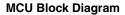

NXP USA Inc. - MC9S08QE8CTG Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

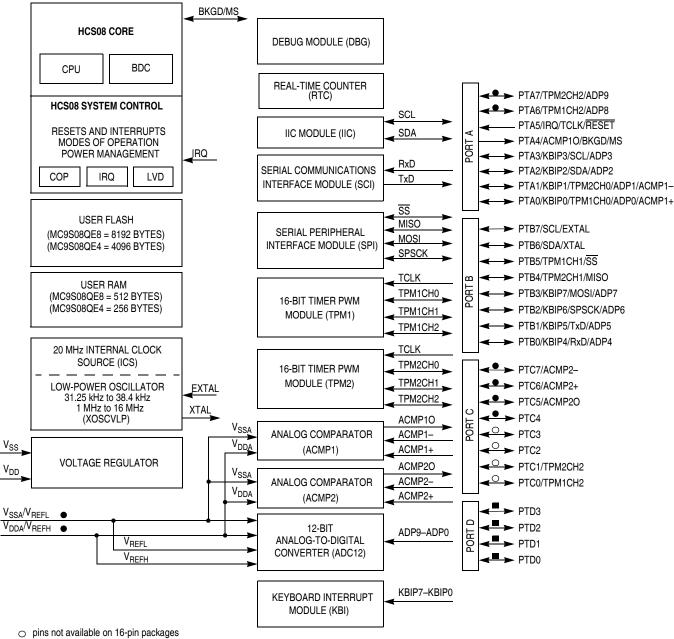
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, PWM, WDT
Number of I/O	12
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	16-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08qe8ctg

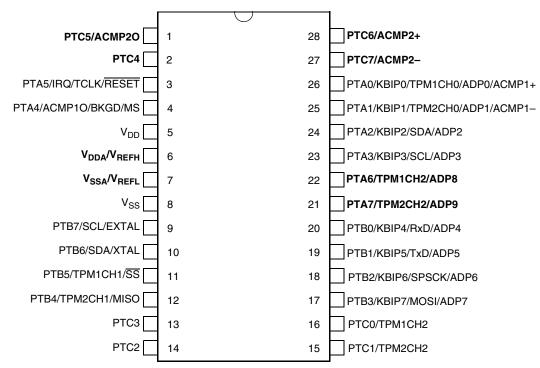
Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MCU Block Diagram 1

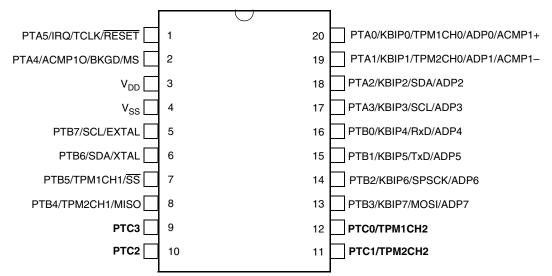
The block diagram, Figure 1, shows the structure of MC9S08QE8 series MCU.

• pins not available on 16-pin or 20-pin packages


■ pins not available on 16-pin, 20-pin or 28-pin packages

Notes: When PTA5 is configured as RESET, pin becomes bi-directional with output being open-drain drive containing an internal pullup device. When PTA4 is configured as BKGD, pin becomes bi-directional. For the 16-pin and 20-pin packages, V_{SSA}/V_{REFL} and V_{DDA}/V_{REFH} are double bonded to V_{SS} and V_{DD} respectively.

Figure 1. MC9S08QE8 Series Block Diagram


Pin Assignments

Pins shown in bold type are lost in the next lower pin count package.

Pins shown in bold type are lost in the next lower pin count package.

Figure 4. MC9S08QE8 Series in 20-pin SOIC Package

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T _L to T _H 40 to 85	°C
Maximum junction temperature	T _{JM}	95	°C
Thermal resistance Single-layer board			
32-pin QFN		110	
32-pin LQFP		66	
28-pin SOIC	ο	57	°C/W
20-pin SOIC	θ _{JA}	71	0/11
16-pin PDIP		64	
16-pin TSSOP		108	
Thermal resistance Four-layer board	· · · ·		·
32-pin QFN		42	
32-pin LQFP		47	
28-pin SOIC	ρ	42	°C/W
20-pin SOIC	θ _{JA}	52	0/11
16-pin PDIP		47	
16-pin TSSOP		78	

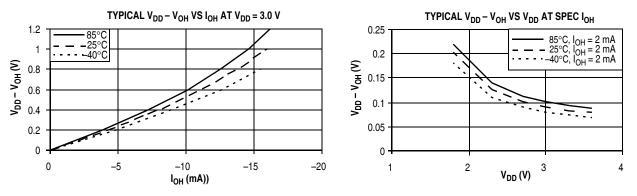
Table 4. Thermal Characteris

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 $\begin{array}{l} T_A = Ambient \ temperature, \ ^C\\ \theta_{JA} = Package \ thermal \ resistance, \ junction-to-ambient, \ ^C/W\\ P_D = P_{int} + P_{I/O}\\ P_{int} = I_{DD} \times V_{DD}, \ Watts \ -- \ chip \ internal \ power\\ P_{I/O} = Power \ dissipation \ on \ input \ and \ output \ pins \ -- \ user \ determined \end{array}$


For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273 \ ^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

K = P_D × (T_A + 273 °C) +
$$θ_{JA}$$
 × (P_D)² Eqn. 3

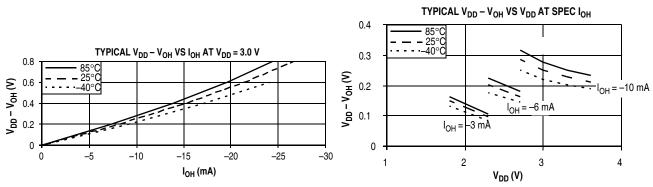


Figure 10. Typical High-Side (Source) Characteristics — High Drive (PTxDSn = 1)

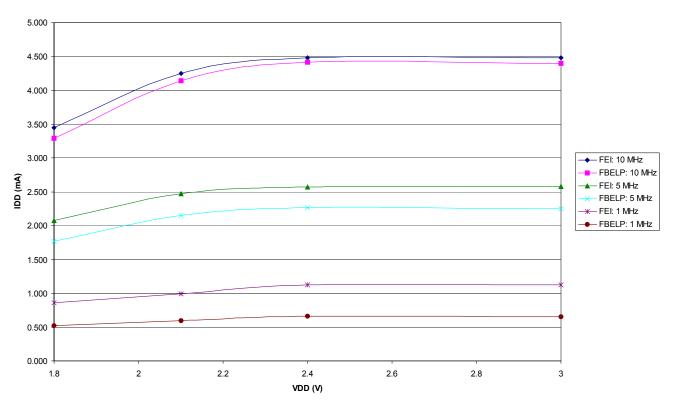
3.7 Supply Current Characteristics

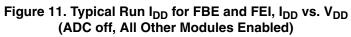
This section includes information about power supply current in various operating modes.

Num	с	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Мах	Unit	Temp (°C)				
1	Р	Run supply current	RI _{DD}	10 MHz		5.60	8.2	mA	–40 to 85 °C				
	Т	FEI mode, all modules on	מסייי	1 MHz	MHz ³	0.80	_		-+0 10 00 0				
2	Т	Run supply current	RI _{DD}	10 MHz		3.60		mA	–40 to 85 °C				
2	Т	FEI mode, all modules off	מסייי	1 MHz	3	3	3	3	3	0.51	—		-40 10 65° C
3	т	Run supply current		16 kHz FBILP	- 3	165		μA	-40 to 85 °C				
0	т	LPRS = 0, all modules off	RI _{DD}	16 kHz FBELP		3	5	105	—	μ	-40 10 00 0		
4	Т	Run supply current LPRS = 1, all modules off; running from flash	RI _{DD}	16 kHz FBILP	3	77	_	μA	-40 to 85 °C				
	т		DD	16 kHz FBELP	5	21	_	μπ	-40 10 00 0				

Table 8. Supply Current Characteristics

Num	с	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp (°C)				
5	Т	Run supply current LPRS = 1, all modules off; running	RI _{DD}	16 kHz FBILP	3	77	_	μA	–40 to 85 °C				
	т	from RAM		16 kHz FBELP	Ū	7.3	_	μ					
6	Т	Wait mode supply current	WI _{DD}	10 MHz	3	570	—	μA	–40 to 85 °C				
0	Т	FEI mode, all modules off	UUU	1 MHz	0	290	—	μΛ	-+010005 0				
7	т	Wait mode supply current LPRS = 1, all modules off	WI _{DD}	16 kHz FBELP	3	1	_	μA	–40 to 85 °C				
	Р			_	3	0.3	0.65		–40 to 25 °C				
	С	Stop2 mode supply current		_		0.5	0.5 0.8		70 °C				
8	Ρ		S2I _{DD}	S2I _{DD}	_		1	2.5	μA	85 °C			
0	С				021 _{DD}	OL'DD	DD	DD	_		0.25	0.50	μΛ
	С			—	2	0.3	0.6	1	70 °C				
	С			_		0.7	2.0		85 °C				
	Ρ			_		0.4	0.8		–40 to 25 °C				
	С			- 3 	3	1.0	1.8		70 °C				
9	Ρ	Stop3 mode supply current	ରସ			3	6	μA	85 °C				
3	С	no clocks active	S3I _{DD}			0.35	0.60	μΛ	–40 to 25 °C				
	С			_	2	0.8 1.5	1.5		70 °C				
	С			_		2.5	5.5		85 °C				


¹ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.


Table 9. Stop Mode Adders

Num	6	C Parameter	Condition			Units		
Num	C		Condition	-40 °C	25 °C	70 °C	85 °C	Units
1	Т	LPO	—	50	75	100	150	nA
2	Т	ERREFSTEN	RANGE = HGO = 0	1000	1000	1100	1500	nA
3	Т	IREFSTEN ¹	_	63	70	77	81	μA
4	Т	RTC	Does not include clock source current	50	75	100	150	nA
5	Т	LVD ¹	LVDSE = 1	90	100	110	115	μA
6	Т	ACMP ¹	Not using the bandgap (BGBE = 0)	18	20	22	23	μA
7	Т	ADC ¹	ADLPC = ADLSMP = 1 Not using the bandgap (BGBE = 0)	95	106	114	120	μA

¹ Not available in stop2 mode.

Num	С	Characteristic	Symbol	Min.	Typical ¹	Max.	Unit
7	С	Resolution of trimmed DCO output frequency at fixed voltage and temperature (not using FTRIM)	$\Delta f_{dco_res_t}$	_	± 0.2	± 0.4	%f _{dco}
8	С	Total deviation of DCO output from trimmed frequency ³ Over full voltage and temperature range Over fixed voltage and temperature range of 0 to 70 °C	Δf_{dco_t}	_	−1.0 to 0.5 ±0.5	±2 ±1	%f _{dco}
10	С	FLL acquisition time ⁴	t _{Acquire}	_	_	1	ms
11	С	Long term jitter of DCO output clock (averaged over 2-ms interval) ⁵	C _{Jitter}		0.02	0.2	%f _{dco}

Table 11. ICS Frequency	Specifications	(Temperature	Range = -40 to	85°C Ambient)	(continued)

¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.

² The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

³ This parameter is characterized and not tested on each device.

⁴ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

⁵ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

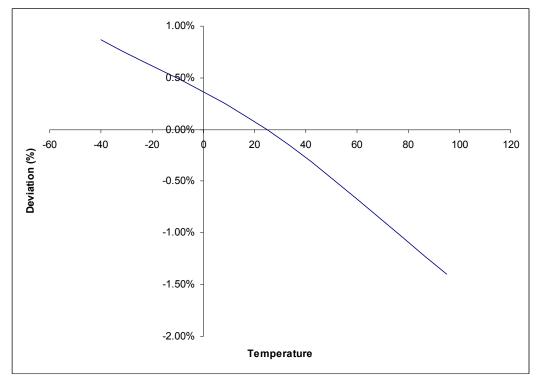


Figure 14. Deviation of DCO Output from Trimmed Frequency (20 MHz, 3.0 V)

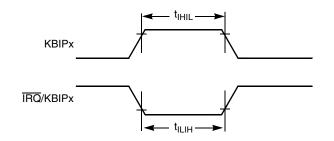


Figure 16. IRQ/KBIPx Timing

3.10.2 TPM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No.	С	Function	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4	—	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	—	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	—	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	—	t _{cyc}

Table 13. TPM Input Timing

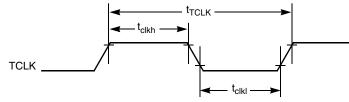
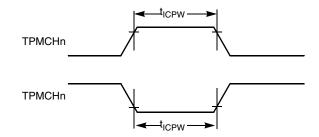
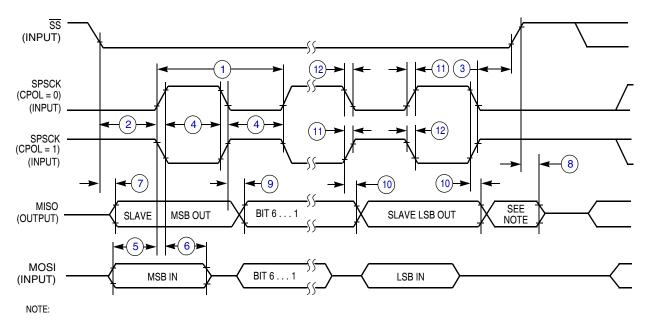
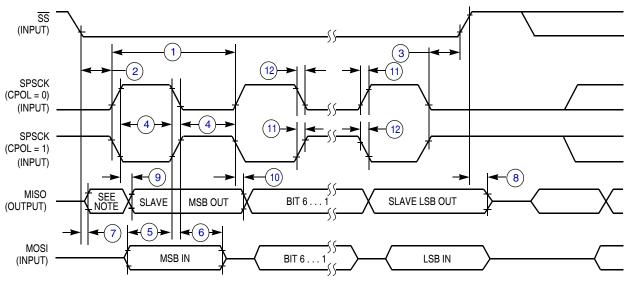


Figure 17. Timer External Clock


Figure 18. Timer Input Capture Pulse

1. Not defined but normally MSB of character just received

NOTE:

1. Not defined but normally LSB of character just received

Figure 22. SPI Slave Timing (CPHA = 1)

3.11 Analog Comparator (ACMP) Electricals

Table 15. Analog Comparator Electrical Specifications

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage	V _{DD}	1.8	_	3.6	V
Р	Supply current (active)	I _{DDAC}	_	20	35	μA

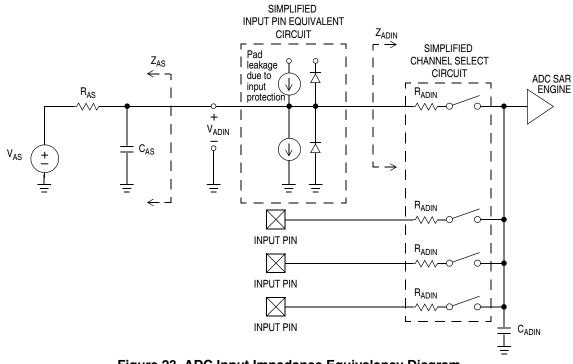


Figure 23. ADC Input Impedance Equivalency Diagram

С	Characteristic	Conditions	Symbol	Min	Typ ¹	Max	Unit	Comment
т	Supply current ADLPC = 1 ADLSMP = 1 ADCO = 1		I _{DDA}	_	120	_	μA	
т	Supply current ADLPC = 1 ADLSMP = 0 ADCO = 1		I _{DDA}	_	202	_	μA	
т	Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1		I _{DDA}	_	288	_	μA	
Ρ	Supply current ADLPC = 0 ADLSMP = 0 ADCO = 1		I _{DDA}	_	0.532	1	mA	
	ADC	High speed (ADLPC = 0)	4	2	3.3	5	N411-	t _{ADACK} =
Ρ	asynchronous clock source	Low power (ADLPC = 1)	f _{ADACK}	1.25	2	3.3	MHz	1/f _{ADACK}

с	Characteristic	Conditions	Symbol	Min	Typ ¹	Мах	Unit	Comment	
-	Conversion	Short sample (ADLSMP = 0)			20				
Ρ	time (including		t _{ADC}				ADCK cycles	See QE8 reference manual for conversion	
	sample time)	Long sample (ADLSMP = 1)			40	_	0,000		
Р	Sample time	Short sample (ADLSMP = 0)	t _{ADS}	_	3.5		ADCK	time	
		Long sample (ADLSMP = 1)		_	23.5	_	cycles	variances	
D	Temp sensor -40 °C- 25 °C		m	_	1.646	—	mV/°C		
_	slope	25 °C– 85 °C		_	1.769				
D	Temp sensor voltage	25 °C	V _{TEMP25}	—	701.2	—	mV		
Ch	aracteristics for c	levices with dedicated analog su	upply (28- a	nd 32-p	oin packag	ges only)			
Т		12-bit mode, 3.6> V _{DDA} > 2.7		_	-1 to 3	-2.5 to 5.5			
Т	Total	12-bit mode, 2.7> V _{DDA} > 1.8V	_		-1 to 3	-3.0 to 6.5	LSB ²	Includes quantization	
Ρ	unadjusted error	10-bit mode	E _{TUE}	_	±1	±2.5			
Ρ		8-bit mode			±0.5	±1.0			
Т	12-bit mode			_	±1.0	-1.5 to 2.0			
Ρ	Differential non-linearity	10-bit mode ³	DNL	_	±0.5	±1.0	LSB ²		
Ρ		8-bit mode ³		_	±0.3	±0.5			
Т	Integral	12-bit mode			±1.5	–2.5 to 2.75	LSB ²		
Т	non-linearity	10-bit mode	INL		±0.5	±1.0			
Т		8-bit mode			±0.3	±0.5			
Т		12-bit mode		_	±1.5	±2.5			
Р	Zero-scale error	10-bit mode	E _{ZS}	_	±0.5	±1.5	LSB ²	V _{ADIN} = V _{SSA}	
Р		8-bit mode		_	±0.5	±0.5			
Т		12-bit mode		_	±1.0	-3.5 to 1.0			
Ρ	Full-scale error	10-bit mode	E _{FS}	_	±0.5	±1	LSB ²	V _{ADIN} = V _{DDA}	
Ρ		8-bit mode			±0.5	±0.5		⊻ DDA	
		12-bit mode		_	-1 to 0				
D	Quantization error	10-bit mode	EQ	_	_	±0.5	LSB ²		
	GIIUI	8-bit mode			_	±0.5			

Table 17. ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

С	Characteristic	Conditions	Symbol	Min	Typ ¹	Max	Unit	Comment	
		12-bit mode		—	±2	_		Pad leakage ⁴ *	
D	D Input leakage error	10-bit mode	E _{IL}	—	±0.2	±4	LSB ²		
		8-bit mode		—	±0.1	±1.2		R _{AS}	
Cha	racteristics for d	levices with shared supply (16- a	and 20-pin p	backage	es only)				
т	Total	12-bit mode		Not i	recommer	ided usage			
Ρ	unadjusted	10-bit mode	E _{TUE}	_	±1.5	±3.5	LSB ²	Includes quantization	
Ρ	error	8-bit mode		_	±0.7	±1.5		1	
Т		12-bit mode		Not recommended		ided usage			
Ρ	Differential non-linearity	10-bit mode ³	DNL	_	±0.5	±1.0	LSB ²		
Ρ		8-bit mode ³		_	±0.3	±0.5			
Т		12-bit mode		Not recommended usage					
Т	Integral non-linearity	10-bit mode	INL	_	±0.5	±1.0	LSB ²		
Т	,	8-bit mode		_	±0.3	±0.5			
Т		12-bit mode		Not r	Not recommended usage		-		
Ρ	Zero-scale error	10-bit mode	E _{ZS}	_	±1.5	±2.1	LSB ²	V _{ADIN} = V _{SSA}	
Ρ		8-bit mode		_	±0.5	±0.7		004	
Т		12-bit mode		Not r	recommer	ided usage			
Ρ	Full-scale error	10-bit mode	E _{FS}	_	±1	±1.5	LSB ²	V _{ADIN} = V _{DDA}	
Ρ		8-bit mode		_	±0.5	±0.5		DDA	
		12-bit mode		Not r	recommer	ided usage			
D	Quantization error	10-bit mode	EQ	_	_	±0.5	LSB ²		
		8-bit mode		—	_	±0.5			
		12-bit mode		Not r	recommer	ided usage		Pad	
D	Input leakage error	10-bit mode	E _{IL}	_	±0.2	±4	LSB ²	leakage4 *	
	-	8-bit mode		_	±0.1	±1.2		R _{AS}	

Table 17. ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

¹ Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{\text{REFH}} - V_{\text{REFL}})/2^N$

³ Monotonicity and No-missing-codes guaranteed in 10-bit and 8-bit modes

⁴ Based on input pad leakage current. Refer to pad electricals.

Ordering Information

3.14.1 Conducted Transient Susceptibility

Microcontroller transient conducted susceptibility is measured in accordance with an internal Freescale test method. The measurement is performed with the microcontroller installed on a custom EMC evaluation board and running specialized EMC test software designed in compliance with the test method. The conducted susceptibility is determined by injecting the transient susceptibility signal on each pin of the microcontroller. The transient waveform and injection methodology is based on IEC 61000-4-4 (EFT/B). The transient voltage required to cause performance degradation on any pin in the tested configuration is greater than or equal to the reported levels unless otherwise indicated by footnotes below Table 19.

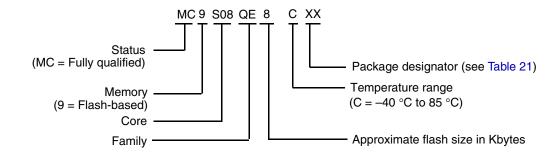
Parameter	Symbol	Conditions	f _{OSC} /f _{BUS}	Result	Amplitude ¹ (Min)	Unit
				А	2.3	
Conducted susceptibility, electrical fast transient/burst (EFT/B)	V _{CS_EFT}	V _{DD} = 3.3 V T _A = 25 ^o C	8 MHz crystal	В	4.0	kV
		package type 32-pin LQFP	8 MHz bus	С	>4.0	κv
				D	>4.0	

Table 19. Conducted Susceptibility, EFT/B

¹ Data based on qualification test results. Not tested in production.

The susceptibility performance classification is described in Table 20.

Result		Performance Criteria
A	No failure	The MCU performs as designed during and after exposure.
В	Self-recovering failure	The MCU does not perform as designed during exposure. The MCU returns automatically to normal operation after exposure is removed.
С	Soft failure	The MCU does not perform as designed during exposure. The MCU does not return to normal operation until exposure is removed and the RESET pin is asserted.
D	Hard failure	The MCU does not perform as designed during exposure. The MCU does not return to normal operation until exposure is removed and the power to the MCU is cycled.
E	Damage	The MCU does not perform as designed during and after exposure. The MCU cannot be returned to proper operation due to physical damage or other permanent performance degradation.


4 Ordering Information

This section contains ordering information for the device numbering system.

Example of the device numbering system:

5 Package Information

Tahlo	21	Package	Descri	ntione
lable	ZI .	гаскауе	Desch	puons

Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
32	Quad Flat No-Leads	QFN	FM	2078	98ASA00071D
32	Low Quad Flat Package	LQFP	LC	873A	98ASH70029A
28	Small Outline Integrated Circuit	SOIC	WL	751F	98ASB42345B
20	Small Outline Integrated Circuit	SOIC	WJ	751D	98ASB42343B
16	Plastic Dual In-line Package	PDIP	PG	648	98ASB42431B
16	Thin Shrink Small Outline Package	TSSOP	TG	948F	98ASH70247A

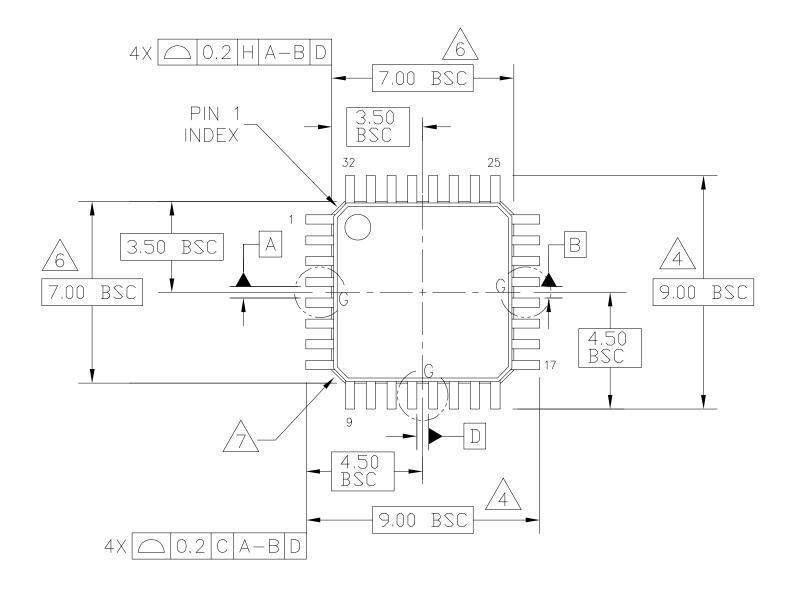
5.1 Mechanical Drawings

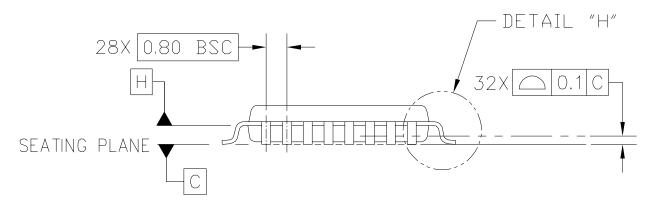
The following pages are mechanical drawings for the packages described in Table 21.

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.

2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

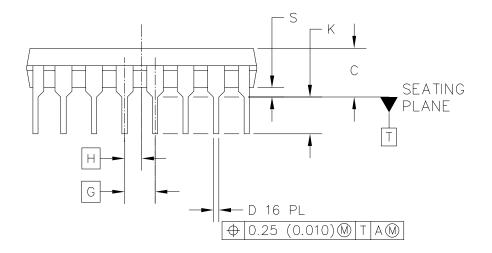

3. THE COMPLETE JEDEC DESIGNATOR FOR THIS PACKAGE IS: HF-PQFN.


4. COPLANARITY APPLIES TO LEADS AND DIE ATTACH PAD.

5. MIN. METAL GAP SHOULD BE 0.2MM.

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	LOUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: THERMALLY ENHANCED QUA	DOCUMENT NO: 98ASA00071D REV: 0		
FLAT NON-LEADED PACKAGE	CASE NUMBER: 2078-01 14 APR 2009		
32 TERMINAL, 0.4 PITCH (4 X	STANDARD: NON-JEDEC		

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NE	IT TO SCALE
TITLE:	DOCUMENT NE]: 98ASH70029A	RE∨: C	
LOW PROFILE QUAD FLAT PA	CASE NUMBER	2: 873A-04	01 APR 2005	
32 LEAD, 0.8 PITCH (7 X	STANDARD: JE	DEC MS-026 BBA		


NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A AND B TO BE DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- THIS DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSION OR GATE BURRS SHALL NOT EXCEED 0.15 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- 5. THIS DIMENSION DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- 6. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.62 mm.

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	LOUTLINE	PRINT VERSION NO	DT TO SCALE	
TITLE:		DOCUMENT NO	: 98ASB42343B	REV: J
20LD SOIC W/B, 1.27 PITCH, Case outline		CASE NUMBER: 751D-07 23		23 MAR 2005
	STANDARD: JEDEC MS-013AC			

© FREESCALE SEMICONDUCTOR, INC. All rights reserved.		L OUTLINE	PRINT VERSION NI	IT TO SCALE
TITLE:		DOCUMENT NE]: 98ASB42431B	RE∨: T
		CASE NUMBER: 648-08 19 MAY 20		
		STANDARD: NON-JEDEC		

