

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

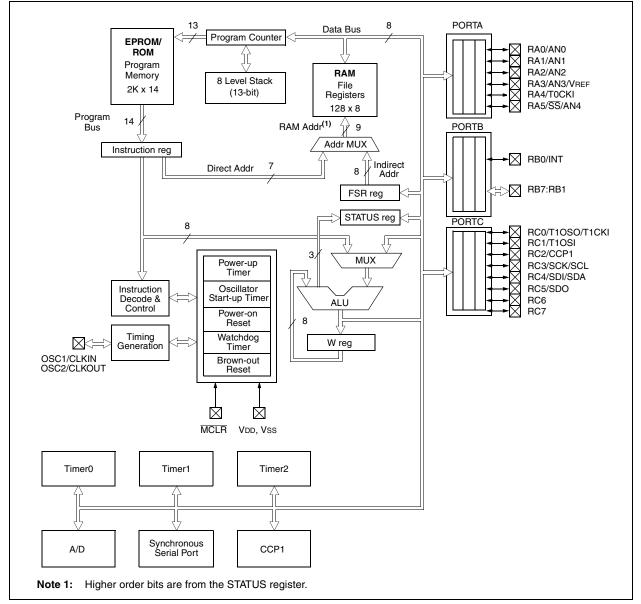
Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c72-04-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device-specific information for the operation of the PIC16C72 device. Additional information may be found in the PIC[®] Mid-Range MCU Reference Manual (DS33023) which may be downloaded from the Microchip website. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.


The PIC16C72 belongs to the Mid-Range family of the PIC devices. A block diagram of the device is shown in Figure 1-1.

The program memory contains 2K words which translate to 2048 instructions, since each 14-bit program memory word is the same width as each device instruction. The data memory (RAM) contains 128 bytes.

There are also 22 I/O pins that are user-configurable on a pin-to-pin basis. Some pins are multiplexed with other device functions. These functions include:

- External interrupt
- Change on PORTB interrupt
- Timer0 clock input
- Timer1 clock/oscillator
- Capture/Compare/PWM
- A/D converter
- SPI/I²C

Table 1-1 details the pinout of the device with descriptions and details for each pin.

FIGURE 1-1: PIC16C72/CR72 BLOCK DIAGRAM

PIC16C72 Series

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (3)
Bank 1		•				•		•	•	·	
80h ⁽¹⁾	INDF	Addressing	Addressing this location uses contents of FSR to address data memory (not a physical register)								0000 0000
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ad	dress pointe	er					xxxx xxxx	uuuu uuuu
85h	TRISA	_	_	PORTA Dat	a Direction F	Register				11 1111	11 1111
86h	TRISB	PORTB Dat	a Direction F	Register						1111 1111	1111 1111
87h	TRISC	PORTC Dat	a Direction F	Register						1111 1111	1111 1111
88h	_	Unimpleme	nted							_	_
89h	_	Unimpleme	nted							_	_
8Ah ^(1,2)	PCLATH	_	_	—	Write Buffer	for the uppe	er 5 bits of th	e PC		0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	_	ADIE	_	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
8Dh	_	Unimpleme	nted							_	_
8Eh	PCON	—	_	_	_	_	_	POR	BOR	dd	uu
8Fh	_	Unimpleme	nted							_	_
90h	_	Unimpleme	nted							_	_
91h	_	Unimpleme	nted							_	_
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	is Serial Port	(I ² C mode)	Address Reg	gister				0000 0000	0000 0000
94h	SSPSTAT	SMP ⁽⁵⁾	CKE ⁽⁵⁾	D/Ā	Р	S	R/W	UA	BF	0000 0000	0000 0000
95h	_	Unimpleme	nted							_	_
96h	_	Unimpleme	nted							_	_
97h	_	Unimpleme	nted							_	_
98h	_	Unimpleme	nted							_	_
99h	_	Unimpleme	nted							_	_
9Ah	_	Unimpleme	nted							_	_
9Bh	_	Unimpleme	nted							_	_
9Ch	—	Unimpleme	nted							_	_
9Dh	_	Unimpleme	nted							_	_
9Eh	—	Unimpleme	nted							—	_
9Fh	ADCON1	_	—	—	_	—	PCFG2	PCFG1	PCFG0	000	000

TABLE 2-1 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.

Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C72/CR72. Always maintain these bits clear.

5: SSPSTAT<7:6> are not implemented on the PIC16C72, read as '0'.

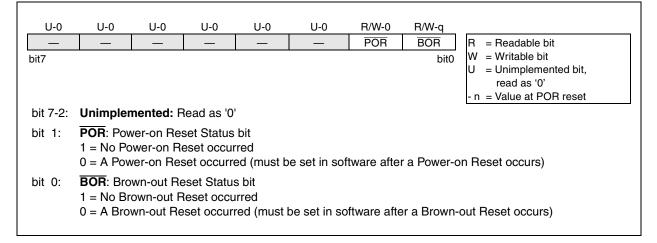
2.2.2.5 PIR1 REGISTER

This register contains the individual flag bits for the Peripheral interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 2-7: PIR1 REGISTER (ADDRESS 0Ch)

	R/W-0 ADIF	U-0	U-0	R/W-0 SSPIF	R/W-0 CCP1IF	R/W-0 TMR2IF	R/W-0 TMR1IF	R = Readable bit
vit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
oit 7:	Unimpler	nented: F	lead as '0	I				
bit 6:	ADIF : A/D 1 = An A/I 0 = The A	D convers	ion compl	eted (mus	st be cleare	d in softwa	ıre)	
bit 5-4:	Unimpler	nented: R	ead as '0					
bit 3:		ansmissio	n/reception	on is comp	pt Flag bit lete (must l	be cleared	in software	9)
bit 2:	0 = No TN <u>Compare</u>	<u>Aode</u> R1 registe /IR1 regist Mode R1 registe /IR1 regist de	r capture er capture r compare er compa	occurred (e occurred	curred (mu			are)
bit 1:	TMR2IF : 1 1 = TMR2 0 = No TM	to PR2 m	natch occu	urred (mus	Flag bit t be cleared	d in softwa	re)	
bit 0:	TMR1IF:				bit cleared in :	software)		


PIC16C72 Series

2.2.2.6 PCON REGISTER

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external $\overline{\text{MCLR}}$ Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset condition from a Power-on Reset condition.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

FIGURE 2-8: PCON REGISTER (ADDRESS 8Eh)

2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 2-1: INDIRECT ADDRESSING

- Register file 05 contains the value 10h
- Register file 06 contains the value 0Ah
- Load the value 05 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 06)
- A read of the INDR register now will return the value of 0Ah.

Direct Addressing Indirect Addressing RP1:RP0 from opcode 7 6 0 IRP FSR register 0 (2) (2)bank select location select bank select location select • 00 01 10 11 00h 80h 100h 180h not used (3) (3) Data Memory(1) FFh 1FFh 7Fh 17Fh Bank 0 Bank 1 Bank 2 Bank 3 Note 1: For register file map detail see Figure 2-2. 2: Maintain RP1 and IRP as clear for upward compatibility with future products. 3: Not implemented.

FIGURE 2-11: DIRECT/INDIRECT ADDRESSING

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-2.

EXAMPLE 2-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

NEXT	movwf clrf incf	FSR INDF FSR	;clear INDF register ;inc pointer
	goto	-	;all done? ;NO, clear next
CONTINUE			
	:		;YES, continue

5.2 <u>Timer1 Oscillator</u>

A crystal oscillator circuit is built in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 5-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 5-1CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Osc Type	e Freq	C1	C2					
LP	32 kHz	32 kHz 33 pF						
	100 kHz	15 pF	15 pF					
	200 kHz	15 pF	15 pF					
These values are for design guidance only.								
Crystals Tested:								
32.768 kH	z Epson C-00	1R32.768K-A	\pm 20 PPM					
100 kHz	Epson C-2 1	00.00 KC-P	\pm 20 PPM					
200 kHz	STD XTL 20	0.000 kHz	\pm 20 PPM					
0	of oscillator but also increases the start-up							
2: S	 time. 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropri- 							

ate values of external components.

5.3 <u>Timer1 Interrupt</u>

The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).

5.4 <u>Resetting Timer1 using a CCP Trigger</u> <u>Output</u>

If the CCP module is configured in compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

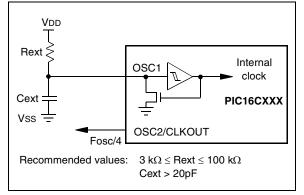
Note:	The spe	cial e	event	trigg	ers from tl	ne CC	P1
	module	will	not	set	interrupt	flag	bit
	TMR1IF	(PIR	1<0>	·).			

Timer1 must be configured for either timer or synchronized counter mode to take advantage of this feature. If Timer1 is running in asynchronous counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L registers pair effectively becomes the period register for Timer1.

TABLE 5-2 REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
0Eh	TMR1L	Holding	registe	r for the Lea	st Significan	t Byte of the	16-bit TMF	R1 register		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	TMR1H Holding register for the Most Significant Byte of the 16-bit TMR1 register								xxxx xxxx	uuuu uuuu
10h	T1CON	_	-	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module. Note 1: These bits are unimplemented, read as '0'. NOTES:

10.2.3 RC OSCILLATOR

For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 10-4 shows how the R/C combination is connected to the PIC16CXXX family.

FIGURE 10-4: RC OSCILLATOR MODE

10.3 <u>Reset</u>

The PIC16CXXX family differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (normal operation)
- Brown-out Reset (BOR)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the $\overline{\text{MCLR}}$ and WDT Reset, on $\overline{\text{MCLR}}$ reset during SLEEP, and Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different reset situations as indicated in Table 10-4. These bits are used in software to determine the nature of the reset. See Table 10-6 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 10-5.

The PIC16C72/CR72 have a MCLR noise filter in the MCLR reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

10.10 Interrupts

The PIC16C72/CR72 has 8 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

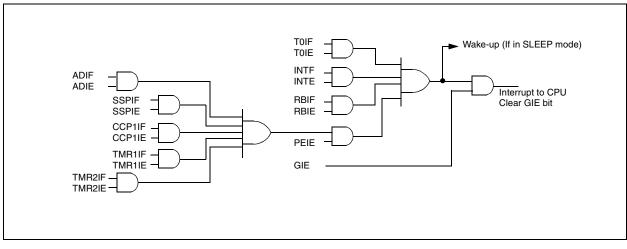
The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts. For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs. The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit

10.10.1 INT INTERRUPT


External interrupt on RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 10.13 for details on SLEEP mode.

10.10.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 4.0)

10.10.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 3.2)

FIGURE 10-11: INTERRUPT LOGIC

10.11 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt, i.e., W register and STATUS register. This will have to be implemented in software.

Example 10-1 stores and restores the W and STATUS registers. The register, W_TEMP, must be defined in each bank and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1).

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Executes the ISR code.
- d) Restores the STATUS register (and bank select bit).
- e) Restores the W register.

EXAMPLE 10-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

MOVWF	W_TEMP	;Copy W to W_TEMP register, could be bank one or zero
SWAPF	STATUS,W	;Swap status to be saved into W
CLRF	STATUS	;bank 0, regardless of current bank, Clears IRP,RP1,RP0
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
:		
: Interrupt	Service Routine (ISR) -	user defined
:		
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

Other peripherals cannot generate interrupts since during SLEEP, no on-chip clocks are present.

When the **SLEEP** instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

10.13.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

• If the interrupt occurs before the execution of a

SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.

· If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the $\overline{\text{TO}}$ bit will be set and the $\overline{\text{PD}}$ bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

	Q1 Q2 Q3 Q4		Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
	/	Tost(2)		، ۱		
INT pin	1			1 1 1 1		
INTF flag	1	Δ,		Interrupt Latency		
(INTCOŇ<1>)	+	/		(Note 2)		
GIE bit	<u> </u>	Processor in			1	
(INTCON<7>)	r ∢ '	SLEEP		1 I	1	
INSTRUCTION FLOW	1			i i i i	1	
PC X PC X	PC+1 X	PC+2	PC+2	X PC + 2	0004h	0005h
Instruction { Inst(PC) = SLEEP	Inst(PC + 1)	1	Inst(PC + 2)	· · · · · · · · · · · · · · · · · · ·	Inst(0004h)	Inst(0005h)
Instruction Inst(PC - 1)	SLEEP	1	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

FIGURE 10-14: WAKE-UP FROM SLEEP THROUGH INTERRUPT

- 3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

CLKOUT is not available in these osc modes, but shown here for timing reference.

10.14 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip does not recommend code pro-
	tecting windowed devices.

10.15 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.

For ROM devices, these values are submitted along with the ROM code.

In-Circuit Serial Programming[™] 10.16

PIC16CXXX family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

For complete details of serial programming, please refer to the In-Circuit Serial Programming (ICSP™) Guide, DS30277.

13.1 DC Characteristics: PIC16C72/CR72-04 (Commercial, Industrial, Extended) PIC16C72/CR72-10 (Commercial, Industrial, Extended) PIC16C72/CR72-20 (Commercial, Industrial, Extended)

	Standard Operating Conditions (unless otherwise stated)											
DC CHA	RACTERISTICS	Standard Operating	•	0	itions (u -40°C -40°C 0°C	$\leq TA \leq H$ $\leq TA \leq H$	+125°C for +85°C for ⊦85°C for ⊦70°C for	or extend industri	al and			
Param	Characteristic	Sym	F	PIC16C7	2	Р	IC16CR7	72	Units	Conditions		
No.	onaracteristic	Oym	Min	Тур†	Max	Min	Тур†	Мах	Units	Conditions		
D001 D001A	Supply Voltage	Vdd	4.0 4.5		6.0 5.5	4.0 4.5	-	5.5 5.5	V V	XT, RC and LP osc HS osc		
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	-	1.5	-	V			
D003	VDD start voltage to ensure internal Power- on Reset Signal	VPOR	-	Vss	-	-	Vss	-	V	See section on Power- on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset Signal	SVDD	0.05	-	-	0.05	-	-	V/ms	See section on Power- on Reset for details		
D005	Brown-out Reset Volt- age	Bvdd	3.7	4.0	4.3	3.7	4.0	4.3	V	BODEN bit in configura- tion word enabled		
			3.7	4.0	4.4	3.7	4.0	4.4	V	Extended Only		
D010	Supply Current (Note 2,5)	IDD	-	2.7	5.0	-	2.7	5.0	mA	XT, RC osc Fosc = 4 MHz, VDD = 5.5V (Note 4)		
D013			-	10	20	-	10	20	mA	HS osc Fosc = 20 MHz, VDD = 5.5V		
D015	Brown-out Reset Current (Note 6)	∆lbor	-	350	425	-	350	425	μA	BOR enabled, VDD = 5.0V		
D020	Power-down Current (Note 3,5)	IPD	-	10.5	42	-	10.5	42	μA	VDD = 4.0V, WDT enabled, -40°C to +85°C		
D021			-	1.5	16	-	1.5	16	μΑ	VDD = 4.0V, WDT dis- abled, -0°C to +70°C		
D021A			-	1.5	19	-	1.5	19	μΑ	VDD = 4.0V, WDT dis- abled, -40°C to +85°C		
D021B			-	2.5	19	-	2.5	19	μA	VDD = 4.0V, WDT dis- abled, -40°C to +125°C		
D023	Brown-out Reset Current (Note 6)	∆lbor	-	350	425	-	350	425	μΑ	BOR enabled VDD = 5.0V		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

Note 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

MCLR = VDD; WDT enabled/disabled as specified.

Note 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

Note 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

Note 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

Note 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

13.2 DC Characteristics: PIC16LC72/LCR72-04 (Commercial, Industrial)

DC CHA	DC CHARACTERISTICSStandard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ for industrial and $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ for commercial										
Param		C 1	F	PIC16C7	2	Р	IC16CR7	72	Unite	Conditions	
No.	Characteristic	Sym	Min	Typ†	Max	Min	Typ†	Max	Units	Conditions	
D001	Supply Voltage	Vdd	2.5	-	6.0	2.5	-	5.5	V	LP, XT, RC (DC - 4 MHz)	
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	-	1.5	-	V		
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	-	Vss	-	V	See section on Power- on Reset for details	
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	0.05	-	-	V/ms	See section on Power- on Reset for details	
D005	Brown-out Reset Volt- age	Bvdd	3.7	4.0	4.3	3.7	4.0	4.3	V	BODEN bit in configura- tion word enabled	
D010	Supply Current (Note 2,5)	IDD	-	2.0	3.8	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)	
D010A			-	22.5	48	-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled	
D015*	Brown-out Reset Current (Note 6)	∆lbor	-	350	425	-	350	425	μA	BOR enabled VDD = 5.0V	
D020	Power-down Current (Note 3,5)	IPD	-	7.5	30	-	7.5	30	μA	VDD = 3.0V, WDT enabled, -40°C to +85°C	
D021			-	0.9	5	-	0.9	5	μA	VDD = 3.0V, WDT dis- abled, 0°C to +70°C	
D021A			-	0.9	5	-	0.9	5	μA	VDD = 3.0V, WDT dis- abled, -40°C to +85°C	
D023*	Brown-out Reset Current (Note 6)	∆lbor	-	350	425	-	350	425	μA	BOR enabled VDD = 5.0V	

* These parameters are characterized but not tested.

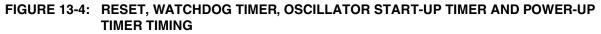
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

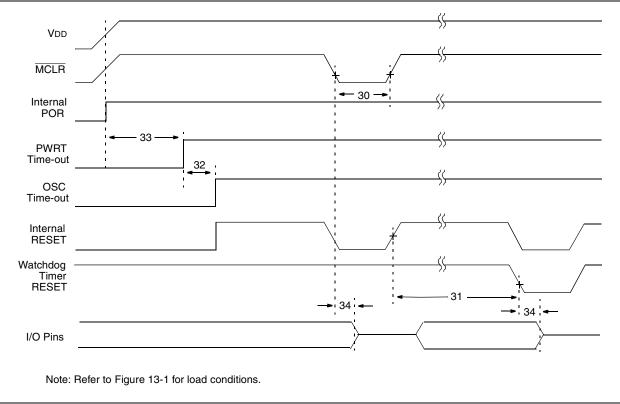
Note 1: This is the limit to which VDD can be lowered without losing RAM data.

Note 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

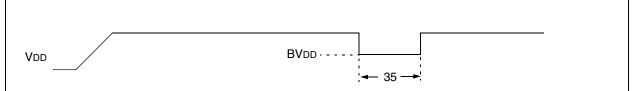
The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD


 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

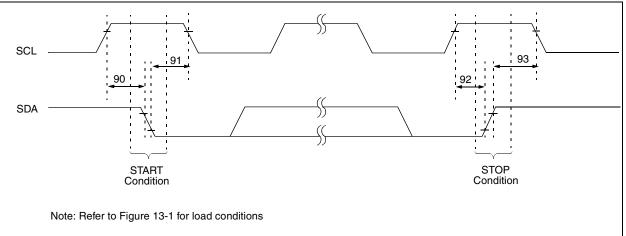

Note 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

Note 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.


Note 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

Note 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

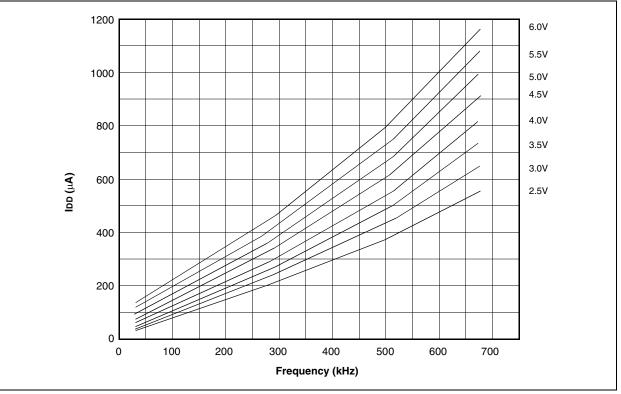
FIGURE 13-5: BROWN-OUT RESET TIMING


TABLE 13-5RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	_	—	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	_	—	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tioz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	—	_	2.1	μs	
35	TBOR	Brown-out Reset pulse width	100	_		μS	$VDD \le BVDD$ (D005)

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


FIGURE 13-12: I²C BUS START/STOP BITS TIMING

Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions
90	TSU:STA	START condition	100 kHz mode	4700			ns	Only relevant for repeated START
		Setup time	400 kHz mode	600	_	_		condition
91	THD:STA	START condition	100 kHz mode	4000	_		ns	After this period the first clock
		Hold time	400 kHz mode	600	—	—		pulse is generated
92	TSU:STO	STOP condition	100 kHz mode	4700	_		ns	
		Setup time	400 kHz mode	600	_			
93	THD:STO	STOP condition	100 kHz mode	4000	—	—	ns	
		Hold time	400 kHz mode	600	—	—		

PIC16C72 Series PIC16C72

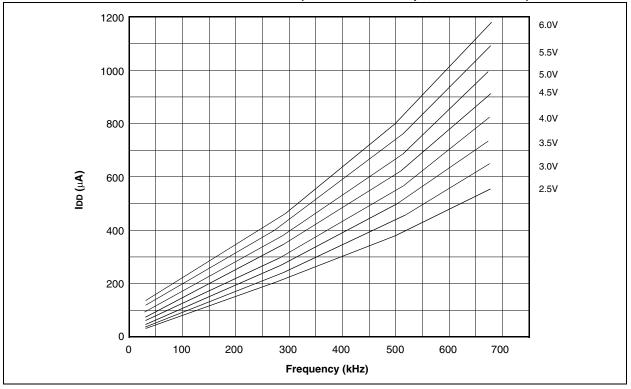
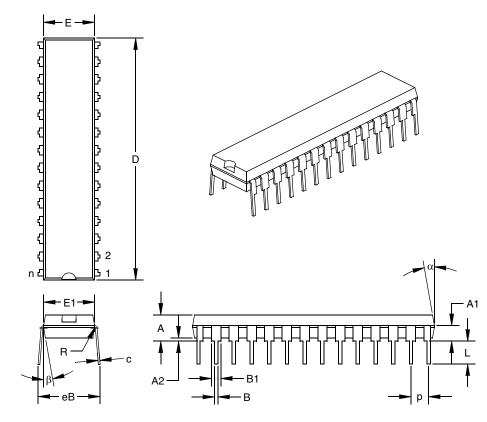



FIGURE 14-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)

16.3 <u>28-Lead Plastic Dual In-line (300 mil) (SP)</u>

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units			INCHES*		М	ILLIMETER	S
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
PCB Row Spacing			0.300			7.62	
Number of Pins	n		28			28	
Pitch	р		0.100			2.54	
Lower Lead Width	В	0.016	0.019	0.022	0.41	0.48	0.56
Upper Lead Width	B1 [†]	0.040	0.053	0.065	1.02	1.33	1.65
Shoulder Radius	R	0.000	0.005	0.010	0.00	0.13	0.25
Lead Thickness	с	0.008	0.010	0.012	0.20	0.25	0.30
Top to Seating Plane	А	0.140	0.150	0.160	3.56	3.81	4.06
Top of Lead to Seating Plane	A1	0.070	0.090	0.110	1.78	2.29	2.79
Base to Seating Plane	A2	0.015	0.020	0.025	0.38	0.51	0.64
Tip to Seating Plane	L	0.125	0.130	0.135	3.18	3.30	3.43
Package Length	D‡	1.345	1.365	1.385	34.16	34.67	35.18
Molded Package Width	E‡	0.280	0.288	0.295	7.11	7.30	7.49
Radius to Radius Width	E1	0.270	0.283	0.295	6.86	7.18	7.49
Overall Row Spacing	eB	0.320	0.350	0.380	8.13	8.89	9.65
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter.

[†] Dimension "B1" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B1."

Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."

Block Diagram47
I ² C Operation47
Master Mode51
Mode47
Mode Selection
Multi-Master Mode51
49 Reception
Reception Timing Diagram
SCL and SDA pins
Slave Mode
Transmission
In-Circuit Serial Programming
INDF Register
Indirect Addressing
Instruction Format
Instruction Format
Section
Summary Table73
INT Interrupt
INTCON Register
INTEDG bit
Internal Sampling Switch (Rss) Impedance
Interrupts
PortB Change
RB7:RB4 Port Change
Section
TMR0
IRP bit
L
Loading of PC15
Loading of PC15
Loading of PC15
Loading of PC
Loading of PC 15 M MCLR 61, 64 Memory 6 Program Memory 5 Program Memory Maps 5 PIC16C72 5 PIC16CR72 5 Register File Maps 71016CR72 PIC16CR72 6 PIC16CR72 6 PIC16CR72 6 PIC16CR72 6 O 75 O 73 OPCODE 73 OPTION Register 10 OSC selection 59
Loading of PC 15 M MCLR 61, 64 Memory 6 Program Memory 5 Program Memory Maps 5 PIC16C72 5 PIC16CR72 5 Register File Maps 716CR72 PIC16CR72 6 PIC16CR72 6 PIC16CR72 6 PIC16CR72 75 MPASM Assembler 75 MPSIM Software Simulator 75 O 73 OPTION Register 10 OSC selection 59 Oscillator 59
Loading of PC
Loading of PC
Loading of PC 15 M MCLR 61, 64 Memory 0ata Memory 6 Program Memory 5 9 Program Memory Maps 9 116C72 PIC16C72 5 9 PIC16C72 6 9 PIC16C72 6 6 PIC16C72 6 6 PIC16C72 6 6 PIC16C72 6 6 PIC16C72 6 75 MPSIM Software Simulator 75 75 O 0 0 0 OPCODE 73 0 73 OPTION Register 10 0 0 Oscillator 59 59 59 HS 60, 64 60, 64 60, 64 LP 60, 64 60 60
Loading of PC 15 M MCLR 61, 64 Memory 64 Data Memory 65 Program Memory Maps 75 PIC16C72 55 PIC16C72 56 PIC16C72 66 PIC16C72 66 PIC16C72 66 PIC16C72 66 PIC16C72 67 MPASM Assembler 75 MPSIM Software Simulator 75 O 73 OPCODE 73 OPTION Register 10 OSC selection 59 Oscillator 59 HS 60, 64 LP 60, 64 RC 60, 64 RC 60, 64
Loading of PC 15 M MCLR 61, 64 Memory 64 66 Program Memory 65 76 Program Memory 75 76 PIC16C72 75 716 PIC16CR72 75 716 PIC16CR72 66 716 PIC16CR72 66 716 PIC16CR72 75 75 O 0 75 O 73 0 OPCODE 73 73 OPTION Register 10 0 OSC selection 59 9 Oscillator 59 60, 64 LP 60, 64 60, 64 C 60, 64 60, 64 C 60, 64 60, 64
Loading of PC 15 M MCLR 61, 64 Memory 64 Data Memory 65 Program Memory Maps 75 PIC16C72 55 PIC16C72 56 PIC16C72 66 PIC16C72 66 PIC16C72 66 PIC16C72 66 PIC16C72 67 MPASM Assembler 75 MPSIM Software Simulator 75 O 73 OPCODE 73 OPTION Register 10 OSC selection 59 Oscillator 59 HS 60, 64 LP 60, 64 RC 60, 64 RC 60, 64
Loading of PC 15 M MCLR 61, 64 Memory 64 66 Program Memory 65 76 Program Memory 75 76 PIC16C72 75 716 PIC16CR72 75 716 PIC16CR72 66 716 PIC16CR72 66 716 PIC16CR72 75 75 O 0 75 O 73 0 OPCODE 73 73 OPTION Register 10 0 OSC selection 59 9 Oscillator 59 60, 64 LP 60, 64 60, 64 C 60, 64 60, 64 C 60, 64 60, 64

Ρ	40, 43
Packaging	
28-Lead Ceramic w/Window	110
28-Lead PDIP	111
28-Lead SOIC	112
28-Lead SSOP	113
Paging, Program Memory	16

PCFG0 bit54
PCFG1 bit
PCFG2 bit
PCL Register
PCLATH
PCLATH Register
PCON Register
PD bit
PICDEM-1 Low-Cost PIC16/17 Demo Board
PICDEM-2 Low-Cost PIC16CXX Demo Board75
PICMASTER™ RT In-Circuit Emulator75
PICSTART™ Low-Cost Development System
PIE1 Register
Pin Functions
MCLR/Vpp4
OSC1/CLKIN
OSC2/CLKOUT
RA0/AN0
RA1/AN1 4
RA2/AN24
RA3/AN3/Vref 4
RA4/T0CKI4
RA5/AN4/SS
RB0/INT
RB1
RB2
BB3
RB4 4
RB54
RB6 4
RB7 4
RC0/T10S0/T1CKI 4
RC1/T1OSI 4
RC2/CCP1
RC3/SCK/SCL
RC4/SDI/SDA
RC5/SDO
RC6
RC7
SCK
SDI
SDO 42-??
<u>SS</u>
Vdd 4
Vss
Pinout Descriptions
PIC16C72
PIC16CR72
PIR1 Register
POR
Oscillator Start-up Timer (OST) 59, 63
Power Control Register (PCON) 64
Power-on Reset (POR) 59, 65
Power-up Timer (PWRT)59
Power-Up-Timer (PWRT)63
Time-out Sequence 64
TO
POR bit
Port RB Interrupt
PORTA
PORTA Register
PORTB
PORTB Register
PORTC65
PORTC Register7, 23
Power-down Mode (SLEEP)71

Timing Diagrams	
A/D Conversion	95
Brown-out Reset	86
Capture/Compare/PWM	88
CLKOUT and I/O	85
External Clock Timing	
I ² C Bus Data	93
I ² C Bus Start/Stop bits	92
I ² C Reception (7-bit Address)	49
Power-up Timer	86
Reset	86
Start-up Timer	86
Timer0	87
Timer1	87
Wake-up from Sleep via Interrupt	72
Watchdog Timer	
TMR1CS bit	27
TMR1H Register	7
TMR1IE bit	12
TMR1IF bit	13
TMR1L Register	7
TMR1ON bit	
TMR2 Register	
TMR2IE bit	
TMR2IF bit	-
TMR2ON bit	
TO bit	
TOUTPS0 bit	
TOUTPS1 bit	
TOUTPS2 bit	
TOUTPS3 bit	32
TRISA Register	19
TRISB Register	
TRISC Register	23
U	

UA	
Update Address bit, UA	

W

Wake-up from SLEEP	71
Watchdog Timer (WDT)	
WCOL	41, 44
WDT	64
Block Diagram	70
Timeout	65
Write Collision Detect bit, WCOL	
Z	

. 9

PIC16C72 SERIES PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	$\overline{\uparrow}$ $\overline{\uparrow}$ $\overline{\uparrow}$ $\overline{\uparrow}$ $\overline{-}$	Examples: a) PIC16C72 -04/P 301 = Commercial temp., PDIP package, 4 MHz, normal VDD limits, QTP pattern #301. b) PIC16LC72 - 04I/SO = Industrial temp., SOIC
Device	PIC16C72 ⁽¹⁾ , PIC16C72T ⁽²⁾ PIC16LC72 ⁽¹⁾ , PIC16LC72T ⁽²⁾ PIC16CR72 ⁽¹⁾ , PIC16CR72T ⁽²⁾ PIC16LCR72 ⁽¹⁾ , PIC16LCR72T ⁽²⁾	 c) PIC16C072 - 04//SO = Industrial territy., SOIC package, 200 kHz, Extended VDD limits. c) PIC16CR72 - 10I/P = ROM program memory, Industrial temp., PDIP package, 10MHz, normal VDD limits.
Frequency Range	02 = 2 MHz 04 = 4 MHz 10 = 10 MHz 20 = 20 MHz	Note 1: C= CMOS CR= CMOS ROM LC= Low Power CMOS LCR= ROM Version, Extended Vdd range 2: T = in tape and reel - SOIC, SSOP pack-
Temperature Rang	$ b^{(3)} = 0^{\circ}C \text{ to } 70^{\circ}C \text{ (Commercial)} I = -40^{\circ}C \text{ to } +85^{\circ}C \text{ (Industrial)} E = -40^{\circ}C \text{ to } +125^{\circ}C \text{ (Extended)} $	ages only. 3: b = blank
Package	JW = Ceramic Dual In-Line Package with Wi SO = Small Outline - 300 mil SP = Skinny PDIP SS = Shrink Samll Outline Package - 209 m	
Pattern	3-digit Pattern Code for QTP, ROM (blank otherw	ise)

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

SALES AND SUPPORT

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office (see last page)
- 2. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).
- Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.