4	RxD	ADP4	
19	21	_	_	PTA7	TPM2CH2 ²		ADP9	
20	22	_	_	PTA6	TPM1CH2 ³		ADP8	
21		_	_	PTD3				
22	_	_	_	PTD2				
23	23	17	13	PTA3	KBIP3	SCL ¹	ADP3	
24	24	18	14	PTA2	KBIP2	SDA ¹	ADP2	
25	25	19	15	PTA1	KBIP1	TPM2CH0	ADP1 ⁴	ACMP1-4

MC9S08QE8 Series Data Sheet, Rev. 8

	Pin N	umbei	•		< Lowest	Priority	> Highest	
32	28	20	16	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
26	26	20	16	PTA0	KBIP0	TPM1CH0	ADP0 ⁴	ACMP1+4
27	27	_	_	PTC7				ACMP2-
28	28	_	_	PTC6				ACMP2+
29	1	_	_	PTC5				ACMP2O
30	2	_	_	PTC4				
31	3	1	1	PTA5	IRQ	TCLK	RESET	
32	4	2	2	PTA4	ACMP10	BKGD	MS	

Table 1. Pin Availability by Package Pin-Count (continued)

3.1 Introduction

This section contains electrical and timing specifications for the MC9S08QE8 series of microcontrollers available at the time of publication.

3.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 2. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

MC9S08QE8 Series Data Sheet, Rev. 8

¹ IIC pins, SCL and SDA can be repositioned using IICPS in SOPT2, default reset locations are PTA3 and PTA2.

² TPM2CH2 pin can be repositioned using TPM2CH2PS in SOPT2, default reset location is PTA7

³ TPM1CH2 pin can be repositioned using TPM1CH2PS in SOPT2, default reset location is PTA6.

⁴ If ADC and ACMP1 are enabled, both modules will have access to the pin.

3.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 3 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Rating	Symbol	Value	Unit
Supply voltage	V_{DD}	-0.3 to 3.8	٧
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	-0.3 to $V_{DD} + 0.3$	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	I _D	±25	mA
Storage temperature range	T _{stg}	-55 to 150	°C

Table 3. Absolute Maximum Ratings

3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^{^2}$ All functional non-supply pins, except for PTA5 are internally clamped to $\rm V_{SS}$ and $\rm V_{DD}$

Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

3.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 7. DC Characteristics

Num	С	1	Characteristic	Symbol	Condition	Min.	Typical ¹	Max.	Unit	
1		Operating vo	ltage V _{DD} rising V _{DD} falling			2.0 ² 1.8		3.6	V	
	С		All I/O pins, low-drive strength		$V_{DD} > 1.8 \text{ V},$ $I_{Load} = -2 \text{ mA}$	V _{DD} - 0.5	_	_		
2	Р	Output high voltage	All I/O pins,	V _{OH}	$V_{DD} > 2.7 \text{ V},$ $I_{Load} = -10 \text{ mA}$	V _{DD} - 0.5	_	_	V	
	С		high-drive strength		$V_{DD} > 1.8V$, $I_{Load} = -2 \text{ mA}$	V _{DD} - 0.5	_	_		
3	D	Output high current	Max total I _{OH} for all ports	I _{OHT}	_	_	_	100	mA	
	С		All I/O pins, low-drive strength		$V_{DD} > 1.8 V$, $I_{Load} = 0.6 \text{ mA}$	_	_	0.5		
4	Р	Output low voltage	All I/O pins,	V _{OL}	$V_{DD} > 2.7 \text{ V},$ $I_{Load} = 10 \text{ mA}$	_	_	0.5	V	
	С		high-drive strength		$V_{DD} > 1.8 \text{ V},$ $I_{Load} = 3 \text{ mA}$	_	_	0.5		
5	D	Output low current	Max total I _{OL} for all ports	I _{OLT}	_	_	_	100	mA	
6	Р	P Input high voltage All digital inputs		V _{IH}	$V_{DD} > 2.7 \text{ V}$	$0.70 \times V_{DD}$	_	_		
	С			- 111	V _{DD} > 1.8 V	$0.85 \times V_{DD}$	_	_	V	
7	Р	Input low	All digital inputs	V _{IL}	Vıı	$V_{DD} > 2.7 V$	_	_	$0.35 \times V_{DD}$	
	O	voltage	/ iii digital iii pate	- 1	$V_{DD} > 1.8 \text{ V}$	_		$0.30 \times V_{DD}$		
8	С	Input hysteresis	All digital inputs	V _{hys}	_	0.06 x V _{DD}	_	_	mV	
9	Р	Input leakage current	All input only pins (per pin)	II _{In} I	$V_{In} = V_{DD}$ or V_{SS}	_	_	1	μА	
10	Р	Hi-Z (off-state) leakage current	All input/output (per pin)	ll _{OZ} l	$V_{In} = V_{DD}$ or V_{SS}	_	_	1	μΑ	
11	Р	Total leakage combined for all inputs and Hi-Z pins	All input only and I/O	II _{OZTOT} I	$V_{In} = V_{DD}$ or V_{SS}	_	_	2	μΑ	
12a	Р	Pullup, pulldown resistors	All digital inputs, when enabled (all I/O pins other than PTA5/IRQ/TCLK/RESET	R _{PU,} R _{PD}	_	17.5	_	52.5	kΩ	

Table 7. DC Characteristics (continued)

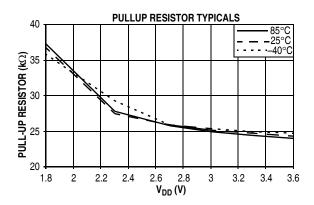
Num	С		Characteristic	Symbol	Condition	Min.	Typical ¹	Max.	Unit
12b	С	Pullup, pulldown resistors	(PTA5/IRQ/TCLK/RESET)	R _{PU} , R _{PD}	_	17.5	_	52.5	kΩ
		DC injection	Single pin limit			-0.2	_	0.2	mA
13	С	current ^{4, 5,}	Total MCU limit, includes sum of all stressed pins	I _{IC}	$V_{IN} < V_{SS}, V_{IN} > V_{DD}$	- 5	_	5	mA
14	С	Input capacit	tance, all pins	C _{In}	_	_	_	8	pF
15	C	RAM retention	on voltage	V_{RAM}	_	_	0.6	1.0	V
16	С	POR re-arm	voltage ⁷	V_{POR}	_	0.9	1.4	2.0	V
17	D	POR re-arm	time	t _{POR}	_	10	_	_	μS
18	Р	Low-voltage	detection threshold	V_{LVD}	V _{DD} falling V _{DD} rising	1.80 1.88	1.84 1.92	1.88 1.96	٧
19	Р	Low-voltage	warning threshold	V_{LVW}	V _{DD} falling V _{DD} rising	2.08	2.14	2.24	٧
20	Р	Low-voltage hysteresis	inhibit reset/recover	V _{hys}	_	_	80	_	mV
21	Р	Bandgap vol	tage reference ⁸	V_{BG}	_	1.15	1.17	1.18	V

¹ Typical values are measured at 25 °C. Characterized, not tested

² As the supply voltage rises, the LVD circuit will hold the MCU in reset until the supply has risen above V_{LVDL}.

³ The specified resistor value is the actual value internal to the device. The pullup or pulldown value may appear higher when measured externally on the pin.

 $^{^4}$ All functional non-supply pins, except for PTA5 are internally clamped to V_{SS} and V_{DD} .


⁵ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

Maximum is highest voltage that POR is guaranteed.

⁸ Factory trimmed at $V_{DD} = 3.0 \text{ V}$, Temp = 25 °C

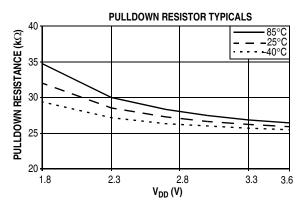
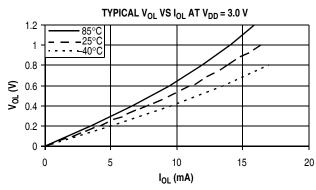



Figure 6. Pullup and Pulldown Typical Resistor Values ($V_{DD} = 3.0 \text{ V}$)

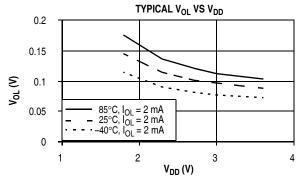
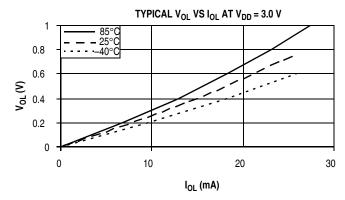



Figure 7. Typical Low-Side Driver (Sink) Characteristics — Low Drive (PTxDSn = 0)

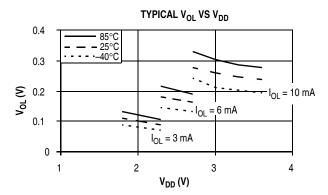


Figure 8. Typical Low-Side Driver (Sink) Characteristics — High Drive (PTxDSn = 1)

3.8 External Oscillator (XOSCVLP) Characteristics

Refer to Figure 12 and Figure 13 for crystal or resonator circuits.

Table 10. XOSCVLP Specifications (Temperature Range = −40 to 85°C Ambient)

Num	С	Characteristic	Symbol	Min.	Typical ¹	Max.	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1), high gain (HGO = 1), FBELP mode High range (RANGE = 1), low power (HGO = 0), FBELP mode	f _{lo} f _{hi} f _{hi}	32 1 1	_ _ _	38.4 16 8	kHz MHz MHz
2	D	Load capacitors Low range (RANGE=0), low power (HGO = 0) Other oscillator settings	C _{1,} C ₂		See Not		
3	D	Feedback resistor Low range, low power (RANGE = 0, HGO = 0) ² Low range, high gain (RANGE = 0, HGO = 1) High range (RANGE = 1, HGO = X)	R _F	_ _ _	— 10 1	_ _ _	МΩ
4	D	Series resistor — Low range, low power (RANGE = 0, HGO = 0) ² Low range, high gain (RANGE = 0, HGO = 1) High range, low power (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz	R _S				kΩ
5	С	Crystal start-up time ⁴ Low range, low power Low range, high gain High range, low power High range, high gain	t CSTL t CSTH		600 400 5 15	 - -	ms
6	D	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE mode FBE or FBELP mode	f _{extal}	0.03125 0	_	20 20	MHz MHz

¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.

Load capacitors $(C_{1.}C_{2})$, feedback resistor (R_{F}) and series resistor (R_{S}) are incorporated internally when RANGE = HGO = 0.

³ See crystal or resonator manufacturer's recommendation.

⁴ Proper PC board layout procedures must be followed to achieve specifications.

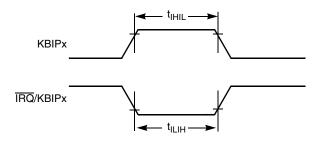


Figure 16. IRQ/KBIPx Timing

3.10.2 TPM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No. С **Function Symbol** Min Max Unit 1 D External clock frequency 0 f_{Bus}/4 Hz f_{TCLK} 2 D External clock period 4 t_{TCLK} $t_{\rm cyc}$ 3 D External clock high time 1.5 t_{clkh} t_{cyc} 4 D External clock low time 1.5 t_{clkl} t_{cyc} 5 D Input capture pulse width 1.5 t_{ICPW} t_{cyc}

Table 13. TPM Input Timing

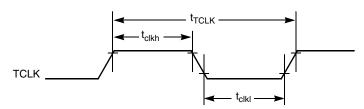


Figure 17. Timer External Clock

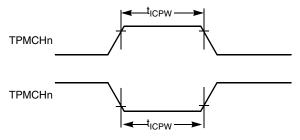


Figure 18. Timer Input Capture Pulse

MC9S08QE8 Series Data Sheet, Rev. 8

3.10.3 SPI Timing

Table 14 and Figure 19 through Figure 22 describe the timing requirements for the SPI system.

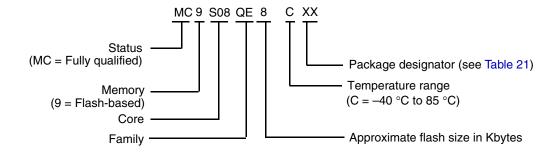
Table 14. SPI Timing

No.	С	Function	Symbol	Min	Max	Unit
_	D	Operating frequency Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz
1	D	SPSCK period Master Slave	t _{SPSCK}	2 4	2048 —	t _{cyc}
2	D	Enable lead time Master Slave	t _{Lead}	1/2 1	_	t _{SPSCK}
3	D	Enable lag time Master Slave	t _{Lag}	1/2 1		t _{SPSCK} t _{cyc}
4	D	Clock (SPSCK) high or low time Master Slave	twspsck	t _{cyc} - 30 t _{cyc} - 30	1024 t _{cyc}	ns ns
5	D	Data setup time (inputs) Master Slave	t _{SU}	15 15		ns ns
6	D	Data hold time (inputs) Master Slave	t _{HI}	0 25		ns ns
7	D	Slave access time	t _a	_	1	t _{cyc}
8	D	Slave MISO disable time	t _{dis}	_	1	t _{cyc}
9	D	Data valid (after SPSCK edge) Master Slave	t _v		25 25	ns ns
10	D	Data hold time (outputs) Master Slave	t _{HO}	0 0		ns ns
11	D	Rise time Input Output	t _{RI} t _{RO}		t _{cyc} – 25 25	ns ns
12	D	Fall time Input Output	t _{FI} t _{FO}	_	t _{cyc} – 25 25	ns ns

Table 17. ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

С	Characteristic	Conditions	Symbol	Min	Typ ¹	Max	Unit	Comment		
		12-bit mode			±2	_		Pad		
D	Input leakage error	10-bit mode	E _{IL}	_	±0.2	±4	LSB ²	leakage ⁴ *		
		8-bit mode		_	±0.1	±1.2		R _{AS}		
Cha	aracteristics for o	levices with shared supply (16-	and 20-pin _l	oackage	es only)					
Т	Total	12-bit mode		Not	recommer	nded usage				
Р	unadjusted	10-bit mode	E _{TUE}	_	±1.5	±3.5	LSB ²	Includes quantization		
Р	error	8-bit mode		_	±0.7	±1.5		quannau		
Т		12-bit mode Not recommended usage		nded usage						
Р	Differential non-linearity	10-bit mode ³	DNL	_	±0.5	±1.0	LSB ²			
Р	,,	8-bit mode ³		_	±0.3	±0.5				
Т		12-bit mode		Not	Not recommended usage					
Т	Integral non-linearity	10-bit mode	INL	_	±0.5	±1.0	LSB ²			
Т	,	8-bit mode		_	±0.3	±0.5				
Т		12-bit mode				Not	recommer	nded usage		
Р	Zero-scale error	10-bit mode	E _{ZS}	_	±1.5	±2.1	LSB ²	$V_{ADIN} = V_{SSA}$		
Р		8-bit mode		_	±0.5	±0.7		JJA		
Т		12-bit mode		Not	recommer	nded usage				
Р	Full-scale error	10-bit mode	E _{FS}	_	±1	±1.5	LSB ²	$V_{ADIN} = V_{DDA}$		
Р		8-bit mode		_	±0.5	±0.5		DDA		
		12-bit mode		Not	recommer	nded usage				
D	Quantization error	10-bit mode	EQ	_	_	±0.5	LSB ²			
		8-bit mode		_	_	±0.5				
		12-bit mode		Not	recommer	nded usage		Pad		
D	Input leakage error	10-bit mode	E _{IL}	_	±0.2	±4	LSB ²	leakage ⁴ *		
		8-bit mode		_	±0.1	±1.2		R _{AS}		

Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

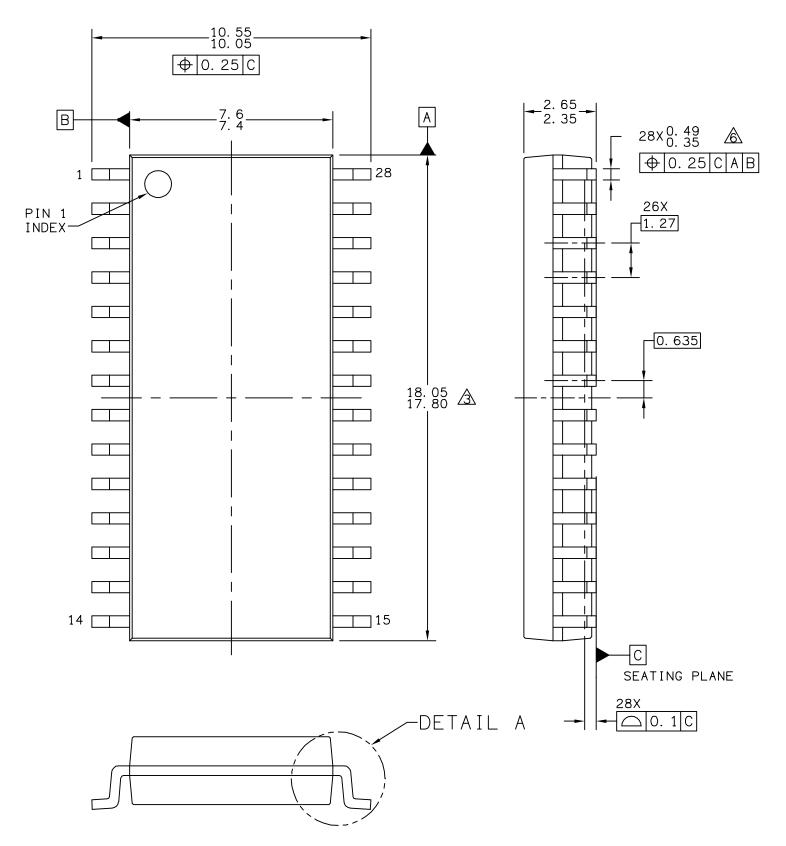

MC9S08QE8 Series Data Sheet, Rev. 8

² 1 LSB = $(V_{REFH} - V_{REFL})/2^N$

³ Monotonicity and No-missing-codes guaranteed in 10-bit and 8-bit modes

⁴ Based on input pad leakage current. Refer to pad electricals.

5 Package Information


Table 21. Package Descriptions

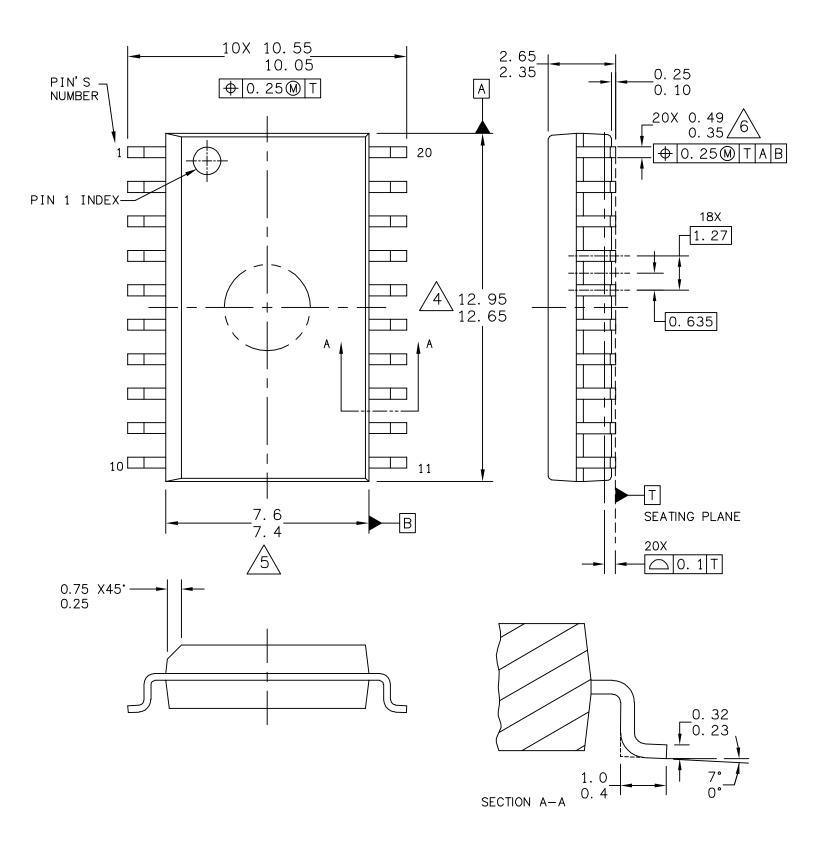
Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
32	Quad Flat No-Leads	QFN	FM	2078	98ASA00071D
32	Low Quad Flat Package	LQFP	LC	873A	98ASH70029A
28	Small Outline Integrated Circuit	SOIC	WL	751F	98ASB42345B
20	Small Outline Integrated Circuit	SOIC	WJ	751D	98ASB42343B
16	Plastic Dual In-line Package	PDIP	PG	648	98ASB42431B
16	Thin Shrink Small Outline Package	TSSOP	TG	948F	98ASH70247A

5.1 Mechanical Drawings

The following pages are mechanical drawings for the packages described in Table 21.

FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE: SOIC, WIDE BOD	Υ.	DOCUMENT NO): 98ASB42345B	REV: G
28 LEAD	CASE NUMBER	R: 751F-05	10 MAR 2005	
CASEOUTLINE	STANDARD: MS	S-013AE	_	

NOTES:

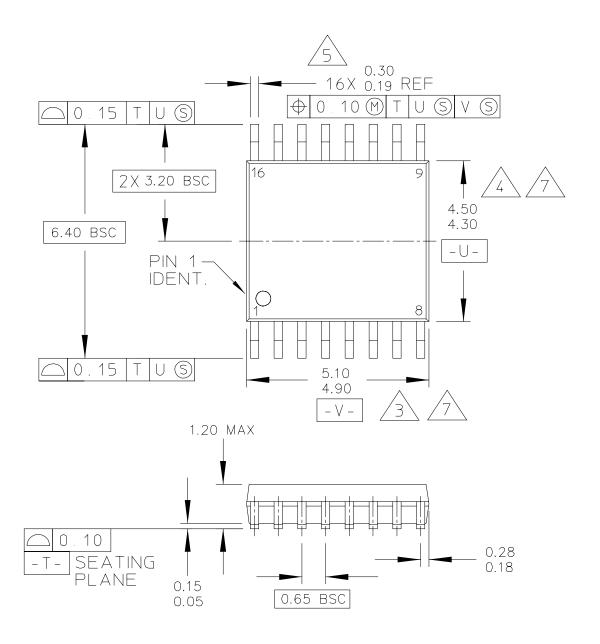

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- 4. 751F-01 THRU -04 OBSOLETE. NEW STANDARD: 751F-05

<u> 6.</u>

THIS DIMENSION DOES NOT INCLUDE DAM BAR PROTRUSION ALLOWABLE DAM BAR PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THIS DIMENSION AT MAXIMUM MATERIAL CONDITION.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE: SOIC, WIDE BODY,		DOCUMENT NO	: 98ASB42345B	REV: G
28 LEAD	CASE NUMBER	2: 751F-05	10 MAR 2005	
CASEOUTLINE		STANDARD: MS	:_0134F	

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE:		DOCUMENT NO): 98ASB42343B	REV: J
20LD SOIC W/B, 1.27 PITCH CASE—OUTLINE	CASE NUMBER	2: 751D-07	23 MAR 2005	
CASE-001ETNE		STANDARD: JE	DEC MS-013AC	



NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A AND B TO BE DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- THIS DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSION OR GATE BURRS SHALL NOT EXCEED 0.15 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- THIS DIMENSION DOES NOT INCLUDE INTER—LEAD FLASH OR PROTRUSIONS. INTER—LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.62 mm.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE: 20LD SOIC W/B, 1.27 PITCH, CASE OUTLINE		DOCUMENT NO): 98ASB42343B	REV: J
		CASE NUMBER	R: 751D-07	23 MAR 2005
		STANDARD: JEDEC MS-013AC		

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
		DOCUMENT NO: 98ASH70247A		REV: B
		CASE NUMBER: 948F-01		19 MAY 2005
		STANDARD: JEDEC		

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale $\ ^{\mathbb{M}}$ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2007-2011. All rights reserved.

MC9S08QE8 Rev. 8 4/2011