



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

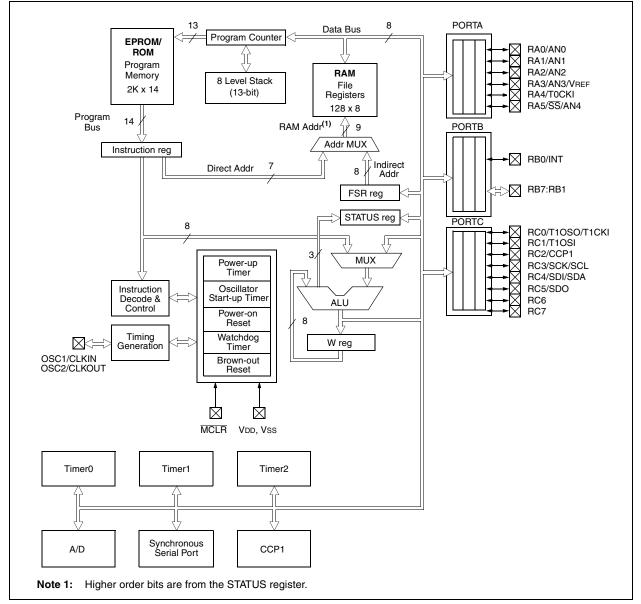
| Details                    |                                                                          |
|----------------------------|--------------------------------------------------------------------------|
| Product Status             | Active                                                                   |
| Core Processor             | PIC                                                                      |
| Core Size                  | 8-Bit                                                                    |
| Speed                      | 20MHz                                                                    |
| Connectivity               | I <sup>2</sup> C, SPI                                                    |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                    |
| Number of I/O              | 22                                                                       |
| Program Memory Size        | 3.5KB (2K x 14)                                                          |
| Program Memory Type        | ОТР                                                                      |
| EEPROM Size                | -                                                                        |
| RAM Size                   | 128 x 8                                                                  |
| Voltage - Supply (Vcc/Vdd) | 4V ~ 6V                                                                  |
| Data Converters            | A/D 5x8b                                                                 |
| Oscillator Type            | External                                                                 |
| Operating Temperature      | 0°C ~ 70°C (TA)                                                          |
| Mounting Type              | Through Hole                                                             |
| Package / Case             | 28-DIP (0.300", 7.62mm)                                                  |
| Supplier Device Package    | 28-SPDIP                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16c72-20-sp |
|                            |                                                                          |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 1.0 DEVICE OVERVIEW

This document contains device-specific information for the operation of the PIC16C72 device. Additional information may be found in the PIC<sup>®</sup> Mid-Range MCU Reference Manual (DS33023) which may be downloaded from the Microchip website. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.


The PIC16C72 belongs to the Mid-Range family of the PIC devices. A block diagram of the device is shown in Figure 1-1.

The program memory contains 2K words which translate to 2048 instructions, since each 14-bit program memory word is the same width as each device instruction. The data memory (RAM) contains 128 bytes.

There are also 22 I/O pins that are user-configurable on a pin-to-pin basis. Some pins are multiplexed with other device functions. These functions include:

- External interrupt
- Change on PORTB interrupt
- Timer0 clock input
- Timer1 clock/oscillator
- Capture/Compare/PWM
- A/D converter
- SPI/I<sup>2</sup>C

Table 1-1 details the pinout of the device with descriptions and details for each pin.



# FIGURE 1-1: PIC16C72/CR72 BLOCK DIAGRAM

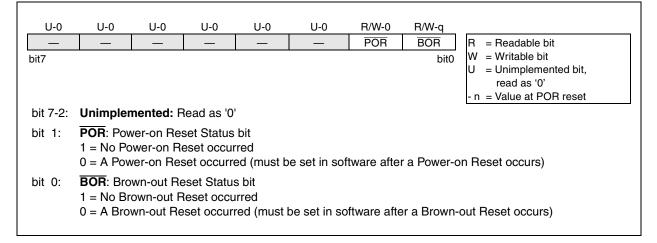
#### 2.2.2.5 PIR1 REGISTER

This register contains the individual flag bits for the Peripheral interrupts.

**Note:** Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

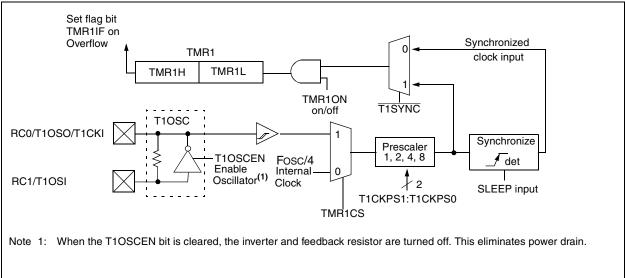
# FIGURE 2-7: PIR1 REGISTER (ADDRESS 0Ch)

|          | R/W-0<br>ADIF                                | U-0                                                                                 | U-0                                              | R/W-0<br>SSPIF           | R/W-0<br>CCP1IF             | R/W-0<br>TMR2IF | R/W-0<br>TMR1IF | R = Readable bit                                                                      |
|----------|----------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------|-----------------------------|-----------------|-----------------|---------------------------------------------------------------------------------------|
| vit7     |                                              |                                                                                     |                                                  |                          |                             |                 | bitO            | W = Writable bit<br>U = Unimplemented bit,<br>read as '0'<br>- n = Value at POR reset |
| oit 7:   | Unimpler                                     | nented: F                                                                           | lead as '0                                       | I                        |                             |                 |                 |                                                                                       |
| bit 6:   | <b>ADIF</b> : A/D<br>1 = An A/I<br>0 = The A | D convers                                                                           | ion compl                                        | eted (mus                | st be cleare                | d in softwa     | ıre)            |                                                                                       |
| bit 5-4: | Unimpler                                     | nented: R                                                                           | ead as '0                                        |                          |                             |                 |                 |                                                                                       |
| bit 3:   |                                              | ansmissio                                                                           | n/reception                                      | on is comp               | pt Flag bit<br>lete (must l | be cleared      | in software     | 9)                                                                                    |
| bit 2:   | 0 = No TN<br><u>Compare</u>                  | <u>Aode</u><br>R1 registe<br>/IR1 regist<br>Mode<br>R1 registe<br>/IR1 regist<br>de | r capture<br>er capture<br>r compare<br>er compa | occurred (<br>e occurred | curred (mu                  |                 |                 | are)                                                                                  |
| bit 1:   | <b>TMR2IF</b> : 1<br>1 = TMR2<br>0 = No TM   | to PR2 m                                                                            | natch occu                                       | urred (mus               | Flag bit<br>t be cleared    | d in softwa     | re)             |                                                                                       |
| bit 0:   | TMR1IF:                                      |                                                                                     |                                                  |                          | bit<br>cleared in :         | software)       |                 |                                                                                       |


# **PIC16C72 Series**

#### 2.2.2.6 PCON REGISTER

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external  $\overline{\text{MCLR}}$  Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset condition from a Power-on Reset condition.


#### Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

#### FIGURE 2-8: PCON REGISTER (ADDRESS 8Eh)



NOTES:

## FIGURE 5-2: TIMER1 BLOCK DIAGRAM



#### 5.2 <u>Timer1 Oscillator</u>

A crystal oscillator circuit is built in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 5-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 5-1CAPACITOR SELECTION FOR<br/>THE TIMER1 OSCILLATOR

| Osc Type   | e Freq                                                    | C1             | C2           |
|------------|-----------------------------------------------------------|----------------|--------------|
| LP         | 32 kHz                                                    | 33 pF          | 33 pF        |
|            | 100 kHz                                                   | 15 pF          | 15 pF        |
|            | 200 kHz                                                   | 15 pF          | 15 pF        |
| These      | values are for                                            | design guidar  | ice only.    |
| Crystals 7 | ested:                                                    |                |              |
| 32.768 kH  | z Epson C-00                                              | 1R32.768K-A    | $\pm$ 20 PPM |
| 100 kHz    | Epson C-2 1                                               | 00.00 KC-P     | $\pm$ 20 PPM |
| 200 kHz    | STD XTL 20                                                | 0.000 kHz      | $\pm$ 20 PPM |
| 0          | igher capacitan<br>f oscillator but a<br>me.              |                | ,            |
| 2: S       | ince each resor<br>naracteristics, th<br>esonator/crystal | ne user should | consult the  |

ate values of external components.

# 5.3 <u>Timer1 Interrupt</u>

The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).

#### 5.4 <u>Resetting Timer1 using a CCP Trigger</u> <u>Output</u>

If the CCP module is configured in compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

| Note: | The spe | cial e | event | trigg | ers from tl | ne CC | P1  |
|-------|---------|--------|-------|-------|-------------|-------|-----|
|       | module  | will   | not   | set   | interrupt   | flag  | bit |
|       | TMR1IF  | (PIR   | 1<0>  | ·).   |             |       |     |

Timer1 must be configured for either timer or synchronized counter mode to take advantage of this feature. If Timer1 is running in asynchronous counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L registers pair effectively becomes the period register for Timer1.

# TABLE 5-2 REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

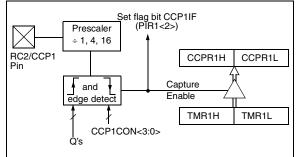
| Address | Name   | Bit 7   | Bit 6   | Bit 5         | Bit 4         | Bit 3         | Bit 2      | Bit 1       | Bit 0  | Value on:<br>POR,<br>BOR | Value on<br>all other<br>resets |
|---------|--------|---------|---------|---------------|---------------|---------------|------------|-------------|--------|--------------------------|---------------------------------|
| 0Bh,8Bh | INTCON | GIE     | PEIE    | TOIE          | INTE          | RBIE          | TOIF       | INTF        | RBIF   | 0000 000x                | 0000 000u                       |
| 0Ch     | PIR1   | (1)     | ADIF    | (1)           | (1)           | SSPIF         | CCP1IF     | TMR2IF      | TMR1IF | 0000 0000                | 0000 0000                       |
| 8Ch     | PIE1   | (1)     | ADIE    | (1)           | (1)           | SSPIE         | CCP1IE     | TMR2IE      | TMR1IE | 0000 0000                | 0000 0000                       |
| 0Eh     | TMR1L  | Holding | registe | r for the Lea | st Significan | t Byte of the | 16-bit TMF | R1 register |        | xxxx xxxx                | uuuu uuuu                       |
| 0Fh     | TMR1H  | Holding | registe | r for the Mos | t Significant | t Byte of the | 16-bit TMR | 1 register  |        | xxxx xxxx                | uuuu uuuu                       |
| 10h     | T1CON  | _       | _       | T1CKPS1       | T1CKPS0       | T1OSCEN       | T1SYNC     | TMR1CS      | TMR1ON | 00 0000                  | uu uuuu                         |

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module. Note 1: These bits are unimplemented, read as '0'.

#### 7.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1. An event is defined as:

- every falling edge
- · every rising edge
- every 4th rising edge
- every 16th rising edge


An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

#### 7.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

| Note: | Jan Star Star Star Star Star Star Star Star  |
|-------|----------------------------------------------|
|       | put, a write to the port can cause a capture |
|       | condition.                                   |

#### FIGURE 7-2: CAPTURE MODE OPERATION BLOCK DIAGRAM



#### 7.1.2 TIMER1 MODE SELECTION

Timer1 must be running in timer mode or synchronized counter mode for the CCP module to use the capture feature. In asynchronous counter mode, the capture operation may not work.

#### 7.1.3 SOFTWARE INTERRUPT

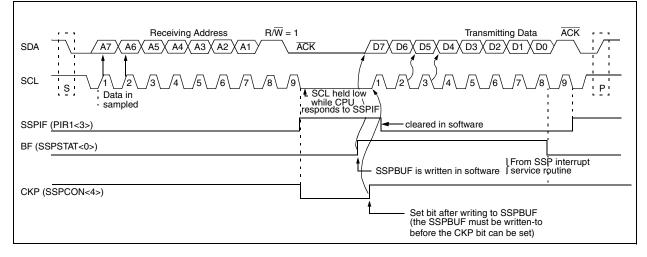
When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in operating mode.

#### 7.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in capture mode, the prescaler counter is cleared. This means that any reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 7-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

## EXAMPLE 7-1: CHANGING BETWEEN CAPTURE PRESCALERS

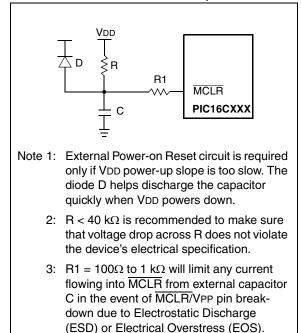

| CLRF  | CCP1CON     | ;Turn CCP module off    |
|-------|-------------|-------------------------|
| MOVLW | NEW_CAPT_PS | ;Load the W reg with    |
|       |             | ; the new prescaler     |
|       |             | ; mode value and CCP ON |
| MOVWF | CCP1CON     | ;Load CCP1CON with this |
|       |             | ; value                 |

#### 8.4.1.3 TRANSMISSION

When the  $R/\overline{W}$  bit of the incoming address byte is set and an address match occurs, the  $R/\overline{W}$  bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The  $\overline{ACK}$  pulse will be sent on the ninth bit, and pin RC3/SCK/SCL is held low. The transmit data must be loaded into the SSP-BUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 8-9). An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the  $\overline{ACK}$  pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not  $\overline{ACK}$ ), then the data transfer is complete. When the  $\overline{ACK}$  is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave then monitors for another occurrence of the START bit. If the SDA line was low ( $\overline{ACK}$ ), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP.






#### 10.4 Power-On Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the  $\overline{\text{MCLR}}$  pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details. For a slow rise time, see Figure 10-6.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met. Brown-out Reset may be used to meet the startup conditions.

#### FIGURE 10-6: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)



## 10.5 Power-up Timer (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

## 10.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

## 10.7 Brown-Out Reset (BOR)

A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (3.8V - 4.2V range) for greater than parameter #35, the brown-out situation will reset the chip. A reset may not occur if VDD falls below 4.0V for less than parameter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms time delay. The Power-up Timer should always be enabled when Brown-out Reset is enabled.

#### 13.1 DC Characteristics: PIC16C72/CR72-04 (Commercial, Industrial, Extended) PIC16C72/CR72-10 (Commercial, Industrial, Extended) PIC16C72/CR72-20 (Commercial, Industrial, Extended)

|               |                                                                   |                       |            |         | •                                  |                                      |                                                   |                       |        | enaea)                                             |
|---------------|-------------------------------------------------------------------|-----------------------|------------|---------|------------------------------------|--------------------------------------|---------------------------------------------------|-----------------------|--------|----------------------------------------------------|
| DC CHA        | RACTERISTICS                                                      | Standard<br>Operating | •          | 0       | itions (u<br>-40°C<br>-40°C<br>0°C | $\leq TA \leq H$<br>$\leq TA \leq H$ | +125°C for<br>+85°C for<br>⊦85°C for<br>⊦70°C for | or extend<br>industri | al and |                                                    |
| Param         | Characteristic                                                    | Sym                   | F          | PIC16C7 | 2                                  | Р                                    | IC16CR7                                           | 72                    | Units  | Conditions                                         |
| No.           | onaracteristic                                                    | Oym                   | Min        | Тур†    | Max                                | Min                                  | Тур†                                              | Мах                   | Units  | Conditions                                         |
| D001<br>D001A | Supply Voltage                                                    | Vdd                   | 4.0<br>4.5 |         | <b>6.0</b><br>5.5                  | 4.0<br>4.5                           | -                                                 | <b>5.5</b><br>5.5     | V<br>V | XT, RC and LP osc<br>HS osc                        |
| D002*         | RAM Data Retention<br>Voltage (Note 1)                            | VDR                   | -          | 1.5     | -                                  | -                                    | 1.5                                               | -                     | V      |                                                    |
| D003          | VDD start voltage to<br>ensure internal Power-<br>on Reset Signal | VPOR                  | -          | Vss     | -                                  | -                                    | Vss                                               | -                     | V      | See section on Power-<br>on Reset for details      |
| D004*         | VDD rise rate to ensure<br>internal Power-on<br>Reset Signal      | SVDD                  | 0.05       | -       | -                                  | 0.05                                 | -                                                 | -                     | V/ms   | See section on Power-<br>on Reset for details      |
| D005          | Brown-out Reset Volt-<br>age                                      | Bvdd                  | 3.7        | 4.0     | 4.3                                | 3.7                                  | 4.0                                               | 4.3                   | V      | BODEN bit in configura-<br>tion word enabled       |
|               |                                                                   |                       | 3.7        | 4.0     | 4.4                                | 3.7                                  | 4.0                                               | 4.4                   | V      | Extended Only                                      |
| D010          | Supply Current<br>(Note 2,5)                                      | IDD                   | -          | 2.7     | 5.0                                | -                                    | 2.7                                               | 5.0                   | mA     | XT, RC osc<br>Fosc = 4 MHz,<br>VDD = 5.5V (Note 4) |
| D013          |                                                                   |                       | -          | 10      | 20                                 | -                                    | 10                                                | 20                    | mA     | HS osc<br>Fosc = 20 MHz,<br>VDD = 5.5V             |
| D015          | Brown-out Reset<br>Current (Note 6)                               | ∆lbor                 | -          | 350     | 425                                | -                                    | 350                                               | 425                   | μA     | BOR enabled,<br>VDD = 5.0V                         |
| D020          | Power-down Current<br>(Note 3,5)                                  | IPD                   | -          | 10.5    | 42                                 | -                                    | 10.5                                              | 42                    | μA     | VDD = 4.0V, WDT<br>enabled, -40°C to +85°C         |
| D021          |                                                                   |                       | -          | 1.5     | 16                                 | -                                    | 1.5                                               | 16                    | μΑ     | VDD = 4.0V, WDT dis-<br>abled, -0°C to +70°C       |
| D021A         |                                                                   |                       | -          | 1.5     | 19                                 | -                                    | 1.5                                               | 19                    | μΑ     | VDD = 4.0V, WDT dis-<br>abled, -40°C to +85°C      |
| D021B         |                                                                   |                       | -          | 2.5     | 19                                 | -                                    | 2.5                                               | 19                    | μA     | VDD = 4.0V, WDT dis-<br>abled, -40°C to +125°C     |
| D023          | Brown-out Reset<br>Current (Note 6)                               | ∆lbor                 | -          | 350     | 425                                | -                                    | 350                                               | 425                   | μA     | BOR enabled VDD = 5.0V                             |

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

Note 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

MCLR = VDD; WDT enabled/disabled as specified.

**Note 3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

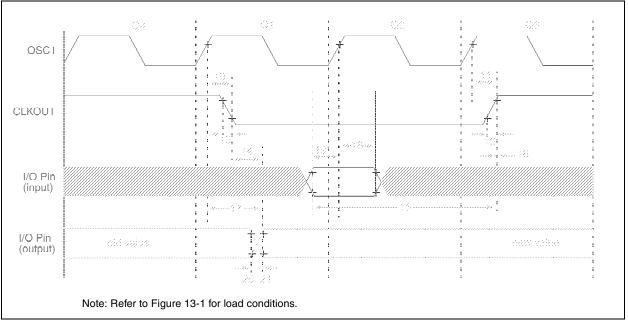
**Note 4:** For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

**Note 5:** Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

**Note 6:** The  $\Delta$  current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

| DC CHAR      | ACTERISTICS                                |                     |           | ure -40<br>-40 | D°C <sup>`</sup> ≤ TA<br>D°C <sup>°</sup> ≤ TA | ≤ +125°<br>≤ +85°0 | vise stated)<br><sup>2</sup> C for extended,<br>C for industrial and    |
|--------------|--------------------------------------------|---------------------|-----------|----------------|------------------------------------------------|--------------------|-------------------------------------------------------------------------|
|              |                                            | Operatin<br>Section | 0 0       |                |                                                |                    | C for commercial<br>DC spec Section 13.1 and                            |
| Param<br>No. | Characteristic                             | Sym                 | Min       | Тур†           | Max                                            | Units              | Conditions                                                              |
|              | Output High Voltage                        |                     |           |                |                                                |                    |                                                                         |
| D090         | I/O ports (Note 3)                         | Voн                 | Vdd - 0.7 | -              | -                                              | V                  | IOH = -3.0 mA, VDD = 4.5V,<br>-40°С to +85°С                            |
| D090A        |                                            |                     | Vdd - 0.7 | -              | -                                              | V                  | IOH = -2.5 mA, VDD = 4.5V,<br>-40°С to +125°С                           |
| D092         | OSC2/CLKOUT (RC osc config)                |                     | Vdd - 0.7 | -              | -                                              | V                  | IOH = -1.3 mA, VDD = 4.5V,<br>-40°С to +85°С                            |
| D092A        |                                            |                     | Vdd - 0.7 | -              | -                                              | V                  | IOH = -1.0 mA, VDD = 4.5V,<br>-40°C to +125°C                           |
| D150*        | Open-Drain High Voltage                    | Vod                 | -         | -              | 14                                             | V                  | RA4 pin, PIC16 <b>C</b> 72/ <b>LC</b> 72                                |
|              |                                            |                     | -         | -              | TBD                                            | V                  | RA4 pin, PIC16 <b>CR</b> 72/ <b>LCR</b> 72                              |
|              | Capacitive Loading Specs on Output<br>Pins |                     |           |                |                                                |                    |                                                                         |
| D100         | OSC2 pin                                   | COSC2               | -         | -              | 15                                             | pF                 | In XT, HS and LP modes when<br>external clock is used to drive<br>OSC1. |
| D101         | All I/O pins and OSC2 (in RC mode)         | Сю                  | -         | -              | 50                                             | pF                 |                                                                         |
| D102         | SCL, SDA in I <sup>2</sup> C mode          | Cb                  | -         | -              | 400                                            | pF                 |                                                                         |

\* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

**Note 1:** In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

**Note 2:** The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

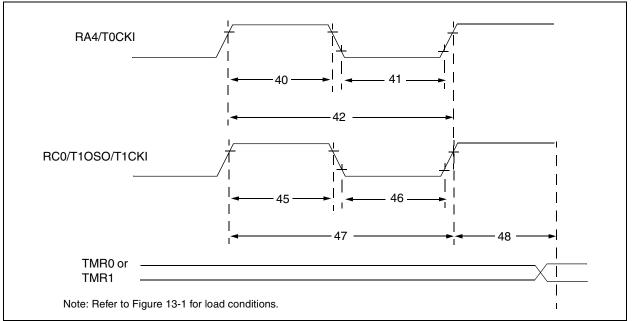
Note 3: Negative current is defined as current sourced by the pin.





| Parameter<br>No. | Sym      | Characte                              | eristic             | Min        | Typ† | Max         | Units | Conditions |
|------------------|----------|---------------------------------------|---------------------|------------|------|-------------|-------|------------|
| 10*              | TosH2ckL | OSC1↑ to CLKOUT↓                      |                     | _          | 75   | 200         | ns    | Note 1     |
| 11*              | TosH2ckH | OSC1↑ to CLKOUT↑                      |                     | _          | 75   | 200         | ns    | Note 1     |
| 12*              | TckR     | CLKOUT rise time                      |                     | _          | 35   | 100         | ns    | Note 1     |
| 13*              | TckF     | CLKOUT fall time                      |                     | _          | 35   | 100         | ns    | Note 1     |
| 14*              | TckL2ioV | CLKOUT $\downarrow$ to Port out val   | id                  | _          | —    | 0.5Tcy + 20 | ns    | Note 1     |
| 15*              | TioV2ckH | Port in valid before CLKO             | UT ↑                | Tosc + 200 | —    | —           | ns    | Note 1     |
| 16*              | TckH2iol | Port in hold after CLKOUT             | ſ↑                  | 0          | —    | —           | ns    | Note 1     |
| 17*              | TosH2ioV | OSC1↑ (Q1 cycle) to Port              | out valid           | -          | 50   | 150         | ns    |            |
| 18*              | TosH2iol | OSC1↑ (Q2 cycle) to                   | PIC16C72/CR72       | 100        | —    | —           | ns    |            |
|                  |          | Port input invalid (I/O in hold time) | PIC16LC72/LCR72     | 200        | —    | _           | ns    |            |
| 19*              | TioV2osH | Port input valid to OSC1 <sup>↑</sup> | (I/O in setup time) | 0          | _    | —           | ns    |            |
| 20*              | TioR     | Port output rise time                 | PIC16C72/CR72       | _          | 10   | 40          | ns    |            |
|                  |          |                                       | PIC16LC72/LCR72     | _          | _    | 80          | ns    |            |
| 21*              | TioF     | Port output fall time                 | PIC16C72/CR72       | _          | 10   | 40          | ns    |            |
|                  |          |                                       | PIC16LC72/LCR72     | —          | —    | 80          | ns    |            |
| 22††*            | Tinp     | INT pin high or low time              |                     | Тсү        |      | —           | ns    |            |
| 23††*            | Trbp     | RB7:RB4 change INT hig                | h or low time       | Тсү        | —    | —           | ns    |            |

| TABLE 13-4 | CLKOUT AND I/O TIMING REQUIREMENTS |
|------------|------------------------------------|
|            |                                    |


\* These parameters are characterized but not tested.

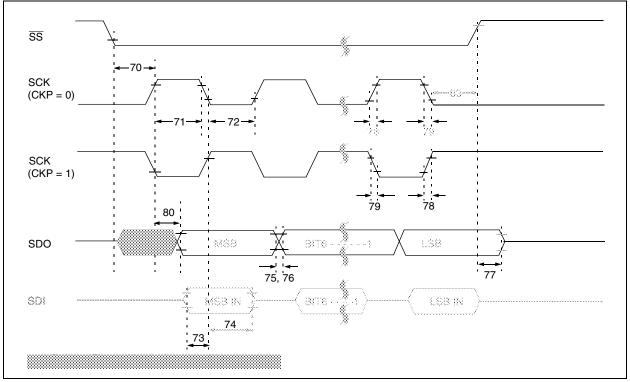
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

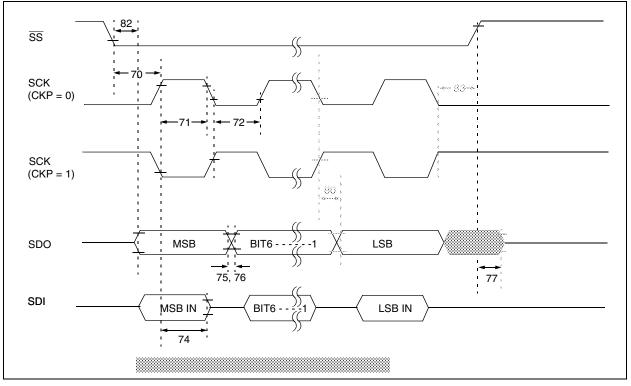
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

## FIGURE 13-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

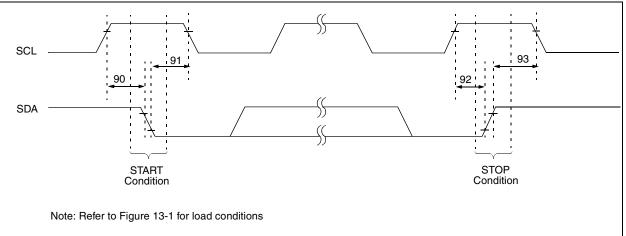



| TABLE 13-6         TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS |
|------------------------------------------------------------------|
|------------------------------------------------------------------|

| Param<br>No. | Sym                         |                                            | Characteristic       |                                   | Min                                       | Тур† | Max   | Units | Conditions                         |
|--------------|-----------------------------|--------------------------------------------|----------------------|-----------------------------------|-------------------------------------------|------|-------|-------|------------------------------------|
| 40*          | Tt0H                        | T0CKI High Pulse                           | Width                | No Prescaler                      | 0.5TCY + 20                               |      | _     | ns    | Must also meet                     |
|              |                             | -                                          |                      | With Prescaler                    | 10                                        | —    | _     | ns    | parameter 42                       |
| 41*          | 1* Tt0L T0CKI Low Pulse Wid |                                            | Width                | No Prescaler                      | 0.5TCY + 20                               | _    | _     | ns    | Must also meet                     |
|              |                             |                                            |                      | With Prescaler                    | 10                                        | —    | _     | ns    | parameter 42                       |
| 42*          | Tt0P                        | T0CKI Period                               |                      | No Prescaler                      | Tcy + 40                                  | _    | _     | ns    |                                    |
|              |                             |                                            |                      | With Prescaler                    | Greater of:                               | _    | —     | ns    | N = prescale value                 |
|              |                             |                                            |                      |                                   | 20 or <u>TCY + 40</u>                     |      |       |       | (2, 4,, 256)                       |
|              |                             |                                            |                      |                                   | N                                         |      |       |       |                                    |
| 45*          | Tt1H                        | T1CKI High Time                            | -                    |                                   | 0.5Tcy + 20                               |      | I     | ns    | Must also meet                     |
|              |                             |                                            | -,                   | PIC16 <b>C</b> 7X/ <b>CR</b> 72   | 15                                        | _    |       | ns    | parameter 47                       |
|              |                             |                                            | Prescaler =<br>2,4,8 | PIC16 <b>LC</b> 7X/ <b>LCR</b> 72 | 25                                        | —    | -     | ns    |                                    |
|              |                             |                                            | Asynchronous         | PIC16 <b>C</b> 7X/ <b>CR</b> 72   | 30                                        | _    | -     | ns    |                                    |
|              |                             |                                            |                      | PIC16LC7X/LCR72                   | 50                                        | —    | —     | ns    |                                    |
| 46*          | Tt1L                        | T1CKI Low Time                             | Synchronous, I       | Prescaler = 1                     | 0.5TCY + 20                               | _    |       | ns    | Must also meet                     |
|              |                             |                                            | - <b>,</b> ,         | PIC16C7X/CR72                     | 15                                        | _    | _     | ns    | parameter 47                       |
|              |                             |                                            | Prescaler =<br>2,4,8 | PIC16 <b>LC</b> 7X/ <b>LCR</b> 72 | 25                                        | —    | —     | ns    |                                    |
|              |                             |                                            | Asynchronous         | PIC16C7X/CR72                     | 30                                        | —    | —     | ns    |                                    |
|              |                             |                                            |                      | PIC16LC7X/LCR72                   | 50                                        | —    | —     | ns    |                                    |
| 47*          | Tt1P                        | T1CKI input<br>period                      | Synchronous          | PIC16 <b>C</b> 7X/ <b>CR</b> 72   | Greater of:<br>30 OR <u>TCY + 40</u><br>N | _    |       | ns    | N = prescale value<br>(1, 2, 4, 8) |
|              |                             |                                            |                      | PIC16 <b>LC</b> 7X/ <b>LCR</b> 72 | Greater of:<br>50 OR <u>TCY + 40</u><br>N |      |       |       | N = prescale value<br>(1, 2, 4, 8) |
|              |                             |                                            | Asynchronous         | PIC16C7X/CR72                     | 60                                        | —    | —     | ns    |                                    |
|              |                             |                                            |                      | PIC16LC7X/LCR72                   | 100                                       | —    | —     | ns    |                                    |
|              | Ft1                         | Timer1 oscillator i<br>(oscillator enabled |                      |                                   | DC                                        | —    | 200   | kHz   |                                    |
| 48           | TCKEZtmr                    | 1 Delay from extern                        | al clock edge to     | timer increment                   | 2Tosc                                     | _    | 7Tosc | _     |                                    |


Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. t

<sup>© 1998-2013</sup> Microchip Technology Inc.


# FIGURE 13-10: SPI SLAVE MODE TIMING (CKE = 0)



# FIGURE 13-11: SPI SLAVE MODE TIMING (CKE = 1)



# FIGURE 13-12: I<sup>2</sup>C BUS START/STOP BITS TIMING



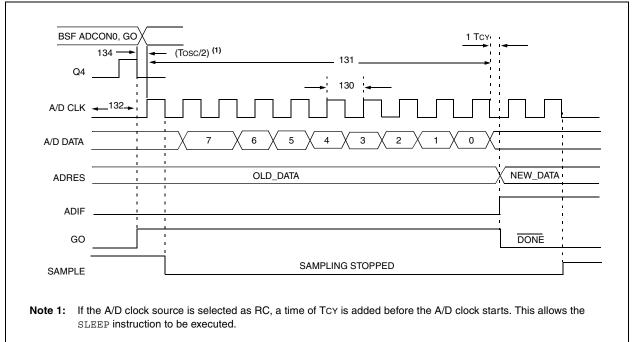
| Parameter<br>No. | Sym     | Characteristic  |              | Min  | Тур | Max | Units | Conditions                        |                                  |
|------------------|---------|-----------------|--------------|------|-----|-----|-------|-----------------------------------|----------------------------------|
| 90               | TSU:STA | START condition | 100 kHz mode | 4700 |     | —   | ns    | ns                                | Only relevant for repeated START |
|                  |         | Setup time      | 400 kHz mode | 600  | _   | _   |       | condition                         |                                  |
| 91               | THD:STA | START condition | 100 kHz mode | 4000 | _   | _   | ns    | After this period the first clock |                                  |
|                  |         | Hold time       | 400 kHz mode | 600  | —   | —   |       | pulse is generated                |                                  |
| 92               | TSU:STO | STOP condition  | 100 kHz mode | 4700 | _   | _   | ns    |                                   |                                  |
|                  |         | Setup time      | 400 kHz mode | 600  | _   | _   |       |                                   |                                  |
| 93               | THD:STO | STOP condition  | 100 kHz mode | 4000 | —   | —   | ns    |                                   |                                  |
|                  |         | Hold time       | 400 kHz mode | 600  | —   | —   |       |                                   |                                  |

## TABLE 13-12 A/D CONVERTER CHARACTERISTICS:

PIC16C72/CR72-04 (Commercial, Industrial, Extended) PIC16C72/CR72-10 (Commercial, Industrial, Extended) PIC16C72/CR72-20 (Commercial, Industrial, Extended) PIC16LC72/LCR72-04 (Commercial, Industrial)

| Param<br>No. | Sym   | Char                                              | acteristic      | Min       | Тур†       | Мах        | Units | Conditions                                                                                                 |
|--------------|-------|---------------------------------------------------|-----------------|-----------|------------|------------|-------|------------------------------------------------------------------------------------------------------------|
| A01          | NR    | Resolution                                        |                 |           |            | 8 bits     | bit   | $\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$               |
| A02          | EABS  | Total Absolute er                                 | ror             | —         | _          | < ± 1      | LSb   | $\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$               |
| A03          | EIL   | Integral linearity error                          |                 | _         | _          | < ± 1      | LSb   | $\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$               |
| A04          | Edl   | Differential linearity error                      |                 | _         | _          | < ± 1      | LSb   | $\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$               |
| A05          | Efs   | Full scale error                                  |                 | _         | _          | < ± 1      | LSb   | $\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$               |
| A06          | EOFF  | Offset error                                      |                 |           | _          | < ± 1      | LSb   | $\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$               |
| A10          |       | Monotonicity                                      |                 | _         | guaranteed | _          | _     | $VSS \leq VAIN \leq VREF$                                                                                  |
| A20          | VREF  | Reference voltage                                 |                 | 2.5V      | —          | VDD + 0.3  | V     |                                                                                                            |
| A25          | VAIN  | Analog input volt                                 | age             | Vss - 0.3 | _          | VREF + 0.3 | V     |                                                                                                            |
| A30          | Zain  | Recommended impedance of<br>analog voltage source |                 | _         | —          | 10.0       | kΩ    |                                                                                                            |
| A40          | IAD   | A/D conversion                                    | PIC16C72/CR72   | _         | 180        | _          | μA    | Average current con-                                                                                       |
|              |       | current (VDD)                                     | PIC16LC72/LCR72 | -         | 90         | -          | μA    | sumption when A/D is on.<br>(Note 1)                                                                       |
| A50          | IREF  | VREF input current (Note 2)                       |                 | 10        | _          | 1000       | μA    | During VAIN acquisition.<br>Based on differential of<br>VHOLD to VAIN to charge<br>CHOLD, see Section 9.1. |
|              | These |                                                   |                 | —         | —          | 10         | μA    | During A/D Conversion cycle                                                                                |

\* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current.

The power-down current spec includes any such leakage from the A/D module.

**Note 2:** VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

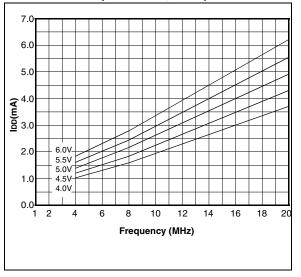
#### FIGURE 13-14: A/D CONVERSION TIMING

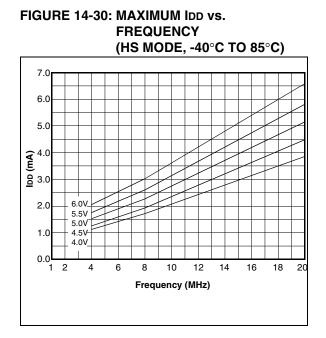


### TABLE 13-13 A/D CONVERSION REQUIREMENTS

| Param<br>No. | Sym  | Char                                                 | Min                              | Тур†   | Max      | Units | Conditions |                                                                                                                                                                                                                               |
|--------------|------|------------------------------------------------------|----------------------------------|--------|----------|-------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 130          | TAD  | A/D clock period                                     | PIC16C72/LCR72                   | 1.6    | —        | _     | μS         | Tosc based, VREF $\geq$ 2.5V                                                                                                                                                                                                  |
|              |      |                                                      | PIC16LC72/LCR72                  | 2.0    | —        | _     | μs         | Tosc based, VREF full range                                                                                                                                                                                                   |
|              |      |                                                      | PIC16C72/LCR72                   | 2.0    | 4.0      | 6.0   | μs         | A/D RC Mode                                                                                                                                                                                                                   |
|              |      |                                                      | PIC16LC72/LCR72                  | 2.5    | 6.0      | 9.0   | μs         | A/D RC Mode                                                                                                                                                                                                                   |
| 131          | TCNV | Conversion time<br>(not including S/H time) (Note 1) |                                  | _      | 9.5      | _     | Tad        |                                                                                                                                                                                                                               |
| 132 TACQ     |      | Acquisition time                                     |                                  | Note 2 | 20       | _     | μS         |                                                                                                                                                                                                                               |
|              |      |                                                      |                                  | 5*     | _        | _     | μS         | The minimum time is the amplifier<br>settling time. This may be used if<br>the "new" input voltage has not<br>changed by more than 1 LSb (i.e.,<br>20.0 mV @ 5.12V) from the last<br>sampled voltage (as stated on<br>CHOLD). |
| 134          | Tgo  | Q4 to A/D clock start                                |                                  | _      | Tosc/2 § | _     | _          | If the A/D clock source is selected<br>as RC, a time of TCY is added<br>before the A/D clock starts. This<br>allows the SLEEP instruction to be<br>executed.                                                                  |
| 135          | Tswc | Switching from co                                    | onvert $\rightarrow$ sample time | 1.5 §  | —        | _     | TAD        |                                                                                                                                                                                                                               |
| *            | The  | se narameters are                                    | characterized but not            | tested | I        |       | 1          |                                                                                                                                                                                                                               |

These parameters are characterized but not tested.


t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


This specification ensured by design. §

ADRES register may be read on the following TCY cycle. Note 1:

Note 2: See Section 9.1 for min conditions.

#### FIGURE 14-29: TYPICAL IDD vs. FREQUENCY (HS MODE, 25°C)





### TABLE 14-3 TYPICAL EPROM ERASE TIME RECOMMENDATIONS

| Process<br>Technology | Wavelength<br>(Angstroms) | Intensity (μW/<br>cm2) | Distance from UV lamp<br>(inches) | Typical Time <sup>(1)</sup><br>(minutes) |
|-----------------------|---------------------------|------------------------|-----------------------------------|------------------------------------------|
| 57K                   | 2537                      | 12,000                 | 1                                 | 15 - 20                                  |
| 77K                   | 2537                      | 12,000                 | 1                                 | 20                                       |
| 90K                   | 2537                      | 12,000                 | 1                                 | 40                                       |
| 120K                  | 2537                      | 12,000                 | 1                                 | 60                                       |

Note 1: If these criteria are not met, the erase times will be different.

**Note:** Fluorescent lights and sunlight both emit ultraviolet light at the erasure wavelength. Leaving a UV erasable device's window uncovered could cause, over time, the devices memory cells to become erased. The erasure time for a fluorescent light is about three years. While sunlight requires only about one week. To prevent the memory cells from losing data an opaque label should be placed over the erasure window.

| Block Diagram47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I <sup>2</sup> C Operation47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Master Mode51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Mode47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mode Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Multi-Master Mode51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 49 Reception                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Reception Timing Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SCL and SDA pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Slave Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Transmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| In-Circuit Serial Programming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| INDF Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Indirect Addressing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Instruction Format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Instruction Format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Summary Table73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| INT Interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| INTCON Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| INTEDG bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Internal Sampling Switch (Rss) Impedance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Interrupts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PortB Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RB7:RB4 Port Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TMR0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| IRP bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Loading of PC15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Loading of PC15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Loading of PC15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Loading of PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Loading of PC       15         M       MCLR       61, 64         Memory       6         Program Memory       5         Program Memory Maps       5         PIC16C72       5         PIC16CR72       5         Register File Maps       71016CR72         PIC16CR72       6         PIC16CR72       6         PIC16CR72       6         PIC16CR72       6         O       75         O       73         OPCODE       73         OPTION Register       10         OSC selection       59                                                                                                                                                                                                                                                                                                                        |
| Loading of PC       15         M       MCLR       61, 64         Memory       6         Program Memory       5         Program Memory Maps       5         PIC16C72       5         PIC16CR72       5         Register File Maps       716CR72         PIC16CR72       6         PIC16CR72       6         PIC16CR72       6         PIC16CR72       75         MPASM Assembler       75         MPSIM Software Simulator       75         O       73         OPTION Register       10         OSC selection       59         Oscillator       59                                                                                                                                                                                                                                                             |
| Loading of PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Loading of PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Loading of PC       15         M       MCLR       61, 64         Memory       0ata Memory       6         Program Memory       5       9         Program Memory Maps       9       116C72         PIC16C72       5       9         PIC16C72       6       9         PIC16C72       6       6         PIC16C72       6       6         PIC16C72       6       6         PIC16C72       6       6         PIC16C72       6       75         MPSIM Software Simulator       75       75         O       0       0       0         OPCODE       73       0       73         OPTION Register       10       0       0         Oscillator       59       59       59         HS       60, 64       60, 64       60, 64         LP       60, 64       60       60                                                    |
| Loading of PC       15         M       MCLR       61, 64         Memory       64         Data Memory       65         Program Memory Maps       75         PIC16C72       55         PIC16C72       56         PIC16C72       66         PIC16C72       66         PIC16C72       66         PIC16C72       66         PIC16C72       67         MPASM Assembler       75         MPSIM Software Simulator       75         O       73         OPCODE       73         OPTION Register       10         OSC selection       59         Oscillator       59         HS       60, 64         LP       60, 64         RC       60, 64         RC       60, 64                                                                                                                                                    |
| Loading of PC         15           M         MCLR         61, 64           Memory         64         66           Program Memory         65         76           Program Memory         75         76           PIC16C72         75         716           PIC16CR72         75         716           PIC16CR72         66         716           PIC16CR72         66         716           PIC16CR72         75         75           O         0         75           O         73         0           OPCODE         73         73           OPTION Register         10         0           OSC selection         59         9           Oscillator         59         60, 64           LP         60, 64         60, 64           C         60, 64         60, 64           C         60, 64         60, 64 |
| Loading of PC       15         M       MCLR       61, 64         Memory       64         Data Memory       65         Program Memory Maps       75         PIC16C72       55         PIC16C72       56         PIC16C72       66         PIC16C72       66         PIC16C72       66         PIC16C72       66         PIC16C72       67         MPASM Assembler       75         MPSIM Software Simulator       75         O       73         OPCODE       73         OPTION Register       10         OSC selection       59         Oscillator       59         HS       60, 64         LP       60, 64         RC       60, 64         RC       60, 64                                                                                                                                                    |
| Loading of PC         15           M         MCLR         61, 64           Memory         0ata Memory         6           Program Memory         5         9           Program Memory Maps         91C16C72         5           PIC16C72         5         7           Register File Maps         91C16C72         6           PIC16C72         6         75           MPSIM Software Simulator         75           O         0         0           OPCODE         73         0           OPTION Register         10         0           OSC selection         59         0           Oscillator         40, 64         60, 64           NS         60, 64         60, 64           C         60, 64         60, 64                                                                                          |

| Ρ                        | 40, 43 |
|--------------------------|--------|
| Packaging                |        |
| 28-Lead Ceramic w/Window | 110    |
| 28-Lead PDIP             | 111    |
| 28-Lead SOIC             | 112    |
| 28-Lead SSOP             |        |
| Paging, Program Memory   | 16     |

| PCFG0 bit 54                                                                       | ł |
|------------------------------------------------------------------------------------|---|
| PCFG1 bit                                                                          | ł |
| PCFG2 bit                                                                          | ŀ |
| PCL Register                                                                       | 5 |
| PCLATH                                                                             |   |
| PCLATH Register                                                                    |   |
| PCON Register                                                                      |   |
|                                                                                    |   |
| PD bit                                                                             |   |
| PICDEM-1 Low-Cost PIC16/17 Demo Board                                              |   |
| PICDEM-2 Low-Cost PIC16CXX Demo Board 75                                           |   |
| PICMASTER™ RT In-Circuit Emulator75                                                |   |
| PICSTART™ Low-Cost Development System                                              | ; |
| PIE1 Register                                                                      | 2 |
| Pin Functions                                                                      |   |
| MCLR/Vpp4                                                                          | L |
| OSC1/CLKIN                                                                         |   |
| OSC2/CLKOUT                                                                        |   |
|                                                                                    |   |
| RA0/AN0                                                                            |   |
| RA1/AN1 4                                                                          |   |
| RA2/AN2 4                                                                          |   |
| RA3/AN3/Vref 4                                                                     |   |
| RA4/T0CKI 4                                                                        | ŀ |
| RA5/AN4/SS                                                                         | ŀ |
| RB0/INT                                                                            |   |
| RB1                                                                                |   |
|                                                                                    |   |
| RB2                                                                                |   |
| RB3                                                                                |   |
| RB4 4                                                                              | ŀ |
| RB5 4                                                                              | ł |
| RB6 4                                                                              | ŀ |
| RB7                                                                                | ŀ |
| RC0/T1OSO/T1CKI 4                                                                  | L |
| RC1/T1OSI                                                                          |   |
| RC2/CCP1                                                                           |   |
|                                                                                    |   |
| RC3/SCK/SCL                                                                        |   |
| RC4/SDI/SDA4                                                                       |   |
| RC5/SDO 4                                                                          |   |
| RC6 4                                                                              | ł |
| RC7 4                                                                              | ŀ |
| SCK                                                                                | , |
| SDI                                                                                |   |
| SDO                                                                                |   |
| <u>SD0</u> 42-11<br><u>SS</u> 42-??                                                |   |
|                                                                                    |   |
| Vdd 4                                                                              |   |
| Vss 4                                                                              | ŀ |
| Pinout Descriptions                                                                |   |
| PIC16C72 4                                                                         | ł |
| PIC16CR72                                                                          | ł |
| PIR1 Register                                                                      | 3 |
| POR                                                                                |   |
| Oscillator Start-up Timer (OST)                                                    |   |
|                                                                                    |   |
| Power Control Register (PCON)                                                      |   |
| Power-on Reset (POR) 59, 65                                                        |   |
| Power-up Timer (PWRT)59                                                            | ) |
| Power-Up-Timer (PWRT)63                                                            |   |
| Time-out Sequence 64                                                               | ł |
| TO61                                                                               |   |
| POR bit                                                                            |   |
| Port RB Interrupt                                                                  |   |
| PORTA                                                                              |   |
| PORTA Register                                                                     |   |
|                                                                                    |   |
| -                                                                                  |   |
| PORTB                                                                              | 5 |
| PORTB                                                                              | 5 |
| PORTB         65           PORTB Register         7, 21           PORTC         65 | 5 |
| PORTB                                                                              | 5 |