

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5КВ (2К х 14)
Program Memory Type	OTP
EEPROM Size	- ·
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc72-04-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	10	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	1	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
		1/0		PORIA is a bi-directional I/O port.
RA0/AN0	2	1/0		RAU can also be analog input0.
RA1/AN1	3	1/0	11L 	RA1 can also be analog input1.
RA2/AN2	4	I/O	TTL	RA2 can also be analog input2.
RA3/AN3/VREF	5	I/O	TTL	RA3 can also be analog input3 or analog reference voltage
RA4/T0CKI	6	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.
RA5/SS/AN4	7	I/O	TTL	RA5 can also be analog input4 or the slave select for the synchronous serial port.
				PORTB is a bi-directional I/O port. PORTB can be software
				programmed for internal weak pull-up on all inputs.
RB0/INT	21	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	22	I/O	TTL	
RB2	23	I/O	TTL	
RB3	24	I/O	TTL	
RB4	25	I/O	TTL	Interrupt on change pin.
RB5	26	I/O	TTL	Interrupt on change pin.
RB6	27	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.
RB7	28	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.
				PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	11	I/O	ST	RC0 can also be the Timer1 oscillator output or Timer1 clock input.
RC1/T1OSI	12	I/O	ST	RC1 can also be the Timer1 oscillator input.
RC2/CCP1	13	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	14	I/O	ST	RC3 can also be the synchronous serial clock input/output for both SPI and I^2C modes.
RC4/SDI/SDA	15	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2C mode).
RC5/SDO	16	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6	17	1/0	ST	
RC7	18	I/O	ST	
Vss	8, 19	P		Ground reference for logic and I/O pins.
Vdd	20	Р	—	Positive supply for logic and I/O pins.
Legend: I = input	O = output	1	I/O = input/o	putput P = power
	— = Not use	ed	TTL = TTL i	input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

2.0 MEMORY ORGANIZATION

There are two memory blocks in PIC16C72 Series devices. These are the program memory and the data memory. Each block has its own bus, so that access to both blocks can occur during the same oscillator cycle.

The data memory can further be broken down into the general purpose RAM and the Special Function Registers (SFRs). The operation of the SFRs that control the "core" are described here. The SFRs used to control the peripheral modules are described in the section discussing each individual peripheral module.

Additional information on device memory may be found in the PIC[®] Mid-Range Reference Manual, DS33023.

2.1 Program Memory Organization

PIC16C72 Series devices have a 13-bit program counter capable of addressing a 2K x 14 program memory space. The address range for this program memory is 0000h - 07FFh. Accessing a location above the physically implemented address will cause a wraparound.

The reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. sets (core and peripheral). Those registers associated with the "core" functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature.

The special function registers can be classified into two **TABLE 2-1 SPECIAL FUNCTION REGISTER SUMMARY**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (3)
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (no	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	ule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ad	dress pointe	r					xxxx xxxx	uuuu uuuu
05h	PORTA	_	-		0x 0000	0u 0000					
06h	PORTB	PORTB Dat	a Latch whe		xxxx xxxx	uuuu uuuu					
07h	PORTC	PORTC Dat	RTC Data Latch when written: PORTC pins when read								uuuu uuuu
08h	_	Unimplemen	nted							_	—
09h	_	Unimplemen	nted		_	—					
0Ah ^(1,2)	PCLATH	_	— — Write Buffer for the upper 5 bits of the Program Counter								0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF		—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
0Dh	_	Unimplemen	nted							_	—
0Eh	TMR1L	Holding regi	ster for the L	east Signific	ant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding regi	ster for the N	Aost Significa	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	_	-	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	ule's registe	r						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	s Serial Port	Receive Bu	ffer/Transmit	Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Cor	mpare/PWM	Register (LS	SB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Cor	mpare/PWM	Register (M	SB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	_	-	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h-1Dh	_	Unimpleme	nted							_	_
1Eh	ADRES	A/D Result I	Register							xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.

Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C72/CR72. Always maintain these bits clear.

5: SSPSTAT<7:6> are not implemented on the PIC16C72, read as '0'.

2.2.2.1 STATUS REGISTER

The STATUS register, shown in Figure 2-3, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the \overline{TO} and \overline{PD} bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- Note 1: These devices do not use bits IRP and RP1 (STATUS<7:6>). Maintain these bits clear to ensure upward compatibility with future products.
- Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

R/W-0	R/W-0	R/W-0	<u>R-1</u>	<u>R-1</u>	R/W-x	R/W-x	R/W-x	_		
IRP bit7	RP1	RP0	ТО	PD	Z	DC	C bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset		
bit 7:	IRP : Regis 1 = Bank 2 0 = Bank 0	ster Bank 3 2, 3 (100h 0, 1 (00h -	Select bit - 1FFh) FFh)	(used for ir	ndirect addr	essing)				
bit 6-5:	RP1:RP0: 11 = Bank 10 = Bank 01 = Bank 00 = Bank Each bank this bit cle	Register I 3 (180h - 4 2 (100h - 5 1 (80h - F 5 0 (00h - 7 5 is 128 by ar.	Bank Sele 1FFh) 17Fh) FFh) 7Fh) rtes. For d	ct bits (use evices with	ed for direct	addressin 0 and Ban	g) k1, the IRP	bit is reserved. Always maintain		
bit 4:	TO: Time-out bit 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred									
bit 3:	PD : Powe 1 = After p 0 = By exe	r-down bit oower-up c ecution of t	or by the C	LRWDT ins	truction n					
bit 2:	Z : Zero bit 1 = The re 0 = The re	t esult of an esult of an	arithmetic arithmetic	or logic op or logic op	peration is z	ero iot zero				
bit 1:	DC : Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow the polarity is reversed) 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result									
bit 0:	 C Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the most significant bit of the result occurred 0 = No carry-out from the most significant bit of the result occurred Note: For borrow the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register. 									

FIGURE 2-3: STATUS REGISTER (ADDRESS 03h, 83h)

2.3 PCL and PCLATH

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 13 bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<12:8> bits and is not directly readable or writable. All updates to the PCH register go through the PCLATH register.

Figure 2-9 shows the four situations for the loading of the PC. Example 1 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). Example 2 shows how the PC is loaded during a GOTO instruction (PCLATH<4:3> \rightarrow PCH). Example 3 shows how the PC is loaded during a CALL instruction (PCLATH<4:3> \rightarrow PCH), with the PC loaded (PUSHed) onto the Top of Stack. Finally, example 4 shows how the PC is loaded during one of the return instructions where the PC is loaded (POPed) from the Top of Stack.

FIGURE 6-2: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	R = Readable bit
bit7				I			bitO	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset
bit 7:	Unimplem	ented: Rea	ad as '0'					
bit 6-3:	TOUTPS3: 0000 = 1:1 0001 = 1:2 • • 1111 = 1:1	TOUTPS0: Postscale Postscale	Timer2 Ou	itput Postsca	ale Select bi	ts		
bit 2:	TMR2ON : 1 1 = Timer2 0 = Timer2	Timer2 On is on is off	bit					
bit 1-0:	T2CKPS1: 00 = Presc 01 = Presc 1x = Presc	T2CKPS0: caler is 1 caler is 4 caler is 16	Timer2 Clo	ock Prescale	Select bits			

TABLE 6-1 **REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2	Timer2 Period Register									1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer2 module. 2: These bits are unimplemented, read as '0'.

7.2 <u>Compare Mode</u>

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- driven High
- driven Low
- remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 7-3: COMPARE MODE OPERATION BLOCK DIAGRAM

7.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to the
	default low level. This is not the data latch.

7.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

7.2.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

7.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special trigger output of CCP1 resets the TMR1 register pair, and starts an A/D conversion (if the A/D module is enabled).

Note: The special event trigger from the CCP1 module will not set interrupt flag bit TMR1IF (PIR1<0>).

TABLE 7-2 REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value PC BC	e on:)R,)R	Valu all o res	e on ther ets
0Bh,8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
87h	TRISC	PORTC Da	ORTC Data Direction Register									1111	1111
0Eh	TMR1L	Holding reg	gister fo	or the Least	Significant	Byte of the	16-bit TMF	R1 register		xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding reg	gister fo	or the Most	Significant	Byte of the 1	6-bit TMR	1register		xxxx	xxxx	uuuu	uuuu
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00	0000	uu	uuuu
15h	CCPR1L	Capture/Co	Capture/Compare/PWM register1 (LSB)								xxxx	uuuu	uuuu
16h	CCPR1H	Capture/Co	Capture/Compare/PWM register1 (MSB)									uuuu	uuuu
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1. Note 1: These bits/registers are unimplemented, read as '0'.

NOTES:

PIC16C72 Series

8.2 SPI Mode for PIC16C72

Г

This section contains register definitions and operational characteristics of the SPI module on the PIC16C72 device only. Additional information on SPI operation may be found in the PIC[®] Mid-Range MCU Reference Manual, DS33023.

FIGURE 8-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h) (PIC16C72)

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0				
—	_	D/Ā	Р	S	R/W	UA	BF	R = Readable bit			
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset			
bit 7-6:	Unimpl	emented	Read as	'0'							
bit 5:	 D/Ā: Data/Address bit (I²C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address 										
bit 4:	P : Stop bit (I^2C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared) 1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET) 0 = Stop bit was not detected last										
bit 3:	S : Start bit (I^2C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared) 1 = Indicates that a start bit has been detected last (this bit is '0' on RESET) 0 = Start bit was not detected last										
bit 2:	R/W : Re This bit match to 1 = Rea 0 = Writ	ead/Write holds the o the next id	bit informa R/W bit in start bit, s	ation (I ² C r nformation stop bit, or	node only) following the ACK bit.	ast addre	ess match. T	his bit is valid from the address			
bit 1:	UA : Up 1 = Indi 0 = Add	date Addr cates that lress does	ess (10-bi the user r not need	t I ² C mode needs to up to be upda	only) odate the add ated	dress in the	SSPADD re	egister			
bit 0:	BF: Buf	fer Full St	atus bit								
	<u>Receive</u> (SPI and I ² C modes) 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty										
	<u>Transmi</u> 1 = Trar 0 = Trar	it (I ² C moonsmit in pr rismit in pr	de only) ogress, St plete, SSF	SPBUF is f 'BUF is en	ull apty						

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL

Additionally a fourth pin may be used when in a slave mode of operation:

Slave Select (SS) RA5/SS/AN4

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>). These control bits allow the following to be specified:

- Master Operation (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Output/Input data on the Rising/ Falling edge of SCK)
- Clock Rate (master operation only)
- Slave Select Mode (Slave mode only)

To enable the serial port, SSP enable bit SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear enable bit SSPEN, re-initialize SSPCON register, and then set enable bit SSPEN. This configures the SDI, SDO, SCK, and \overline{SS} pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRIS register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (master operation) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set (if implemented)

TABLE 8-1 REGISTERS ASSOCIATED WITH SPI OPERATION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
87h	TRISC	PORTC Da	ta Directio	on Registe	er					1111 1111	1111 1111
13h	SSPBUF	Synchrono	us Serial I	Port Rece	ive Buffei	/Transmit	Register			xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
85h	TRISA	—	—	PORTA Data Direction Register						11 1111	11 1111
94h	SSPSTAT	_	_	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode.

FIGURE 8-3: SSP BLOCK DIAGRAM (SPI MODE)

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL

Additionally a fourth pin may be used when in a slave mode of operation:

Slave Select (SS) RA5/SS/AN4

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master Operation (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Clock Edge (Output data on rising/falling edge of SCK)
- Clock Rate (master operation only)
- Slave Select Mode (Slave mode only)

To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON register, and then set bit SSPEN. This configures the SDI, SDO, SCK, and SS pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (master operation) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set

Note:	When the SPI is in Slave Mode with \overline{SS} pin
	control enabled, (SSPCON<3:0> = 0100)
	the SPI module will reset if the \overline{SS} pin is set
	to VDD.

Note: If the SPI is used in Slave Mode with CKE = '1', then the \overline{SS} pin control must be enabled.

FIGURE 8-6: SSP BLOCK DIAGRAM (SPI MODE)(PIC16CR72)

TABLE 8-2	REGISTERS ASSOCIATED WITH SPI OPERATION (PIC	(16CR72)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
87h	TRISC	PORTC Data	ORTC Data Direction Register							1111 1111	1111 1111
13h	SSPBUF	Synchronou	Synchronous Serial Port Receive Buffer/Transmit Register							xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
85h	TRISA	_	—	PORTA Data Direction Register					11 1111	11 1111	
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode.

Note 1: Always maintain these bits clear.

9.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

Table 9-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

9.3 Configuring Analog Port Pins

The ADCON1, TRISA, and TRISE registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
- Note 2: Analog levels on any pin that is defined as a digital input (including the AN4:AN0 pins), may cause the input buffer to consume current that is out of the devices specification.

TABLE 9-1 TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock S	Source (TAD)	Device Frequency					
Operation	ADCS1:ADCS0	20 MHz	5 MHz	1.25 MHz	333.33 kHz		
2Tosc	0.0	100 ns ⁽²⁾	400 ns ⁽²⁾	1.6 μs	6 μs		
8Tosc	01	400 ns ⁽²⁾	1.6 μs	6.4 μs	24 μs ⁽³⁾		
32Tosc	10	1.6 μs	6.4 μs	25.6 μs ⁽³⁾	96 μs ⁽³⁾		
RC ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾		

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 $\mu s.$

- 2: These values violate the minimum required TAD time.
- 3: For faster conversion times, the selection of another clock source is recommended.
- 4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep operation only.
- 5: For extended voltage devices (LC), please refer to Electrical Specifications section.

9.4 <u>A/D Conversions</u>

Note:	The GO/DONE bit should NOT be set in
	the same instruction that turns on the A/D.

9.5 <u>Use of the CCP Trigger</u>

An A/D conversion can be started by the "special event trigger" of the CCP1 module. This requires that the CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be programmed as 1011 and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the

GO/DONE bit will be set, starting the A/D conversion, and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving the ADRES to the desired location). The appropriate analog input channel must be selected and the minimum acquisition done before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 counter.

TABLE 9-2REGISTERS/BITS ASSOCIATED WITH A/D

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	—		SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	—	ADIE	—		SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
1Eh	ADRES	A/D Res	PResult Register							xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	—	—	—	_	—	PCFG2	PCFG1	PCFG0	000	000
05h	PORTA	—	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	_	_	PORTA	PORTA Data Direction Register					11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

10.10 Interrupts

The PIC16C72/CR72 has 8 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts. For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs. The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit

10.10.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 10.13 for details on SLEEP mode.

10.10.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 4.0)

10.10.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 3.2)

FIGURE 10-11: INTERRUPT LOGIC

13.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS		3. TCC:ST	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	т	Time
Lowercase letters (p	pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	ТОСКІ
ю	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercase letters a	nd their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
1	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C specific	ations only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 13-1: LOAD CONDITIONS

FIGURE 13-14: A/D CONVERSION TIMING

TABLE 13-13 A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions			
130	TAD	A/D clock period	PIC16C72/LCR72	1.6	_		μS	Tosc based, VREF $\geq 2.5V$			
			PIC16LC72/LCR72	2.0	_		μS	Tosc based, VREF full range			
			PIC16C72/LCR72	2.0	4.0	6.0	μs	A/D RC Mode			
			PIC16LC72/LCR72	2.5	6.0	9.0	μS	A/D RC Mode			
131	TCNV	Conversion time (not including S/H time) (Note 1)		_	9.5	_	Tad				
132	TACQ	Acquisition time		Note 2	20	—	μs				
				5*	_	_	μS	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).			
134	Tgo	Q4 to A/D clock start		_	Tosc/2 §	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.			
135	Tswc	Switching from co	onvert \rightarrow sample time	1.5 §	—	_	TAD				
*	The	aa naxamataxa axa	بالمحيد البريط المحسان مقم مترجعات								

These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

This specification ensured by design. §

ADRES register may be read on the following TCY cycle. Note 1:

Note 2: See Section 9.1 for min conditions.

FIGURE 14-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)

FIGURE 14-29: TYPICAL IDD vs. FREQUENCY (HS MODE, 25°C)

TABLE 14-3 TYPICAL EPROM ERASE TIME RECOMMENDATIONS

Process Technology	Wavelength (Angstroms)	Intensity (μW/ cm2)	Distance from UV lamp (inches)	Typical Time ⁽¹⁾ (minutes)
57K	2537	12,000	1	15 - 20
77K	2537	12,000	1	20
90K	2537	12,000	1	40
120K	2537	12,000	1	60

Note 1: If these criteria are not met, the erase times will be different.

Note: Fluorescent lights and sunlight both emit ultraviolet light at the erasure wavelength. Leaving a UV erasable device's window uncovered could cause, over time, the devices memory cells to become erased. The erasure time for a fluorescent light is about three years. While sunlight requires only about one week. To prevent the memory cells from losing data an opaque label should be placed over the erasure window.

Timing Diagrams	
A/D Conversion	95
Brown-out Reset	86
Capture/Compare/PWM	88
CLKOUT and I/O	85
External Clock Timing	84
I ² C Bus Data	93
I ² C Bus Start/Stop bits	92
I ² C Reception (7-bit Address)	49
Power-up Timer	86
Reset	86
Start-up Timer	86
Timer0	87
Timer1	87
Wake-up from Sleep via Interrupt	72
Watchdog Timer	86
TMR1CS bit	27
TMR1H Register	7
TMR1IE bit	12
TMR1IF bit	13
TMR1L Register	7
TMR1ON bit	27
TMR2 Register	7
TMR2IE bit	12
TMR2IF bit	13
TMR2ON bit	32
TO bit	9
TOUTPS0 bit	32
TOUTPS1 bit	32
TOUTPS2 bit	32
TOUTPS3 bit	32
TRISA Register	19
TRISB Register	21
TRISC Register	23
U	

UA	
Update Address bit, UA	

W

Wake-up from SLEEP	71
Watchdog Timer (WDT)	59, 61, 64, 70
WCOL	
WDT	64
Block Diagram	70
Timeout	65
Write Collision Detect bit, WCOL	41, 44
Z	

. 9