

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c72-04i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

	•
1.0 Device Overview	
2.0 Memory Organization	
3.0 I/O Ports	19
4.0 Timer0 Module	25
5.0 Timer1 Module	27
6.0 Timer2 Module	31
7.0 Capture/Compare/PWM (CCP) Module	33
8.0 Synchronous Serial Port (SSP) Module	39
9.0 Analog-to-Digital Converter (A/D) Module	53
10.0 Special Features of the CPU	59
11.0 Instruction Set Summary	73
12.0 Development Support	75
13.0 Electrical Characteristics - PIC16C72 Series	77
14.0 DC and AC Characteristics Graphs and Tables - PIC16C72	
15.0 DC and AC Characteristics Graphs and Tables - PIC16CR72	107
16.0 Packaging Information	
Appendix A: What's New in this Data Sheet	115
Appendix B: What's Changed in this Data Sheet	115
Appendix C: Device Differences	115
Index	
On-Line Support	121
Reader Response	
PIC16C72 Series Product Identification System	125
Sales and Support	

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

Key Reference Manual Features	PIC16C72	PIC16CR72
Operating Frequency	DC - 20MHz	DC - 20MHz
Resets	POR, PWRT, OST, BOR	POR, PWRT, OST, BOR
Program Memory - (14-bit words)	2K (EPROM)	2K (ROM)
Data Memory - RAM (8-bit bytes)	128	128
Interrupts	8	8
I/O Ports	PortA, PortB, PortC	PortA, PortB, PortC
Timers	Timer0, Timer1, Timer2	Timer0, Timer1, Timer2
Capture/Compare/PWM Modules	1	1
Serial Communications	Basic SSP	SSP
8-Bit A/D Converter	5 channels	5 channels
Instruction Set (No. of Instructions)	35	35

TABLE 1-1PIC16C72/CR72 PINOUT DESCRIPTION	TABLE 1-1	PIC16C72/CR72 PINOUT DESCRIPTION
---	-----------	----------------------------------

Pin Name	lame Pin# I/O/P Buffer Type Type		Buffer Type	Description					
OSC1/CLKIN	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.					
OSC2/CLKOUT	10	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate					
MCLR/VPP	1	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.					
				PORTA is a bi-directional I/O port.					
RA0/AN0	2	I/O	TTL	RA0 can also be analog input0.					
RA1/AN1	3	I/O	TTL	RA1 can also be analog input1.					
RA2/AN2	4	I/O	TTL	RA2 can also be analog input2.					
RA3/AN3/VREF	5	I/O	TTL	RA3 can also be analog input3 or analog reference voltage					
RA4/T0CKI	6	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.					
RA5/SS/AN4	7	I/O	TTL	RA5 can also be analog input4 or the slave select for the synchronous serial port.					
				PORTB is a bi-directional I/O port. PORTB can be software					
				programmed for internal weak pull-up on all inputs.					
RB0/INT	21	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.					
RB1	22	I/O	TTL						
RB2	23	I/O	TTL						
RB3	24	I/O	TTL						
RB4	25	I/O	TTL	Interrupt on change pin.					
RB5	26	I/O	TTL	Interrupt on change pin.					
RB6	27	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.					
RB7	28	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.					
				PORTC is a bi-directional I/O port.					
RC0/T1OSO/T1CKI	11	I/O	ST	RC0 can also be the Timer1 oscillator output or Timer1 clock input.					
RC1/T1OSI	12	I/O	ST	RC1 can also be the Timer1 oscillator input.					
RC2/CCP1	13	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/PWM1 output.					
RC3/SCK/SCL	14	I/O	ST	RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes.					
RC4/SDI/SDA	15	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).					
RC5/SDO	16	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).					
RC6	17	I/O	ST						
RC7	18	I/O	ST						
Vss	8, 19	P	_	Ground reference for logic and I/O pins.					
VDD	20	P	<u> </u>	Positive supply for logic and I/O pins.					
Legend: I = input	O = output	1	I/O = input/o						

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. sets (core and peripheral). Those registers associated with the "core" functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature.

The special function registers can be classified into two TABLE 2-1 SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (3)
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	ule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ad	ldress pointe	r					xxxx xxxx	uuuu uuuu
05h	PORTA	_	-	PORTA Dat	a Latch whe	n written: PO	RTA pins wh	ien read		0x 0000	0u 0000
06h	PORTB	PORTB Dat	a Latch whe	n written: PC	ORTB pins wl	nen read				XXXX XXXX	uuuu uuuu
07h	PORTC	PORTC Dat	a Latch whe	n written: PC	ORTC pins w	hen read				xxxx xxxx	uuuu uuuu
08h	—	Unimplemen	nted							—	—
09h	_	Unimplemen	Unimplemented								
0Ah ^(1,2)	PCLATH	—			Write Buffer	for the uppe	er 5 bits of th	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
0Dh	—	Unimplemen	nted							—	—
0Eh	TMR1L	Holding regi	ster for the L	east Signific	ant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding regi	ster for the M	Most Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	—	-	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	ule's registe	r						0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	s Serial Port	Receive Bu	ffer/Transmit	Register				XXXX XXXX	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Compare/PWM Register (LSB)									uuuu uuuu
16h	CCPR1H	Capture/Cor	mpare/PWM	Register (M	SB)					XXXX XXXX	uuuu uuuu
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h-1Dh	_	Unimplemer	nted							_	
1Eh	ADRES	A/D Result I	Register							xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.

Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C72/CR72. Always maintain these bits clear.

5: SSPSTAT<7:6> are not implemented on the PIC16C72, read as '0'.

2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 2-1: INDIRECT ADDRESSING

- Register file 05 contains the value 10h
- Register file 06 contains the value 0Ah
- Load the value 05 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 06)
- A read of the INDR register now will return the value of 0Ah.

Direct Addressing Indirect Addressing RP1:RP0 from opcode 7 6 0 IRP FSR register 0 (2) (2)bank select location select bank select location select • 00 01 10 11 00h 80h 100h 180h not used (3) (3) Data Memory(1) FFh 1FFh 7Fh 17Fh Bank 0 Bank 1 Bank 2 Bank 3 Note 1: For register file map detail see Figure 2-2. 2: Maintain RP1 and IRP as clear for upward compatibility with future products. 3: Not implemented.

FIGURE 2-11: DIRECT/INDIRECT ADDRESSING

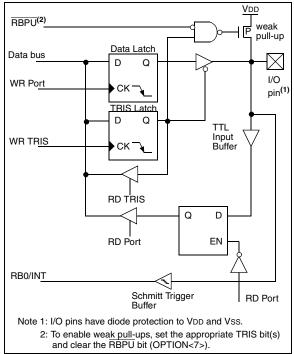
Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-2.

EXAMPLE 2-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

NEXT	movwf clrf incf	FSR INDF FSR	;clear INDF register ;inc pointer
	goto	-	;all done? ;NO, clear next
CONTINUE			
	:		;YES, continue

3.2 PORTB and the TRISB Register

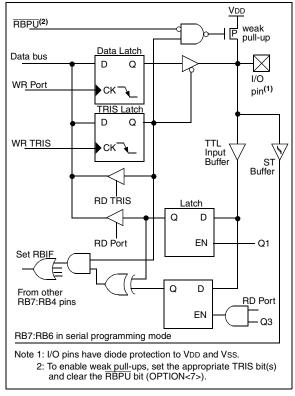

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (=1) will make the corresponding PORTB pin an input, i.e., put the corresponding output driver in a hi-impedance mode. Clearing a TRISB bit (=0) will make the corresponding PORTB pin an output, i.e., put the contents of the output latch on the selected pin.

EXAMPLE 3-1: INITIALIZING PORTB

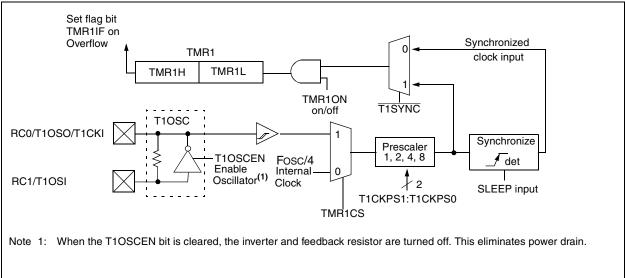
BCF	STATUS,	RP0	;	
CLRF	PORTB		;	Initialize PORTB by
			;	clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISB		;	Set RB<3:0> as inputs
			;	RB<5:4> as outputs
			;	RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overline{\text{RBPU}}$ (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).


This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

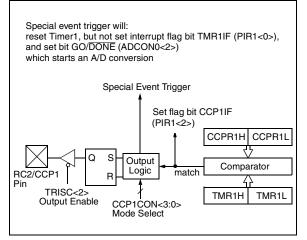
- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.


A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

FIGURE 3-4: BLOCK DIAGRAM OF RB7:RB4 PINS

FIGURE 5-2: TIMER1 BLOCK DIAGRAM


7.2 <u>Compare Mode</u>

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- driven High
- driven Low
- remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 7-3: COMPARE MODE OPERATION BLOCK DIAGRAM

7.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force							
	the RC2/CCP1 compare output latch to the							
	default low level. This is not the data latch.							

7.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

7.2.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

7.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special trigger output of CCP1 resets the TMR1 register pair, and starts an A/D conversion (if the A/D module is enabled).

Note: The special event trigger from the CCP1 module will not set interrupt flag bit TMR1IF (PIR1<0>).

TABLE 7-2 REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	PC	e on:)R,)R	all o	e on other sets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
87h	TRISC	PORTC Data Direction Register									1111	1111	1111
0Eh	TMR1L	Holding reg	gister fo	or the Least	Significant	Byte of the	16-bit TMF	R1 register		xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding reg	gister fo	or the Most	Significant	Byte of the 1	16-bit TMR	1register		xxxx	xxxx	uuuu	uuuu
10h	T1CON	—		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00	0000	uu	uuuu
15h	CCPR1L	Capture/Co	Capture/Compare/PWM register1 (LSB)								xxxx	uuuu	uuuu
16h	CCPR1H	Capture/Co	Capture/Compare/PWM register1 (MSB)								xxxx	uuuu	uuuu
17h	CCP1CON	—		CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1. Note 1: These bits/registers are unimplemented, read as '0'.

PIC16C72 Series

8.2 SPI Mode for PIC16C72

Г

This section contains register definitions and operational characteristics of the SPI module on the PIC16C72 device only. Additional information on SPI operation may be found in the PIC[®] Mid-Range MCU Reference Manual, DS33023.

1

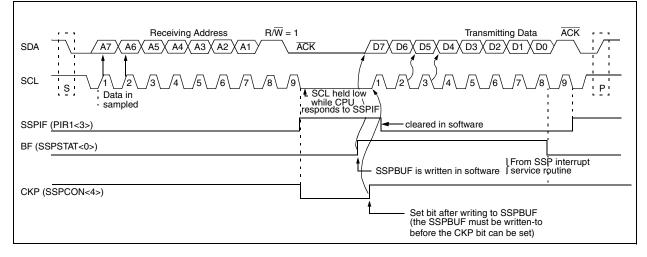
FIGURE 8-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h) (PIC16C72)

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0					
	—	D/A	Р	S	R/W	UA	BF	R = Readable bit				
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset				
bit 7-6:	Unimpl	emented	: Read as	'0'								
bit 5:	 D/A: Data/Address bit (l²C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address 											
bit 4:	 P: Stop bit (I²C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared) 1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET) 0 = Stop bit was not detected last 											
bit 3:	 Start bit (I²C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared) 1 = Indicates that a start bit has been detected last (this bit is '0' on RESET) 0 = Start bit was not detected last 											
bit 2:	This bit	holds the o the next ad	R/W bit i	ation (I ² C r nformation stop bit, or	following the	e last addre	ss match. T	his bit is valid from the address				
bit 1:	1 = Indi	cates that	the user i	t I ² C mode needs to up to be upda	odate the add	dress in the	SSPADD re	egister				
bit 0:	BF: Buf	fer Full St	atus bit									
	<u>Receive</u> (SPI and I ² C modes) 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty											
	1 = Trar		ogress, S	SPBUF is f PBUF is en								

FIGURE 8-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h) (PIC16C72)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	R = Readable bit				
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset				
bit 7:	1 = The S	cleared in s	gister is w		e it is still tr	ansmitting	g the previou					
bit 6:	SSPOV: F	Receive Ov	erflow De	tect bit								
	In SPI mode 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR register is lost. Overflow can only occur in slave mode. The user must read the SSP-BUF, even if only transmitting data, to avoid setting overflow. In master operation, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register. 0 = No overflow In l ² C mode											
	1 = A byte	is received t mode. SS		SSPBUF i st be cleare				us byte. SSPOV is a "don't care"				
bit 5:	SSPEN: S	Synchronou	us Serial F	Port Enable	e bit							
		es serial po		nfigures So onfigures th			is serial por t pins	t pins				
	0 = Disabl	es the seria les serial p	ort and co	onfigures th	nese pins a	as I/O port		al port pins s input or output.				
bit 4:	CKP: Cloc	ck Polarity	Select bit									
		ate for cloc						receive on rising edge. ceive on falling edge.				
	1 = Enable	ase control e clock	clock stre	etch) (Used	to ensure	data setu	p time)					
bit 3-0:	0001 = SI 0010 = SI 0011 = SI 0100 = SI 0101 = SI 0110 = I2 0111 = I2 1011 = I2 1110 = I2	PI master of PI master of PI master of PI master of PI slave mo C slave mo C slave mo C slave mo C slave mo C slave mo	operation, operation, operation, operation, ode, clock ode, clock ode, 7-bit ode, 10-bit controlle ode, 7-bit	clock = Fo clock = Fo clock = Fo clock = TM = SCK pin address address d master op address with	sc/4 sc/16 sc/64 /IR2 outpu n. SS pin c n. SS pin c peration (s th start an	t/2 ontrol ena ontrol disa slave idle) d stop bit						
3.2.1 O	PERATION	I OF SSP I	MODULE	IN SPI		A block	diagram of	the SSP Module in SPI Mode is				

MODE - PIC16C72


shown in Figure 8-3.

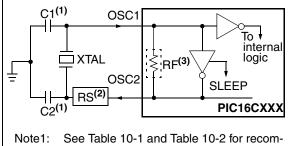
8.4.1.3 TRANSMISSION

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The \overline{ACK} pulse will be sent on the ninth bit, and pin RC3/SCK/SCL is held low. The transmit data must be loaded into the SSP-BUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 8-9). An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not \overline{ACK}), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP.

10.2 Oscillator Configurations

10.2.1 OSCILLATOR TYPES


The PIC16CXXX family can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

10.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

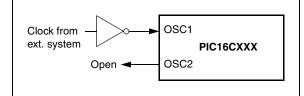

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 10-2). The PIC16CXXX family oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 10-3).

FIGURE 10-2: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

- mended values of C1 and C2. 2: A series resistor (RS) may be required for
 - AT strip cut crystals. 3: BE varies with the crystal chosen
 - 3: RF varies with the crystal chosen.

FIGURE 10-3: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 10-1 CERAMIC RESONATORS

Ranges Te	ested:	
Mode	Freq	OSC1

Mode	Freq	Freq OSC1				
XT	455 kHz	68 - 100 pF	68 - 100 pF			
	2.0 MHz	15 - 68 pF	15 - 68 pF			
	4.0 MHz	15 - 68 pF	15 - 68 pF			
HS	8.0 MHz	10 - 68 pF	10 - 68 pF			
	16.0 MHz	10 - 22 pF	10 - 22 pF			
These values are for design guidance only. See notes at bottom of page.						
Resonator	rs Used:					
455 kHz	Panasonic E	FO-A455K04B	± 0.3%			
2.0 MHz	Murata Erie CSA2.00MG ± 0.5%					
4.0 MHz	Murata Erie CSA4.00MG ± 0.5%					
8.0 MHz	Murata Erie CSA8.00MT ± 0.5%					
16.0 MHz	Murata Erie	CSA16.00MX	± 0.5%			

All resonators used did not have built-in capacitors.

TABLE 10-2CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
ХТ	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF
	-		

These values are for design guidance only. See notes at bottom of page.

Crystals Used						
32 kHz	Epson C-001R32.768K-A	± 20 PPM				
200 kHz	STD XTL 200.000KHz	± 20 PPM				
1 MHz	ECS ECS-10-13-1	± 50 PPM				
4 MHz	ECS ECS-40-20-1	± 50 PPM				
8 MHz	EPSON CA-301 8.000M-C	± 30 PPM				
20 MHz	EPSON CA-301 20.000M-C	± 30 PPM				

Note 1: Recommended values of C1 and C2 are identical to the ranges tested (Table 10-1).

- 2: Higher capacitance increases the stability of oscillator but also increases the start-up time.
- 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
- 4: Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification.

10.13 Power-down Mode (SLEEP)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSs for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

10.13.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. External reset input on MCLR pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change, or some Peripheral Interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. SSP (Start/Stop) bit detect interrupt.
- 3. SSP transmit or receive in slave mode (SPI/l²C).
- 4. CCP capture mode interrupt.
- 5. A/D conversion (when A/D clock source is RC).
- 6. Special event trigger (Timer1 in asynchronous mode using an external clock).

13.0 ELECTRICAL CHARACTERISTICS - PIC16C72 SERIES

Absolute Maximum Ratings †

Parameter	PIC16C72	PIC16CR72
Ambient temperature under bias	-55 to +125°C	-55 to +125°C
Storage temperature	-65°C to +150°C	-65°C to +150°C
Voltage on any pin with respect to VSS (except VDD, $\overline{\text{MCLR}}$, and RA4)	-0.3V to (VDD + 0.3V)	-0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS	-0.3 to +7.5V	TBD
Voltage on MCLR with respect to Vss (Note 1)	-0.3 to +14V	TBD
Voltage on RA4 with respect to Vss	-0.3 to +14V	TBD
Total power dissipation (Note 2)	1.0W	1.0W
Maximum current out of Vss pin	300 mA	300 mA
Maximum current into VDD pin	250 mA	250 mA
Input clamp current, Iık (Vı < 0 or Vı > VDD)	± 20 mA	\pm 20 mA
Output clamp current, IOK (Vo < 0 or Vo > VDD)	± 20 mA	± 20 mA
Maximum output current sunk by any I/O pin	25 mA	25 mA
Maximum output current sourced by any I/O pin	25 mA	25 mA
Maximum current sunk by PORTA and PORTB (combined)	200 mA	200 mA
Maximum current sourced by PORTA and PORTB (combined)	200 mA	200 mA
Maximum current sunk by PORTC	200 mA	200 mA
Maximum current sourced by PORTC	200 mA	200 mA

 Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

2. Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD - VOH) x IOH} + Σ (VOI x IOL).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIC16C72 Series

TABLE 13-1 CROSS REFERENCE OF DEVICE SPECS (PIC16C72) FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

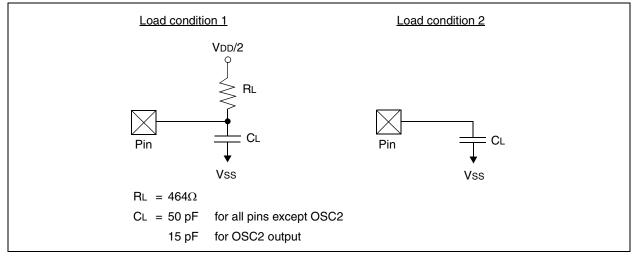
OSC	PIC16C72-04 PIC16C72-10		PIC16C72-20	PIC16LC72-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 5.0 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
хт	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 5.0 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 10 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 10 MHz max.	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	Not recommended for use in LP mode	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5.0 μA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5.0 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications.

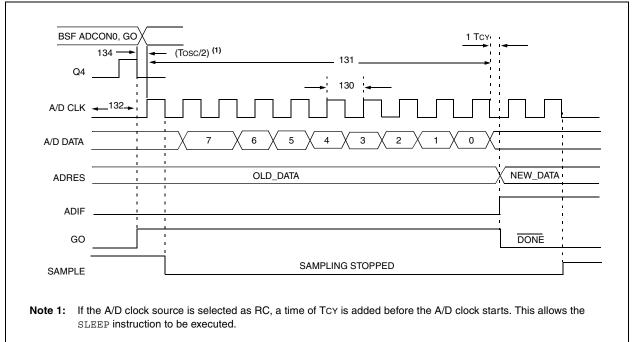
It is recommended that the user select the device type that ensures the specifications required.

TABLE 13-2 CROSS REFERENCE OF DEVICE SPECS (PIC16CR72) FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

OSC	PIC16CR72-04	PIC16CR72-10	PIC16CR72-20	PIC16LCR72-04	JW Devices
RC	VDD: 4.0V to 5.5V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 5.5V IDD: 3.8 mA max. at 3.0V IPD: 5.0 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 5.5V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
хт	VDD: 4.0V to 5.5V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 5.5V IDD: 3.8 mA max. at 3.0V IPD: 5.0 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 5.5V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 10 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 10 MHz max.	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 5.5V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	Not recommended for use in LP mode	VDD: 2.5V to 5.5V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5.0 μA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 5.5V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5.0 μA max. at 3.0V Freq: 200 kHz max.


The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

13.4 <u>Timing Parameter Symbology</u>


The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS		3. TCC:ST	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	т	Time
Lowercase lett	ers (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	ss	SS
dt	Data in	tO	ТОСКІ
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercase lett	ers and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
1	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C sp	ecifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

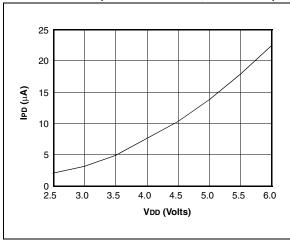
FIGURE 13-1: LOAD CONDITIONS

FIGURE 13-14: A/D CONVERSION TIMING

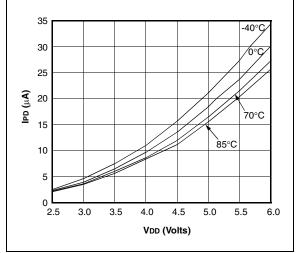
TABLE 13-13 A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
130	TAD	A/D clock period PIC16C72/LCR72		1.6	—	_	μS	Tosc based, VREF \geq 2.5V
			PIC16LC72/LCR72	2.0	—	_	μs	Tosc based, VREF full range
			PIC16C72/LCR72	2.0	4.0	6.0	μs	A/D RC Mode
			PIC16LC72/LCR72	2.5	6.0	9.0	μs	A/D RC Mode
131	TCNV	Conversion time (not including S/H time) (Note 1)		_	9.5	_	Tad	
132	TACQ	Acquisition time		Note 2	20	_	μS	
				5*	_	_	μS	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	Tgo	Q4 to A/D clock start		_	Tosc/2 §	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from co	onvert \rightarrow sample time	1.5 §	—	_	TAD	
*	The	se narameters are	characterized but not	tested	I		1	

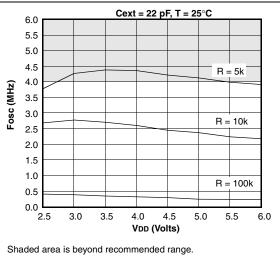
These parameters are characterized but not tested.

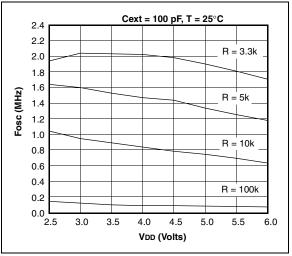

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

This specification ensured by design. §


ADRES register may be read on the following TCY cycle. Note 1:

Note 2: See Section 9.1 for min conditions.


FIGURE 14-3: TYPICAL IPD vs. VDD @ 25°C (WDT ENABLED, RC MODE)



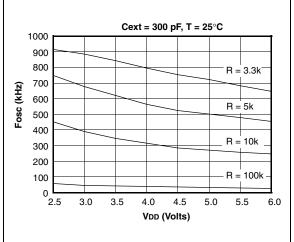
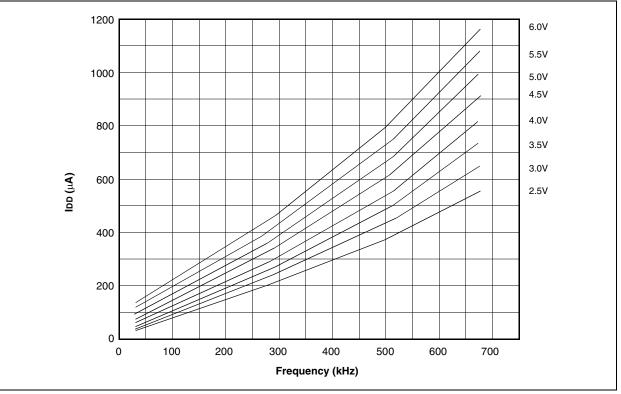

FIGURE 14-5: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

FIGURE 14-6: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD



PIC16C72 Series PIC16C72

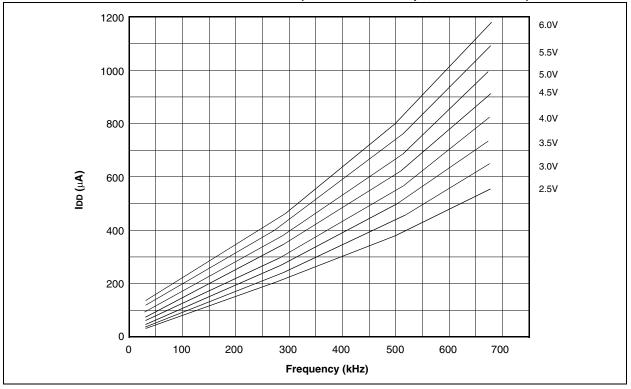
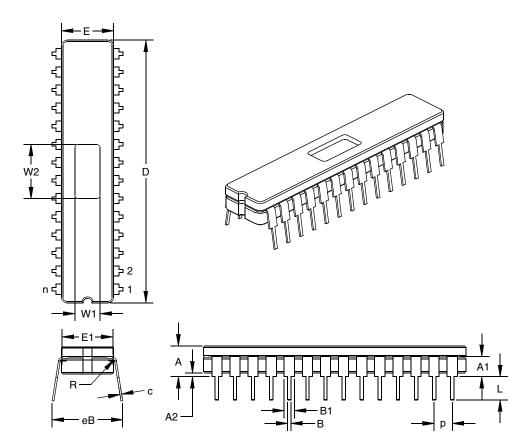



FIGURE 14-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)

16.2 <u>28-Lead Ceramic Side Brazed Dual In-Line with Window (300 mil)(JW)</u>

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units			INCHES*		М	ILLIMETERS	3
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
PCB Row Spacing			0.300			7.62	
Number of Pins	n		28			28	
Pitch	р	0.098	0.100	0.102	2.49	2.54	2.59
Lower Lead Width	В	0.016	0.019	0.021	0.41	0.47	0.53
Upper Lead Width	B1	0.050	0.058	0.065	1.27	1.46	1.65
Shoulder Radius	R	0.010	0.013	0.015	0.25	0.32	0.38
Lead Thickness	С	0.008	0.010	0.012	0.20	0.25	0.30
Top to Seating Plane	А	0.170	0.183	0.195	4.32	4.64	4.95
Top of Lead to Seating Plane	A1	0.107	0.125	0.143	2.72	3.18	3.63
Base to Seating Plane	A2	0.015	0.023	0.030	0.00	0.57	0.76
Tip to Seating Plane	L	0.135	0.140	0.145	3.43	3.56	3.68
Package Length	D	1.430	1.458	1.485	36.32	37.02	37.72
Package Width	E	0.285	0.290	0.295	7.24	7.37	7.49
Radius to Radius Width	E1	0.255	0.270	0.285	6.48	6.86	7.24
Overall Row Spacing	eB	0.345	0.385	0.425	8.76	9.78	10.80
Window Width	W1	0.130	0.140	0.150	0.13	0.14	0.15
Window Length	W2	0.290	0.300	0.310	0.29	0.3	0.31

* Controlling Parameter.

NOTES: