

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c72-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16C72 Series

2.2.2.4 PIE1 REGISTER

This register contains the individual enable bits for the peripheral interrupts.

FIGURE 2-6: PIE1 REGISTER (ADDRESS 8Ch)

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0						
—	ADIE	—	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit					
bit7							bitO	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset 					
bit 7:	Unimplemented: Read as '0'												
bit 6:	 ADIE: A/D Converter Interrupt Enable bit 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt 												
bit 5-4:	: Unimplemented: Read as '0'												
bit 3:	SSPIE: Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt												
bit 2:	CCP1IE : 1 = Enabl 0 = Disab	CCP1 Inte es the CC les the CC	errupt Ena P1 interru P1 interru	ble bit ipt upt									
bit 1:	TMR2IE : TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt												
bit 0:	TMR1IE : 1 = Enabl 0 = Disab	TMR1 Ove es the TM les the TM	erflow Inte IR1 overflo IR1 overfl	errupt Enal ow interrup ow interru	ble bit ot pt								

5.0 TIMER1 MODULE

The Timer1 module timer/counter has the following features:

- 16-bit timer/counter (Two 8-bit registers; TMR1H and TMR1L)
- Readable and writable (Both registers)
- Internal or external clock select
- Interrupt on overflow from FFFFh to 0000h
- Reset from CCP module trigger

Timer1 has a control register, shown in Figure 5-1. Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Figure 5-2 is a simplified block diagram of the Timer1 module.

Additional information on timer modules is available in the $PIC^{@}$ Mid-Range MCU Reference Manual, DS33023.

5.1 <u>Timer1 Operation</u>

Timer1 can operate in one of these modes:

- As a timer
- As a synchronous counter
- As an asynchronous counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on every rising edge of the external clock input.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored.

Timer1 also has an internal "reset input". This reset can be generated by the CCP module (Section 7.0).

FIGURE 5-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	R = Readable bit			
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset			
bit 7-6:	Unimple	mented: F	Read as '0'								
bit 5-4:	T1CKPS 11 = 1:8 10 = 1:4 01 = 1:2 00 = 1:1	1:T1CKPS Prescale v Prescale v Prescale v Prescale v	60: Timer1 alue alue alue alue alue	Input Cloc	k Prescale	e Select bit	S				
bit 3:	T1OSCEN : Timer1 Oscillator Enable Control bit 1 = Oscillator is enabled 0 = Oscillator is shut off Note: The oscillator inverter and feedback resistor are turned off to eliminate power drain										
bit 2:	T1SYNC:	Timer1 E	xternal Clo	ock Input S	Synchroniza	ation Contr	ol bit				
	TMR1CS = 1 1 = Do not synchronize external clock input 0 = Synchronize external clock input										
	<u>TMR1CS</u> This bit is	<u>= 0</u> ignored. ⁻	Timer1 use	es the inter	rnal clock v	vhen TMR	1CS = 0.				
bit 1:	TMR1CS : Timer1 Clock Source Select bit 1 = External clock from pin RC0/T1OSO/T1CKI (on the rising edge) 0 = Internal clock (Fosc/4)										
bit 0:	TMR1ON 1 = Enabl 0 = Stops	l: Timer1 C les Timer1 s Timer1	Dn bit								

NOTES:

7.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1. An event is defined as:

- every falling edge
- · every rising edge
- every 4th rising edge
- every 16th rising edge

An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

7.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note:	If the RC2/CCP1 is configured as an out-
	put, a write to the port can cause a capture
	condition.

FIGURE 7-2: CAPTURE MODE OPERATION BLOCK DIAGRAM

7.1.2 TIMER1 MODE SELECTION

Timer1 must be running in timer mode or synchronized counter mode for the CCP module to use the capture feature. In asynchronous counter mode, the capture operation may not work.

7.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in operating mode.

7.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in capture mode, the prescaler counter is cleared. This means that any reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 7-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 7-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; mode value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		: value

For an example PWM period and duty cycle calculation, see the PIC[®] Mid-Range MCU Reference Manual (DS33023).

7.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.

- Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 7-3 EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 7-4REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value o all othe resets	on er s
0Bh,8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000	x 0000 00	00u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 000	0 0000 00	000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 000	0 0000 00	000
87h	TRISC	PORTC D	ata Directio		1111 111	1 1111 11	111					
11h	TMR2	Timer2 mo	Fimer2 module's register								0 0000 00	000
92h	PR2	Timer2 mo	dule's perio	d register						1111 111	1 1111 11	111
12h	T2CON	—	TOUTPS	TOUTPS	TOUTPS	TOUTPS	TMR2O	T2CKPS	T2CKPS	-000 000	0 -000 00	000
			3	2	1	0	N	1	0			
15h	CCPR1L	Capture/Co	ompare/PW	M register1	(LSB)					XXXX XXX	x uuuu uu	uuu
16h	CCPR1H	Capture/Co	Capture/Compare/PWM register1 (MSB)								x uuuu uu	uuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 000	000 00	000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.

Note 1: These bits/registers are unimplemented, read as '0'.

TABLE 8-2	REGISTERS ASSOCIATED WITH SPI OPERATION (F	PIC16CR72)	
	•		

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
87h	TRISC	PORTC Data	a Direction	n Register						1111 1111	1111 1111
13h	SSPBUF	Synchronou	s Serial P	ort Receiv	e Buffer/	Transmit F	Register			xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
85h	TRISA	_	—	PORTA [PORTA Data Direction Register						11 1111
94h	SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode.

Note 1: Always maintain these bits clear.

8.4.1.2 RECEPTION

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then no acknowledge (\overline{ACK}) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set or bit SSPOV (SSPCON<6>) is set.

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

FIGURE 8-8: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

Receiving Address R/W SDA -	=0Receiving Data 	ACK Receiving Data 20/D7/D6/ D5/ D4/ D3/ D2/ D2/ 31/9111/2 /34156 7	
SSPIF (PIR1<3>)	Cleared in software	 	I Bus Master
		<u>+</u> Ⅰ	terminates
BF (SSPSTAT<0>)	 SSPBUF register is read 		
SSPOV (SSPCON<6>)			
	Bit SSPOV is set be	ecause the SSPBUF register is still fu	ill. 📥 🛛
		ACK is not se	ent.

8.4.2 MASTER OPERATION

Master operation is supported in firmware using interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I^2C bus may be taken when the P bit is set, or the bus is idle and both the S and P bits are clear.

In master operation, the SCL and SDA lines are manipulated in firmware by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received

Master operation can be done with either the slave mode idle (SSPM3:SSPM0 = 1011) or with the slave active. When both master operation and slave modes are used, the software needs to differentiate the source(s) of the interrupt.

For more information on master operation, see AN554 - Software Implementation of I^2C Bus Master.

8.4.3 MULTI-MASTER OPERATION

In multi-master operation, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In multi-master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, these are:

- Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

For more information on master operation, see AN578 - Use of the SSP Module in the of I^2C Multi-Master Environment.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchronou	is Serial F	Port Recei	ve Buffer	Transmit	Register			xxxx xxxx	uuuu uuuu
93h	SSPADD	Synchronou	is Serial F	Port (I ² C n	node) Ado	dress Reg	jister			0000 0000	0000 0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
94h	SSPSTAT	SMP ⁽²⁾	CKE ⁽²⁾	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
87h	TRISC	PORTC Dat	PORTC Data Direction register								1111 1111

TABLE 8-4REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'.

Shaded cells are not used by SSP module in SPI mode. Note 1: These bits are unimplemented, read as '0'.

2: The SMP and CKE bits are implemented on the PIC16CR72 only. On the PIC16C72, these two bits are unimplemented, read as '0'.

9.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

Table 9-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

9.3 Configuring Analog Port Pins

The ADCON1, TRISA, and TRISE registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
- Note 2: Analog levels on any pin that is defined as a digital input (including the AN4:AN0 pins), may cause the input buffer to consume current that is out of the devices specification.

TABLE 9-1 TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock S	Source (TAD)	Device Frequency							
Operation	ADCS1:ADCS0	20 MHz	5 MHz	1.25 MHz	333.33 kHz				
2Tosc	0.0	100 ns ⁽²⁾	400 ns ⁽²⁾	1.6 μs	6 μs				
8Tosc	01	400 ns ⁽²⁾	1.6 μs	6.4 μs	24 μs ⁽³⁾				
32Tosc	10	1.6 μs	6.4 μs	25.6 μs ⁽³⁾	96 μs ⁽³⁾				
RC ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾				

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 $\mu s.$

- 2: These values violate the minimum required TAD time.
- 3: For faster conversion times, the selection of another clock source is recommended.
- 4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep operation only.
- 5: For extended voltage devices (LC), please refer to Electrical Specifications section.

Register	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Inter- rupt
W	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF	N/A	N/A	N/A
TMR0	XXXX XXXX	uuuu uuuu	սսսս սսսս
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu (3)	uuuq quuu(3)
FSR	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	0x 0000	Ou 0000	uu uuuu
PORTB	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTC	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu(1)
PIR1	-0 0000	-0 0000	-u uuuu(1)
TMR1L	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR1H	XXXX XXXX	uuuu uuuu	uuuu uuuu
T1CON	00 0000	uu uuuu	uu uuuu
TMR2	0000 0000	0000 0000	uuuu uuuu
T2CON	-000 0000	-000 0000	-uuu uuuu
SSPBUF	XXXX XXXX	uuuu uuuu	uuuu uuuu
SSPCON	0000 0000	0000 0000	uuuu uuuu
CCPR1L	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCPR1H	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCP1CON	00 0000	00 0000	uu uuuu
ADRES	XXXX XXXX	uuuu uuuu	uuuu uuuu
ADCON0	0000 00-0	0000 00-0	uuuu uu-u
OPTION	1111 1111	1111 1111	uuuu uuuu
TRISA	11 1111	11 1111	uu uuuu
TRISB	1111 1111	1111 1111	uuuu uuuu
TRISC	1111 1111	1111 1111	uuuu uuuu
PIE1	-0 0000	-0 0000	-u uuuu
PCON	Ou	uu	uu
PR2	1111 1111	1111 1111	1111 1111
SSPADD	0000 0000	0000 0000	uuuu uuuu
SSPSTAT	00 0000	00 0000	uu uuuu
ADCON1	000	000	uuu

TABLE 10-6INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition **Note 1:** One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 10-5 for reset value for specific condition.

FIGURE 10-10: SLOW RISE TIME (MCLR TIED TO VDD)

	5V
Vdd	0V1V
MCLR	
INTERNAL POR	
PWRT TIME-OUT	
OST TIME-OUT	
INTERNAL RESET	

10.12 Watchdog Timer (WDT)

The Watchdog Timer is as a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction.

During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

The WDT can be permanently disabled by clearing configuration bit WDTE (Section 10.1).

WDT time-out period values may be found in the Electrical Specifications section under parameter #31. Values for the WDT prescaler (actually a postscaler, but shared with the Timer0 prescaler) may be assigned using the OPTION_REG register.

Note: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

Note: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 10-13: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h,181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Figure 10-1 for operation of these bits.

10.13 Power-down Mode (SLEEP)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSs for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

10.13.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. External reset input on MCLR pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change, or some Peripheral Interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. SSP (Start/Stop) bit detect interrupt.
- 3. SSP transmit or receive in slave mode (SPI/l²C).
- 4. CCP capture mode interrupt.
- 5. A/D conversion (when A/D clock source is RC).
- 6. Special event trigger (Timer1 in asynchronous mode using an external clock).

© 1998-2013 Microchip Technology Inc.

13.2 DC Characteristics: PIC16LC72/LCR72-04 (Commercial, Industrial)

DC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param	Characteristic	Svm	F	PIC16C7	2	PIC16CR72		Units	Conditions	
No.	onarabienblio	- Oyini	Min	Typ†	Max	Min	Typ†	Max	Units	
D001	Supply Voltage	Vdd	2.5	-	6.0	2.5	-	5.5	V	LP, XT, RC (DC - 4 MHz)
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	-	Vss	-	V	See section on Power- on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	0.05	-	-	V/ms	See section on Power- on Reset for details
D005	Brown-out Reset Volt- age	Bvdd	3.7	4.0	4.3	3.7	4.0	4.3	V	BODEN bit in configura- tion word enabled
D010	Supply Current (Note 2,5)	IDD	-	2.0	3.8	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D015*	Brown-out Reset Current (Note 6)	∆lbor	-	350	425	-	350	425	μA	BOR enabled VDD = 5.0V
D020	Power-down Current (Note 3,5)	IPD	-	7.5	30	-	7.5	30	μA	VDD = 3.0V, WDT enabled, -40°C to +85°C
D021			-	0.9	5	-	0.9	5	μA	VDD = 3.0V, WDT dis- abled, 0°C to +70°C
D021A			-	0.9	5	-	0.9	5	μA	VDD = 3.0V, WDT dis- abled, -40°C to +85°C
D023*	Brown-out Reset Current (Note 6)	∆lbor	-	350	425	-	350	425	μA	BOR enabled VDD = 5.0V

* These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

Note 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

Note 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

Note 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

Note 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

Note 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

13.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS		3. TCC:ST	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	т	Time
Lowercase letters (p	pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	ТОСКІ
ю	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercase letters a	nd their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
1	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C specific	ations only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 13-1: LOAD CONDITIONS

16.4 <u>28-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body) (SO)</u>

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units			INCHES*		М	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX	
Pitch	р		0.050			1.27		
Number of Pins	n		28			28		
Overall Pack. Height	А	0.093	0.099	0.104	2.36	2.50	2.64	
Shoulder Height	A1	0.048	0.058	0.068	1.22	1.47	1.73	
Standoff	A2	0.004	0.008	0.011	0.10	0.19	0.28	
Molded Package Length	D [‡]	0.700	0.706	0.712	17.78	17.93	18.08	
Molded Package Width	E‡	0.292	0.296	0.299	7.42	7.51	7.59	
Outside Dimension	E1	0.394	0.407	0.419	10.01	10.33	10.64	
Chamfer Distance	Х	0.010	0.020	0.029	0.25	0.50	0.74	
Shoulder Radius	R1	0.005	0.005	0.010	0.13	0.13	0.25	
Gull Wing Radius	R2	0.005	0.005	0.010	0.13	0.13	0.25	
Foot Length	L	0.011	0.016	0.021	0.28	0.41	0.53	
Foot Angle	φ	0	4	8	0	4	8	
Radius Centerline	L1	0.010	0.015	0.020	0.25	0.38	0.51	
Lead Thickness	с	0.009	0.011	0.012	0.23	0.27	0.30	
Lower Lead Width	В [†]	0.014	0.017	0.019	0.36	0.42	0.48	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	

^{*} Controlling Parameter.

[†] Dimension "B" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B."

[‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."

NOTES:

PR2 Register	
Prescaler, Switching Between Timer0 and WDT26	3
PRO MATE™ Universal Programmer75	5
Program Memory	
Paging16	3
Program Memory Maps	
PIC16C725	5
PIC16CR725	5
Program Verification72	2
2S0 bit)
2S1 bit)
2S2 bit)
2SA bit10)

R

R/W	40, 43
R/W bit	48. 49. 50
BBIE bit	21 68
	10
RC Oscillator	61, 64
Read/Write bit Information, R/W	40, 43
Receive Overflow Detect bit, SSPOV	41
Receive Overflow Indicator bit, SSPOV	
Register File	6
Begisters	
Initialization Conditions	6F
Maps	
PIC16C72	6
PIC16CR72	6
Reset Conditions	64
SSPCON	
Diagram	41
SSPSTAT	
Diagram	40
Section	40
Decilion	
Reset Conditions for Special Registers	64
RP0 bit	6, 9
RP1 bit	9

S

S	40, 43
SCK	42
SCL	47
SDI	42
SDO	42
Slave Mode	
SCL	47
SDA	47
SLEEP	59, 61
SMP	43
Special Event Trigger	58
Special Features of the CPU	59
Special Function Registers	
PIC16C72	7
PIC16CR72	7
Special Function Registers, Section	7
SPI	
Block Diagram	42, 45
Mode	42
Serial Clock	45
Serial Data In	45
Serial Data Out	45
Slave Select	45
SPI Mode	45
SSPCON	44
SSPSTAT	43

SPI Clock Edge Select bit, CKE	43
SPI Data Input Sample Phase Select bit, SMP	43
SPI Mode	42
<u>SS</u>	42
SSP	
Module Overview	39
Section	39
SSPCON	44
SSPSTAT	43
SSPADD Register	8
SSPCON	41, 44
SSPEN	41, 44
SSPIE bit	12
SSPIF bit	13
SSPM3:SSPM0	41, 44
SSPOV	. 41, 44, 47
SSPSTAT	40
SSPSTAT Register	8, 43
Stack	16
Start bit, S	40, 43
STATUS Register	
Stop bit, P	40, 43
Synchronous Serial Port (SSP)	
Block Diagram, SPI Mode	42
SPI Mode	42
Synchronous Serial Port Enable bit, SSPEN	41, 44
Synchronous Serial Port Mode Select bits,	
SSPM3:SSPM0	41, 44
Synchronous Serial Port Module	39
Synchronous Serial Port Status Register	43

Т