

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, PWM, WDT
Number of I/O	12
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	16-TSSOP
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08qe4ctgr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin N	umbei	r		< Lowest	t Priority	> Highest	
32	28	20	16	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
26	26	20	16	PTA0	KBIP0	TPM1CH0	ADP0 ⁴	ACMP1+ ⁴
27	27	_		PTC7				ACMP2-
28	28	_		PTC6				ACMP2+
29	1	_	_	PTC5				ACMP2O
30	2	_		PTC4				
31	3	1	1	PTA5	IRQ	TCLK	RESET	
32	4	2	2	PTA4	ACMP1O	BKGD	MS	

Table 1. Pin Availability by Package Pin-Count (continued)

¹ IIC pins, SCL and SDA can be repositioned using IICPS in SOPT2, default reset locations are PTA3 and PTA2.

² TPM2CH2 pin can be repositioned using TPM2CH2PS in SOPT2, default reset location is PTA7.

³ TPM1CH2 pin can be repositioned using TPM1CH2PS in SOPT2, default reset location is PTA6.

⁴ If ADC and ACMP1 are enabled, both modules will have access to the pin.

3 Electrical Characteristics

3.1 Introduction

This section contains electrical and timing specifications for the MC9S08QE8 series of microcontrollers available at the time of publication.

3.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 2. Parameter Classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions must be taken to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification, ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless instructed otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series resistance	R1	1500	Ω
Human Body	Storage capacitance	С	100	pF
	Number of pulses per pin		3	
	Series resistance	R1	0	Ω
Machine	Storage capacitance	С	200	pF
	Number of pulses per pin	_	3	
L atab un	Minimum input voltage limit	_	-2.5	V
Later-up	Maximum input voltage limit		7.5	V

Table 5. ESD and Latch-up Test Conditions

Table 6. ESD and Latch-Up Protection Characteristics

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	±2000	_	V
2	Machine model (MM)	V _{MM}	±200	_	V
3	Charge device model (CDM)	V _{CDM}	±500	_	V
4	Latch-up current at T _A = 85 °C	I _{LAT}	±100	—	mA

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

Num	с	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp (°C)
5	т	Run supply current	BI	16 kHz FBILP	3	77	_		_40 to 85 °C
5	т	from RAM	TUDD	16 kHz FBELP		7.3	_	μΑ	-40 10 05 0
6	Т	Wait mode supply current	\\/I	10 MHz	3	570	_		-40 to 85 °C
0	Т	El mode, all modules off	VVIDD	1 MHz	5	290	_	μΛ	-401005 0
7	т	Wait mode supply current LPRS = 1, all modules off	WI _{DD}	16 kHz FBELP	3	1	_	μA	–40 to 85 °C
	Р		S2I _{DD}	_		0.3	0.65		–40 to 25 °C
	С	Stop2 mode supply current			3	0.5	0.8	μA	70 °C
0	Р					1	2.5		85 °C
0	С			_	2	0.25	0.50		–40 to 25 °C
	С			_		0.3	0.6		70 °C
	С			_		0.7	2.0		85 °C
	Ρ			_		0.4	0.8		–40 to 25 °C
	С			_	3	1.0	1.8		70 °C
٩	Ρ	Stop3 mode supply current no clocks active	ରସ	_		3	6	μA	85 °C
3	С		331 _{DD}	_		0.35	0.60		–40 to 25 °C
	С			_	2	0.8	1.5		70 °C
	С					2.5	5.5		85 °C

Table 8.	Supply Current	Characteristics	(continued)
			· /

¹ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.

Table 9. Stop Mode Adders

Num	C	Parameter	Condition	Temperature				Units
Num	Ŭ	i arameter	Condition	–40 °C	25 °C	70 °C	85 °C	Onits
1	Т	LPO	—	50	75	100	150	nA
2	Т	ERREFSTEN	RANGE = HGO = 0	1000	1000	1100	1500	nA
3	Т	IREFSTEN ¹	—	63	70	77	81	μA
4	Т	RTC	Does not include clock source current	50	75	100	150	nA
5	Т	LVD ¹	LVDSE = 1	90	100	110	115	μA
6	Т	ACMP ¹	Not using the bandgap (BGBE = 0)	18	20	22	23	μA
7	Т	ADC ¹	ADLPC = ADLSMP = 1 Not using the bandgap (BGBE = 0)	95	106	114	120	μA

¹ Not available in stop2 mode.

3.8 External Oscillator (XOSCVLP) Characteristics

Refer to Figure 12 and Figure 13 for crystal or resonator circuits.

Table 10. XOSCVLP Specifications (Temperature Range = -40 to 85°C Ambient)

Num	С	Characteristic	Symbol	Min.	Typical ¹	Max.	Unit
1	с	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1), high gain (HGO = 1), FBELP mode High range (RANGE = 1), low power (HGO = 0), FBELP mode	f _{lo} f _{hi} f _{hi}	32 1 1		38.4 16 8	kHz MHz MHz
2	D	Load capacitors Low range (RANGE=0), low power (HGO = 0) Other oscillator settings	C _{1,} C ₂		See Not See Not	te ² te ³	
3	D	Feedback resistor Low range, low power (RANGE = 0, HGO = 0) ² Low range, high gain (RANGE = 0, HGO = 1) High range (RANGE = 1, HGO = X)	R _F		— 10 1		MΩ
4	D	Series resistor — Low range, low power (RANGE = 0, HGO = 0) ² Low range, high gain (RANGE = 0, HGO = 1) High range, low power (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) \geq 8 MHz 4 MHz 1 MHz	R _S		 100 0 0 0 0	 0 10 20	kΩ
5	С	Crystal start-up time ⁴ Low range, low power Low range, high gain High range, low power High range, high gain	^t CSTL ^t CSTH	 	600 400 5 15		ms
6	D	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE mode FBE or FBELP mode	f _{extal}	0.03125 0	_	20 20	MHz MHz

¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.

² Load capacitors ($C_{1,}C_{2}$), feedback resistor (R_{F}) and series resistor (R_{S}) are incorporated internally when RANGE = HGO = 0.

³ See crystal or resonator manufacturer's recommendation.

⁴ Proper PC board layout procedures must be followed to achieve specifications.

Figure 16. IRQ/KBIPx Timing

3.10.2 TPM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No.	С	Function	Symbol	Min	Мах	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4	—	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	—	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	—	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	—	t _{cyc}

Table 13. TPM Input Timing

Figure 17. Timer External Clock

Figure 18. Timer Input Capture Pulse

MC9S08QE8 Series Data Sheet, Rev. 8

С	Characteristic	Conditions	Symbol	Min	Typ ¹	Мах	Unit	Comment
		12-bit mode		_	±2	_		Pad
D	Input leakage error	10-bit mode	E _{IL}	_	±0.2	±4	LSB ²	leakage ⁴ *
		8-bit mode			±0.1	±1.2		R _{AS}
Ch	aracteristics for c	levices with shared supply (16-	and 20-pin	package	es only)			
т	Total	12-bit mode		Not	recommer	nded usage		
Р	unadjusted	10-bit mode	E _{TUE}	_	±1.5	±3.5	LSB ²	Includes quantization
Р	error	8-bit mode			±0.7	±1.5		1
Т		12-bit mode		Not	recommer	nded usage		
Р	Differential non-linearity	10-bit mode ³	DNL	_	±0.5	±1.0	LSB ²	
Р	,	8-bit mode ³		_	±0.3	±0.5		
Т		12-bit mode		Not recommended usage				
Т	Integral non-linearity	10-bit mode	INL		±0.5	±1.0	LSB ²	
Т		8-bit mode	-	_	±0.3	±0.5		
Т		12-bit mode		Not	Not recommended usage			
Р	Zero-scale error	10-bit mode	E _{ZS}	_	±1.5	±2.1	LSB ²	V _{ADIN} =
Р		8-bit mode		_	±0.5	±0.7		00/1
Т		12-bit mode		Not	recommer	nded usage		
Р	Full-scale error	10-bit mode	E _{FS}	—	±1	±1.5	LSB ²	V _{ADIN} = V _{DD4}
Р		8-bit mode		_	±0.5	±0.5		DBR
		12-bit mode		Not	recommer	nded usage		
D	Quantization error	10-bit mode	EQ	_	_	±0.5	LSB ²	
		8-bit mode		_	_	±0.5		
		12-bit mode		Not	recommer	nded usage		Pad
D	Input leakage error	10-bit mode	E _{IL}	—	±0.2	±4	LSB ²	leakage ⁴ *
		8-bit mode		_	±0.1	±1.2		H _{AS}

Table 17. ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

¹ Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{\text{REFH}} - V_{\text{REFL}})/2^N$

³ Monotonicity and No-missing-codes guaranteed in 10-bit and 8-bit modes

⁴ Based on input pad leakage current. Refer to pad electricals.

3.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage for program/erase -40 °C to 85 °C	V _{prog/erase}	1.8	_	3.6	v
D	Supply voltage for read operation		1.8	—	3.6	V
D	Internal FCLK frequency ¹	f _{FCLK}	150	—	200	kHz
D	Internal FCLK period (1/FCLK)	t _{Fcyc}	5	—	6.67	μs
Р	Byte program time (random location) ²	t _{prog}			t _{Fcyc}	
Р	Byte program time (burst mode) ²	t _{Burst}		4		t _{Fcyc}
Р	Page erase time ²	t _{Page}		4000		t _{Fcyc}
Р	Mass erase time ²	t _{Mass}		20,000		t _{Fcyc}
	Byte program current ³	RI _{DDBP}	_	4	—	mA
	Page erase current ³	RI _{DDPE}	_	6	—	mA
С	Program/erase endurance ⁴ T_L to $T_H = -40^{\circ}C$ to 85 °C $T = 25 ^{\circ}C$	·	10,000	100,000		cycles
С	Data retention ⁵	t _{D_ret}	15	100	—	years
1 The	frequency of this cleak is controlled by a coff	huara aatting	•			•

The frequency of this clock is controlled by a software setting.

² These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

³ The program and erase currents are additional to the standard run I_{DD} . These values are measured at room temperatures with $V_{DD} = 3.0 \text{ V}$, bus frequency = 4.0 MHz.

⁴ Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, *Typical Endurance for Nonvolatile Memory*.

⁵ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618, *Typical Data Retention for Nonvolatile Memory.*

3.14 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

Ordering Information

3.14.1 Conducted Transient Susceptibility

Microcontroller transient conducted susceptibility is measured in accordance with an internal Freescale test method. The measurement is performed with the microcontroller installed on a custom EMC evaluation board and running specialized EMC test software designed in compliance with the test method. The conducted susceptibility is determined by injecting the transient susceptibility signal on each pin of the microcontroller. The transient waveform and injection methodology is based on IEC 61000-4-4 (EFT/B). The transient voltage required to cause performance degradation on any pin in the tested configuration is greater than or equal to the reported levels unless otherwise indicated by footnotes below Table 19.

Parameter	Symbol	Conditions	f _{OSC} /f _{BUS}	Result	Amplitude ¹ (Min)	Unit
				А	2.3	
Conducted susceptibility, electrical fast transient/burst (EFT/B)	V _{CS_EFT}	$V_{DD} = 3.3 V$ $T_A = 25 °C$ package type 32-pin LQFP	8 MHz	В	4.0	- kV
			8 MHz bus	С	>4.0	
				D	>4.0	

Table 19. Conducted Susceptibility, EFT/B

¹ Data based on qualification test results. Not tested in production.

The susceptibility performance classification is described in Table 20.

Table 20. Susc	eptibility Perform	nance Classification
----------------	--------------------	----------------------

Result		Performance Criteria				
A	No failure	The MCU performs as designed during and after exposure.				
В	Self-recovering failure	The MCU does not perform as designed during exposure. The MCU returns automatically to normal operation after exposure is removed.				
С	Soft failure	The MCU does not perform as designed during exposure. The MCU does not return to normal operation until exposure is removed and the RESET pin is asserted.				
D	Hard failure	The MCU does not perform as designed during exposure. The MCU does not return to normal operation until exposure is removed and the power to the MCU is cycled.				
E	Damage	The MCU does not perform as designed during and after exposure. The MCU cannot be returned to proper operation due to physical damage or other permanent performance degradation.				

4 Ordering Information

This section contains ordering information for the device numbering system.

Example of the device numbering system:

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	LOUTLINE	PRINT VERSION NO	T TO SCALE	
TITLE: THERMALLY ENHANCED	QUAD	DOCUMENT NO	: 98ASA00071D	REV: O
FLAT NON-LEADED PACKA	CASE NUMBER: 2078–01 14 APR 2009			
32 TERMINAL, 0.4 PITCH (4	STANDARD: NO	N-JEDEC		

© FREESCALE SEMICONDUCTOR, INC.
ALL RIGHTS RESERVED.MECHANICAL OUTLINEPRINT VERSION NOT TO SCALETITLE:
THERMALLY ENHANCED QUAD
FLAT NON-LEADED PACKAGE (QFN)
32 TERMINAL, 0.4 PITCH (4 X 4 X 1)DOCUMENT NO: 98ASA00071DREV: 0CASE NUMBER: 2078-0114 APR 2009STANDARD: NON-JEDEC

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NE	IT TO SCALE
TITLE:		DOCUMENT NE]: 98ASH70029A	REV: C
LOW PROFILE QUAD FLAT PA	CASE NUMBER	8: 873A-04	01 APR 2005	
32 LEAD, 0.8 PITCH (7 X	STANDARD: JE	DEC MS-026 BBA		

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE: SOIC, WIDE BODY, 28 LEAD CASEOUTLINE		DOCUMENT NO	: 98ASB42345B	REV: G
		CASE NUMBER: 751F-05 10 MAR 200		
		STANDARD: MS	5-013AE	

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO): 98ASB42343B	REV: J
20LD SOIC W/B, 1.27 PITCH		CASE NUMBER	R: 751D-07	23 MAR 2005
CASE OUTEI	STANDARD: JE	DEC MS-013AC		

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A AND B TO BE DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- A. THIS DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSION OR GATE BURRS SHALL NOT EXCEED 0.15 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- 5. THIS DIMENSION DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- 6. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.62 mm.

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO): 98ASB42343B	REV: J
20LD SOIC W/B, 1.27 PITCH		CASE NUMBER	2: 751D-07	23 MAR 2005
CASE OUTLINE	STANDARD: JE	DEC MS-013AC		

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		L OUTLINE	PRINT VERSION NE	IT TO SCALE
TITLE:		DOCUMENT NE]: 98ASB42431B	RE∨: T
16 ID PDIP		CASE NUMBER	2: 648-08	19 MAY 2005
		STANDARD: NE	IN-JEDEC	

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCH.
- A DIMENSION TO CENTER OF LEADS WHEN FORMED PARALLEL.
- A DIMENSIONS DOES NOT INCLUDE MOLD FLASH.
- 5. ROUNDED CORNERS OPTIONAL.
- 6. 648-01 THRU -08 OBSOLETE, NEW STANDARD 648-09.

	MILLIN	IETERS		NCHES	MILLIMETERS		lMeters	INCHES	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
A	18.80	19.55	0.740	0.770					
В	6.35	6.85	0.250	0.270					
С	3.69	4.44	0.145	0.175					
D	0.39	0.53	0.015	0.021					
F	1.02	1.77	0.040	0.070					
G	2.54	BSC	0.1	00 BSC					
Н	1.27	BSC	0.0	50 BSC					
J	0.21	0.38	0.008	0.015					
K	2.80	3.30	0.110	0.130					
L	7.50	7.74	0.295	0.305					
М	0.	10°	0.	10°					
S	0.51	1.01	0.020	0.040					
© FF	© FREESCALE SEMICONDUCTOR, INC. MECHANICA		L OUTLINE PRINT VERS		SION NO	ION NOT TO SCALE			
TITLE	TITLE:			DOCUMENT NO: 98ASB42431B			1B	REV: T	
16 LD PDIP			CASE	NUMBER	2:648-08		19 MAY 2005		
					STAN	dard: No	N-JEDEC		

STYLE 1:

PIN 1. CATHODE

- 2. CATHODE
- 3. CATHODE
- 4. CATHODE
- 5. CATHODE
- 6. CATHODE
- 7. CATHODE
- 8. CATHODE
- 9. ANODE
- 10. ANODE
- 11. ANODE
- 12. ANODE
- 13. ANODE
- 14. ANODE
- 15. ANODE
- 16. ANODE

STYLE 2:

- PIN 1. COMMON DRAIN
 - 2. COMMON DRAIN
 - 3. COMMON DRAIN
 - 4. COMMON DRAIN
 - 5. COMMON DRAIN
 - 6. COMMON DRAIN
 - 7. COMMON DRAIN
 - 8. COMMON DRAIN
 - 9. GATE
 - 10. SOURCE
 - 11. GATE
 - 12. SOURCE
 - 13. GATE
 - 14. SOURCE
 - 15. GATE
 - 16. SOURCE

© FREESCALE SEMICONDUCTOR, INC. MECHANICAL ALL RIGHTS RESERVED.		L OUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO	: 98ASB42431B	REV: T
16 LD PDIP		CASE NUMBER	2:648-08	19 MAY 2005
		STANDARD: NC	N-JEDEC	

