

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	$4V \sim 6V$
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c72-20e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Data Memory Organization

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 and RP0 are the bank select bits.

RP1* RF	20 (ST/	ATUS<6:5>)
---------	---------	------------

 $= 00 \rightarrow Bank0$

- $= 01 \rightarrow \text{Bank1}$
- = $10 \rightarrow$ Bank2 (not implemented)
- = 11 \rightarrow Bank3 (not implemented)

* Maintain this bit clear to ensure upward compatibility with future products.

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM.

All implemented banks contain special function registers. Some "high use" special function registers from one bank may be mirrored in another bank for code reduction and quicker access (ex; the STATUS register is in Bank 0 and Bank 1).

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly or indirectly through the File Select Register FSR (Section 2.5).

FIGURE 2-2: REGISTER FILE MAP

File			File
Address	3		Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h	PORTC	TRISC	87h
08h			88h
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh	TMR1L	PCON	8Eh
0Fh	TMR1H		8Fh
10h	T1CON		90h
11h	TMR2		91h
12h	T2CON	PR2	92h
13h	SSPBUF	SSPADD	93h
14h	SSPCON	SSPSTAT	94h
15h	CCPR1L		95h
16h	CCPR1H		96h
17h	CCP1CON		97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh	ADRES		9Eh
1Fh	ADCON0	ADCON1	9Fh
20h	0	0	A0h
	General Purpose	General Purpose	
	Register	Register	
			BFh
			C0h
1			
7Fh			FFh
	Bank 0	Bank 1	
	plemented data me		ead as '0'.
Note 1: 1	Not a physical regis	ster.	

2.2.2.1 STATUS REGISTER

The STATUS register, shown in Figure 2-3, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the \overline{TO} and \overline{PD} bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

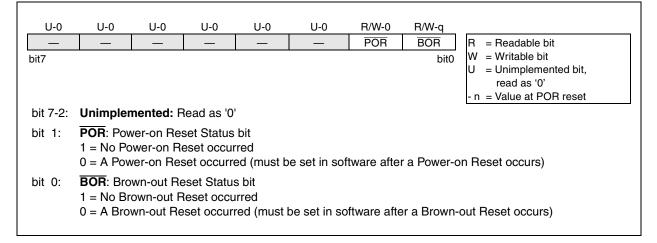
For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- Note 1: These devices do not use bits IRP and RP1 (STATUS<7:6>). Maintain these bits clear to ensure upward compatibility with future products.
- Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

R/W-0	R/W-0	R/W-0	R-1	<u>R-1</u>	R/W-x	R/W-x	R/W-x			
IRP	RP1	RP0	TO	PD	Z	DC	С	R = Readable bit		
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset		
bit 7:	1 = Bank 2	ster Bank 3 2, 3 (100h 0, 1 (00h -	- 1FFh)	(used for i	ndirect addı	essing)				
bit 6-5:	11 = Bank 10 = Bank 01 = Bank 00 = Bank	< 3 (180h - < 2 (100h - < 1 (80h - F < 0 (00h - 7 < is 128 by	1FFh) 17Fh) FFh) ′Fh)	·	ed for direct			⁹ bit is reserved. Always maintai		
bit 4:	1 = After p	TO: Time-out bit 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred								
bit 3:		r-down bit oower-up o ecution of t								
bit 2:		sult of an			peration is z					
bit 1:	1 = A carr	DC : Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow the polarity is reversed) 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result								
bit 0:	1 = A carr 0 = No car Note: For	y-out from rry-out from borrow the berand. Fo	the most n the mos polarity is	significant t significar s reversed		esult occur result occu ion is exec	red irred uted by ade	ding the two's complement of th either the high or low order bit o		

FIGURE 2-3: STATUS REGISTER (ADDRESS 03h, 83h)


PIC16C72 Series

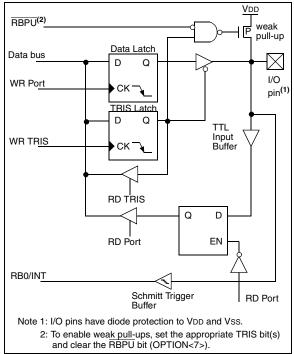
2.2.2.6 PCON REGISTER

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external $\overline{\text{MCLR}}$ Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset condition from a Power-on Reset condition.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

FIGURE 2-8: PCON REGISTER (ADDRESS 8Eh)

3.2 PORTB and the TRISB Register

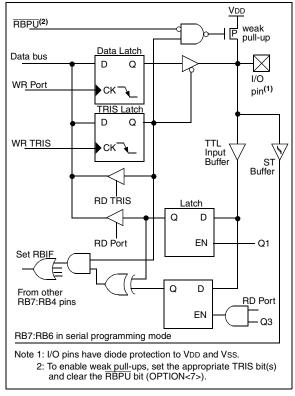

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (=1) will make the corresponding PORTB pin an input, i.e., put the corresponding output driver in a hi-impedance mode. Clearing a TRISB bit (=0) will make the corresponding PORTB pin an output, i.e., put the contents of the output latch on the selected pin.

EXAMPLE 3-1: INITIALIZING PORTB

BCF	STATUS,	RP0	;	
CLRF	PORTB		;	Initialize PORTB by
			;	clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISB		;	Set RB<3:0> as inputs
			;	RB<5:4> as outputs
			;	RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overline{\text{RBPU}}$ (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).


This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

FIGURE 3-4: BLOCK DIAGRAM OF RB7:RB4 PINS

5.0 TIMER1 MODULE

The Timer1 module timer/counter has the following features:

- 16-bit timer/counter (Two 8-bit registers; TMR1H and TMR1L)
- Readable and writable (Both registers)
- Internal or external clock select
- Interrupt on overflow from FFFFh to 0000h
- Reset from CCP module trigger

Timer1 has a control register, shown in Figure 5-1. Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Figure 5-2 is a simplified block diagram of the Timer1 module.

Additional information on timer modules is available in the $PIC^{\textcircled{R}}$ Mid-Range MCU Reference Manual, DS33023.

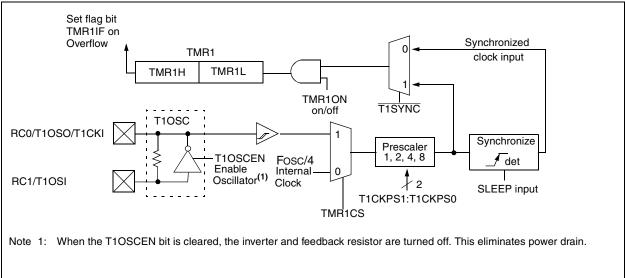
5.1 <u>Timer1 Operation</u>

Timer1 can operate in one of these modes:

- As a timer
- As a synchronous counter
- As an asynchronous counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on every rising edge of the external clock input.

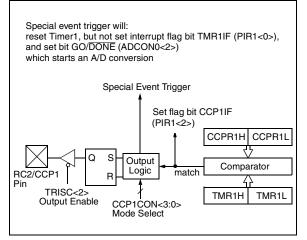

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored.

Timer1 also has an internal "reset input". This reset can be generated by the CCP module (Section 7.0).

FIGURE 5-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	R = Readable bit		
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset		
bit 7-6:	Unimple	mented: F	Read as '0'							
bit 5-4:	11 = 1:8 10 = 1:4 01 = 1:2	1:T1CKPS Prescale v Prescale v Prescale v Prescale v	alue alue alue	Input Cloc	k Prescale	e Select bit	S			
bit 3:	T1OSCEN : Timer1 Oscillator Enable Control bit 1 = Oscillator is enabled 0 = Oscillator is shut off Note: The oscillator inverter and feedback resistor are turned off to eliminate power drain									
bit 2:	T1SYNC:	Timer1 E	xternal Clo	ock Input S	Synchroniza	ation Contr	ol bit			
	T1SYNC: Timer1 External Clock Input Synchronization Control bit <u>TMR1CS = 1</u> 1 = Do not synchronize external clock input 0 = Synchronize external clock input									
	<u>TMR1CS</u> This bit is		Timer1 use	es the inter	rnal clock v	vhen TMR	1CS = 0.			
bit 1:	TMR1CS : Timer1 Clock Source Select bit 1 = External clock from pin RC0/T1OSO/T1CKI (on the rising edge) 0 = Internal clock (Fosc/4)									
bit 0:		l: Timer1 C les Timer1 s Timer1	Dn bit							

FIGURE 5-2: TIMER1 BLOCK DIAGRAM


7.2 <u>Compare Mode</u>

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- driven High
- driven Low
- remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 7-3: COMPARE MODE OPERATION BLOCK DIAGRAM

7.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to the
	default low level. This is not the data latch.

7.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

7.2.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

7.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special trigger output of CCP1 resets the TMR1 register pair, and starts an A/D conversion (if the A/D module is enabled).

Note: The special event trigger from the CCP1 module will not set interrupt flag bit TMR1IF (PIR1<0>).

TABLE 7-2 REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	PC	e on:)R,)R	all o	e on other sets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
87h	TRISC	PORTC Da	PORTC Data Direction Register								1111	1111	1111
0Eh	TMR1L	Holding reg	gister fo	or the Least	Significant	Byte of the	16-bit TMF	R1 register		xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding reg	gister fo	or the Most	Significant	Byte of the 1	16-bit TMR	1register		xxxx	xxxx	uuuu	uuuu
10h	T1CON	—		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00	0000	uu	uuuu
15h	CCPR1L	Capture/Co	Capture/Compare/PWM register1 (LSB)							xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/Compare/PWM register1 (MSB)							xxxx	xxxx	uuuu	uuuu	
17h	CCP1CON	—		CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1. Note 1: These bits/registers are unimplemented, read as '0'. For an example PWM period and duty cycle calculation, see the PIC[®] Mid-Range MCU Reference Manual (DS33023).

7.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.

- Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 7-3 EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 7-4REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value PC BC	PR,	all o	ie on other sets
0Bh,8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
87h	TRISC	PORTC D	PORTC Data Direction Register									1111	1111
11h	TMR2	Timer2 mo	dule's regist	ter						0000	0000	0000	0000
92h	PR2	Timer2 mo	dule's perio	d register						1111	1111	1111	1111
12h	T2CON	—	TOUTPS 3	TOUTPS 2	TOUTPS 1	TOUTPS 0	TMR2O N	T2CKPS 1	T2CKPS 0	-000	0000	-000	0000
15h	CCPR1L	Capture/Co	Capture/Compare/PWM register1 (LSB)								xxxx	uuuu	uuuu
16h	CCPR1H	Capture/Compare/PWM register1 (MSB)								xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.

Note 1: These bits/registers are unimplemented, read as '0'.

٦

8.3 SPI Mode for PIC16CR72

Γ

This section contains register definitions and operational characteristics of the SPI module on the PIC16CR72 device only. Additional information on SPI operation may be found in the $PIC^{\ensuremath{\mathbb{R}}}$ Mid-Range MCU Reference Manual, DS33023.

FIGURE 8-4: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h) (PIC16CR72)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0					
SMP	CKE	D/Ā	Р	S	R/W	UA	BF	R = Readable bit				
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset				
bit 7:	<u>SPI Mas</u> 1 = Inpu 0 = Inpu <u>SPI Slav</u>	<u>ster Ope</u> it data sa it data sa ve Mode	ampled at ampled at	end of data middle of d	output time ata output tir ed in slave n							
bit 6:	$\frac{CKP = 0}{1 = Data}$ $0 = Data$ $\frac{CKP = 1}{1 = Data}$	SMP must be cleared when SPI is used in slave mode CKE: SPI Clock Edge Select CKP = 0 1 = Data transmitted on rising edge of SCK 0 = Data transmitted on falling edge of SCK CKP = 1 1 = Data transmitted on falling edge of SCK 0 = Data transmitted on rising edge of SCK										
bit 5:	1 = India	cates tha	at the last b) ed or transmi ed or transmi							
bit 4:	detected 1 = India	d last, St cates tha	SPEN is cl	eared) t has been	cleared whe			disabled, or when the Start bit is				
bit 3:	detected 1 = India	d last, SS cates tha	SPEN is cle at a start bi	eared) It has been	cleared whe			disabled, or when the Stop bit is ET)				
bit 2:	 0 = Start bit was not detected last R/W: Read/Write bit information (I²C mode only) This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next start bit, stop bit, or ACK bit. 1 = Read 0 = Write 											
bit 1:	1 = India	cates tha	at the user	it I ² C mode needs to u to be upda	pdate the ad	dress in the	e SSPADD r	register				
bit 0:	BF: Buf	fer Full S	Status bit									
	<u>Receive</u> (SPI and I ² C modes) 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty											
	1 = Tran	ismit in p		SPBUF is t PBUF is en								

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

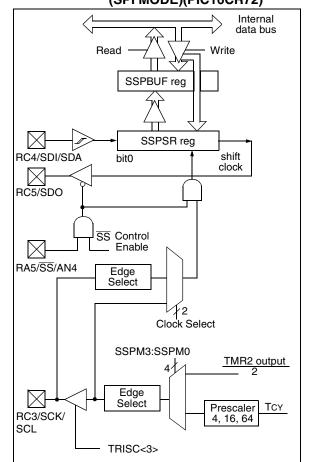
- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL

Additionally a fourth pin may be used when in a slave mode of operation:

Slave Select (SS) RA5/SS/AN4

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master Operation (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Clock Edge (Output data on rising/falling edge of SCK)
- Clock Rate (master operation only)
- Slave Select Mode (Slave mode only)


To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON register, and then set bit SSPEN. This configures the SDI, SDO, SCK, and SS pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (master operation) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set

Note:	When the SPI is in Slave Mode with \overline{SS} pin
	control enabled, (SSPCON<3:0> = 0100)
	the SPI module will reset if the \overline{SS} pin is set
	to VDD.

Note: If the SPI is used in Slave Mode with CKE = '1', then the \overline{SS} pin control must be enabled.

FIGURE 8-6: SSP BLOCK DIAGRAM (SPI MODE)(PIC16CR72)

TABLE 8-2	REGISTERS ASSOCIATED WITH SPI OPERATION (PIC16CR72)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
87h	TRISC	PORTC Dat	a Direction	n Register						1111 1111	1111 1111
13h	SSPBUF	Synchronou	s Serial P	ort Receiv	e Buffer/	Transmit F	Register			xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
85h	TRISA	—	_	PORTA [Data Dire	11 1111	11 1111				
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode. Note 1: Always maintain these bits clear.

FIGURE 10-10: SLOW RISE TIME (MCLR TIED TO VDD)

	5V
VDD	0V1V
MCLR	
INTERNAL POR	TPWRT
PWRT TIME-OUT	
OST TIME-OUT	
INTERNAL RESET	

13.1 DC Characteristics: PIC16C72/CR72-04 (Commercial, Industrial, Extended) PIC16C72/CR72-10 (Commercial, Industrial, Extended) PIC16C72/CR72-20 (Commercial, Industrial, Extended)

	Standard Operating Conditions (unless otherwise stated)										
DC CHARACTERISTICS		1 0 1			$\leq TA \leq H$ $\leq TA \leq H$	+125°C for +85°C for ⊦85°C for ⊦70°C for	or extend industri				
Param	Characteristic	Sym	F	PIC16C7	2	Р	IC16CR7	72	Units	Conditions	
No.	onaraoteristio	° y m	Min	Тур†	Max	Min	Typ†	Мах	Units	Conditions	
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	4.0 4.5	-	5.5 5.5	V V	XT, RC and LP osc HS osc	
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	-	1.5	-	V		
D003	VDD start voltage to ensure internal Power- on Reset Signal	VPOR	-	Vss	-	-	Vss	-	V	See section on Power- on Reset for details	
D004*	VDD rise rate to ensure internal Power-on Reset Signal	SVDD	0.05	-	-	0.05	-	-	V/ms	See section on Power- on Reset for details	
D005	Brown-out Reset Volt- age	Bvdd	3.7	4.0	4.3	3.7	4.0	4.3	V	BODEN bit in configura- tion word enabled	
			3.7	4.0	4.4	3.7	4.0	4.4	V	Extended Only	
D010	Supply Current (Note 2,5)	IDD	-	2.7	5.0	-	2.7	5.0	mA	XT, RC osc Fosc = 4 MHz, VDD = 5.5V (Note 4)	
D013			-	10	20	-	10	20	mA	HS osc Fosc = 20 MHz, VDD = 5.5V	
D015	Brown-out Reset Current (Note 6)	∆lbor	-	350	425	-	350	425	μA	BOR enabled, VDD = 5.0V	
D020	Power-down Current (Note 3,5)	IPD	-	10.5	42	-	10.5	42	μA	VDD = 4.0V, WDT enabled, -40°C to +85°C	
D021			-	1.5	16	-	1.5	16	μA	$VDD = 4.0V$, WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$	
D021A			-	1.5	19	-	1.5	19	μA	VDD = 4.0V, WDT dis- abled, -40°C to +85°C	
D021B			-	2.5	19	-	2.5	19	μA	VDD = 4.0V, WDT dis- abled, -40°C to +125°C	
D023	Brown-out Reset Current (Note 6)	∆lbor	-	350	425	-	350	425	μA	BOR enabled VDD = 5.0V	

These parameters are characterized but not tested.

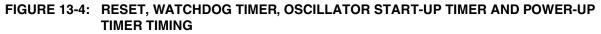
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

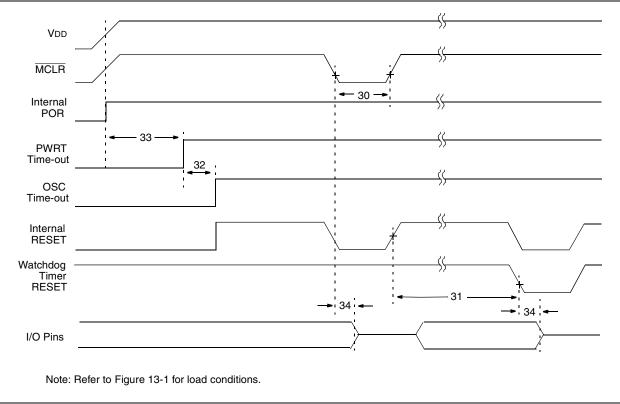
Note 1: This is the limit to which VDD can be lowered without losing RAM data.

Note 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

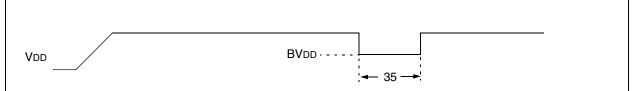
The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD


MCLR = VDD; WDT enabled/disabled as specified.


Note 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

Note 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.


Note 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

Note 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

FIGURE 13-5: BROWN-OUT RESET TIMING

TABLE 13-5RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS

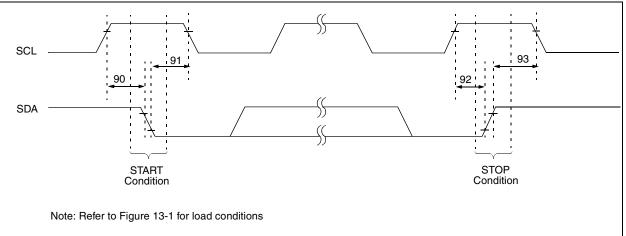
Parameter No.	Sym	Characteristic		Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	—	—	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	_	—	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tioz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	—	_	2.1	μs	
35	TBOR	Brown-out Reset pulse width	100	_		μS	$VDD \le BVDD$ (D005)

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	Тсү	-	—	ns	
71	TscH	SCK input high time (slave mode)	Tcy + 20	_	—	ns	
72	TscL	SCK input low time (slave mode)	TCY + 20	_	_	ns	
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	-	—	ns	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	-	-	ns	
75	TdoR	SDO data output rise time	_	10	25	ns	
76	TdoF	SDO data output fall time	—	10	25	ns	
77	TssH2doZ	SS [↑] to SDO output hi-impedance	10	-	50	ns	
78	TscR	SCK output rise time (master mode)	_	10	25	ns	
79	TscF	SCK output fall time (master mode)	—	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge	—	_	50	ns	

 TABLE 13-8
 SPI SLAVE MODE REQUIREMENTS (CKE=0) - PIC16C72

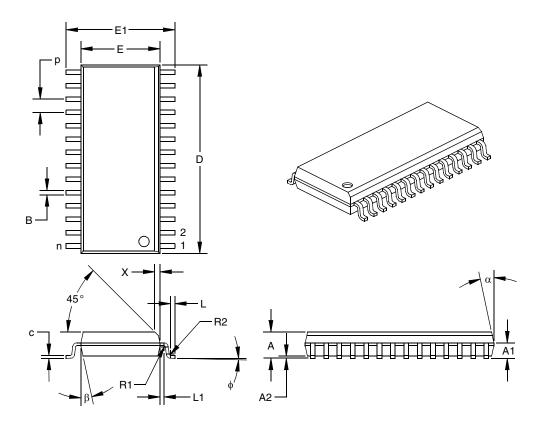

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Parameter No.	lo.		Min	Тур†	Max	Units	Conditions
70*			Тсү	—	—	ns	
71*	TscH	SCK input high time (slave mode)	TCY + 20	_	_	ns	
72*	TscL	SCK input low time (slave mode)	TCY + 20	_	_	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	100	_	—	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	100	—	—	ns	
75*	TdoR	SDO data output rise time	—	10	25	ns	
76*	TdoF	SDO data output fall time	—	10	25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-impedance	10	_	50	ns	
78*	TscR	SCK output rise time (master mode)	—	10	25	ns	
79*	TscF	SCK output fall time (master mode)	_	10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	—	—	50	ns	
81*	TdoV2scH, TdoV2scL	SDO data output setup to SCK edge	Тсү	—	—	ns	
82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge	—	_	50	ns	
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5Tcy + 40	_	—	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 13-12: I²C BUS START/STOP BITS TIMING



Parameter No.	Sym	Characteristic			Тур	Max	Units	Conditions
90	TSU:STA	START condition	100 kHz mode	4700		—	ns	Only relevant for repeated START
		Setup time	400 kHz mode	600	_	_		condition
91	THD:STA	START condition	100 kHz mode	4000	_	_	ns	After this period the first clock
		Hold time	400 kHz mode	600	—	—		pulse is generated
92	TSU:STO	STOP condition	100 kHz mode	4700	_	_	ns	
		Setup time	400 kHz mode	600	_	_		
93	THD:STO	STOP condition	100 kHz mode	4000	—	—	ns	
		Hold time	400 kHz mode	600	—	—		

NOTES:

16.4 <u>28-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body) (SO)</u>

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units			INCHES*		М	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX		
Pitch	р		0.050			1.27			
Number of Pins	n		28			28			
Overall Pack. Height	А	0.093	0.099	0.104	2.36	2.50	2.64		
Shoulder Height	A1	0.048	0.058	0.068	1.22	1.47	1.73		
Standoff	A2	0.004	0.008	0.011	0.10	0.19	0.28		
Molded Package Length	D [‡]	0.700	0.706	0.712	17.78	17.93	18.08		
Molded Package Width	E‡	0.292	0.296	0.299	7.42	7.51	7.59		
Outside Dimension	E1	0.394	0.407	0.419	10.01	10.33	10.64		
Chamfer Distance	х	0.010	0.020	0.029	0.25	0.50	0.74		
Shoulder Radius	R1	0.005	0.005	0.010	0.13	0.13	0.25		
Gull Wing Radius	R2	0.005	0.005	0.010	0.13	0.13	0.25		
Foot Length	L	0.011	0.016	0.021	0.28	0.41	0.53		
Foot Angle	φ	0	4	8	0	4	8		
Radius Centerline	L1	0.010	0.015	0.020	0.25	0.38	0.51		
Lead Thickness	с	0.009	0.011	0.012	0.23	0.27	0.30		
Lower Lead Width	Bţ	0.014	0.017	0.019	0.36	0.42	0.48		
Mold Draft Angle Top	α	0	12	15	0	12	15		
Mold Draft Angle Bottom	β	0	12	15	0	12	15		

^{*} Controlling Parameter.

[†] Dimension "B" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B."

[‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support