

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

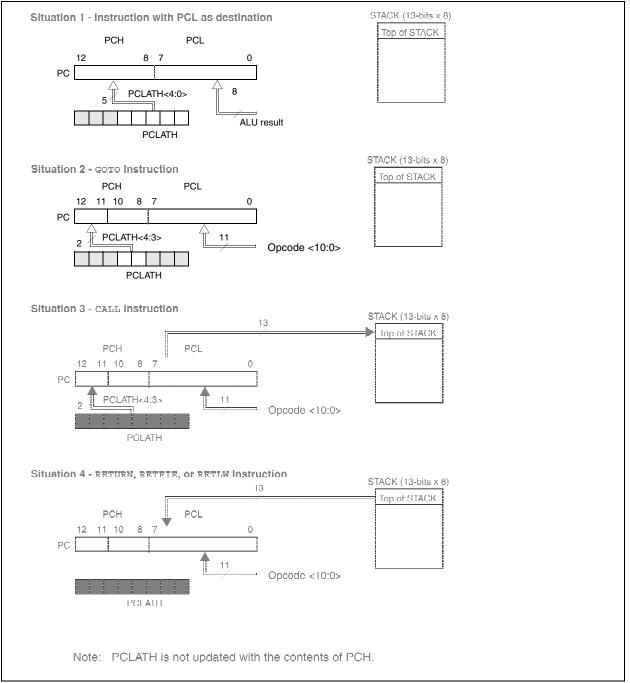
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc72-04i-sp

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3 PCL and PCLATH

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 13 bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<12:8> bits and is not directly readable or writable. All updates to the PCH register go through the PCLATH register.

Figure 2-9 shows the four situations for the loading of the PC. Example 1 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). Example 2 shows how the PC is loaded during a GOTO instruction (PCLATH<4:3> \rightarrow PCH). Example 3 shows how the PC is loaded during a CALL instruction (PCLATH<4:3> \rightarrow PCH), with the PC loaded (PUSHed) onto the Top of Stack. Finally, example 4 shows how the PC is loaded during one of the return instructions where the PC is loaded (POPed) from the Top of Stack.

4.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- Internal or external clock select
- Edge select for external clock
- 8-bit software programmable prescaler
- Interrupt on overflow from FFh to 00h

Figure 4-1 is a simplified block diagram of the Timer0 module.

Additional information on timer modules is available in the PIC[®] Mid-Range MCU Reference Manual, DS33023.

4.1 <u>Timer0 Operation</u>

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing bit TOCS (OPTION_REG<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

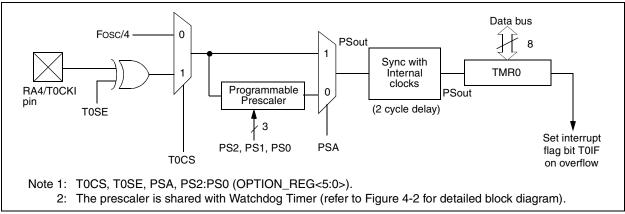
Counter mode is selected by setting bit T0CS (OPTION_REG<5>). In counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit T0SE (OPTION_REG<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in below.

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization. Additional information on external clock requirements is available in the PIC[®] Mid-Range MCU Reference Manual, DS33023.

4.2 <u>Prescaler</u>

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 4-2). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The prescaler is not readable or writable.


The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable.

Setting bit PSA will assign the prescaler to the Watchdog Timer (WDT). When the prescaler is assigned to the WDT, prescale values of 1:1, 1:2, ..., 1:128 are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

FIGURE 4-1: TIMER0 BLOCK DIAGRAM

5.2 <u>Timer1 Oscillator</u>

A crystal oscillator circuit is built in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 5-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 5-1CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Osc Type	e Freq	C1	C2		
LP	32 kHz	33 pF	33 pF		
	100 kHz	15 pF	15 pF		
	200 kHz	15 pF	15 pF		
These	values are for	design guidar	ice only.		
Crystals Tested:					
32.768 kH	z Epson C-00	Epson C-001R32.768K-A			
100 kHz	Epson C-2 1	00.00 KC-P	\pm 20 PPM		
200 kHz	STD XTL 20	0.000 kHz	\pm 20 PPM		
0	of oscillator but also increases the start-up				
2: S	time. Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropri-				

ate values of external components.

5.3 <u>Timer1 Interrupt</u>

The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).

5.4 <u>Resetting Timer1 using a CCP Trigger</u> <u>Output</u>

If the CCP module is configured in compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

Note:	The special event triggers from the CCP1						
	module	will	not	set	interrupt	flag	bit
	TMR1IF (PIR1<0>).						

Timer1 must be configured for either timer or synchronized counter mode to take advantage of this feature. If Timer1 is running in asynchronous counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L registers pair effectively becomes the period register for Timer1.

TABLE 5-2 REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
0Eh	TMR1L	L Holding register for the Least Significant Byte of the 16-bit TMR1 register							xxxx xxxx	uuuu uuuu	
0Fh	TMR1H	Holding register for the Most Significant Byte of the 16-bit TMR1 register							xxxx xxxx	uuuu uuuu	
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module. Note 1: These bits are unimplemented, read as '0'.

7.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The CCP (Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit capture register, as a 16-bit compare register or as a PWM master/slave Duty Cycle register. Table 7-1 shows the timer resources of the CCP module modes.

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

FIGURE 7-1: CCP1CON REGISTER (ADDRESS 17h)

Additional information on the CCP module is available in the $PIC^{\textcircled{R}}$ Mid-Range MCU Reference Manual, DS33023.

TABLE 7-1CCP MODE - TIMER
RESOURCE

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read
								as '0'
								- n =Value at POR reset
bit 7-6:	Unim	plemente	d: Read as	s '0'				
bit 5-4:	CCP1X:CCP1Y : PWM Least Significant bits Capture Mode: Unused Compare Mode: Unused PWM Mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L.							
bit 3-0:	0000 0100 0101 0110 0111 1000 1001 1010 1011	= Capture = Capture = Capture = Capture = Capture = Compai = Compai = Compai	e/Compare e mode, ev e mode, ev e mode, ev e mode, ev re mode, s re mode, c re mode, c re mode, d re mode, t ision (if A/D	ery falling e ery rising e ery 4th risin ery 16th ris et output o lear output enerate sof	resets CCP edge dge ing edge ing edge n match (CC on match (CC tware intern ial event (C	CP1IF bit is CCP1IF bit i upt on matcl	is set) h (CCP1IF bi	it is set, CCP1 pin is unaffected) resets TMR1 and starts an A/D

8.4.1.1 ADDRESSING

Once the SSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set (interrupt is generated if enabled) - on the falling edge of the ninth SCL pulse.

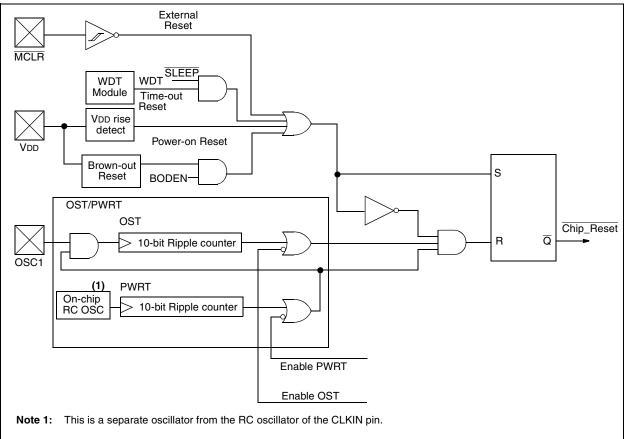
In 10-bit address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address the first byte would equal

'1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- 2. Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of Address, if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated START condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

	us Bits as Data sfer is Received			Set bit SSPIF		
BF	SSPOV	$SSPSR \to SSPBUF$	Generate ACK Pulse	(SSP Interrupt occurs if enabled)		
0	0	Yes	Yes	Yes		
1	0	No	No	Yes		
1	1	No	No	Yes		
0	1	No	No	Yes		

8.4.1.2 RECEPTION


When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then no acknowledge (\overline{ACK}) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set or bit SSPOV (SSPCON<6>) is set.

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

FIGURE 8-8: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

Receiving Address R/W SDA -	=0Receiving Data 		
SSPIF (PIR1<3>)	Cleared in software	 	Bus Master
		<u>+</u> Ⅰ	terminates
BF (SSPSTAT<0>)	 SSPBUF register is read 		
SSPOV (SSPCON<6>)			
	Bit SSPOV is set be	ecause the SSPBUF register is still fu	ill. 📥 🛛
		ACK is not se	ent.

FIGURE 10-5: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

Register	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Inter- rupt
W	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF	N/A	N/A	N/A
TMR0	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCL	0000h	0000h	PC + 1 (2)
STATUS	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	xxxx xxxx	uuuu uuuu	นนนน นนนน
PORTA	0x 0000	0u 0000	uu uuuu
PORTB	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTC	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu (1)
PIR1	-0 0000	-0 0000	-u uuuu (1)
TMR1L	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR1H	XXXX XXXX	uuuu uuuu	uuuu uuuu
T1CON	00 0000	uu uuuu	uu uuuu
TMR2	0000 0000	0000 0000	uuuu uuuu
T2CON	-000 0000	-000 0000	-uuu uuuu
SSPBUF	XXXX XXXX	uuuu uuuu	uuuu uuuu
SSPCON	0000 0000	0000 0000	uuuu uuuu
CCPR1L	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCPR1H	XXXX XXXX	uuuu uuuu	սսսս սսսս
CCP1CON	00 0000	00 0000	uu uuuu
ADRES	XXXX XXXX	uuuu uuuu	uuuu uuuu
ADCON0	0000 00-0	0000 00-0	uuuu uu-u
OPTION	1111 1111	1111 1111	uuuu uuuu
TRISA	11 1111	11 1111	uu uuuu
TRISB	1111 1111	1111 1111	uuuu uuuu
TRISC	1111 1111	1111 1111	uuuu uuuu
PIE1	-0 0000	-0 0000	-u uuuu
PCON	0u	uu	uu
PR2	1111 1111	1111 1111	1111 1111
SSPADD	0000 0000	0000 0000	นนนน นนนน
SSPSTAT	00 0000	00 0000	uu uuuu
ADCON1	000	000	uuu

TABLE 10-6INITIALIZATION CONDITIONS FOR ALL REGISTERS

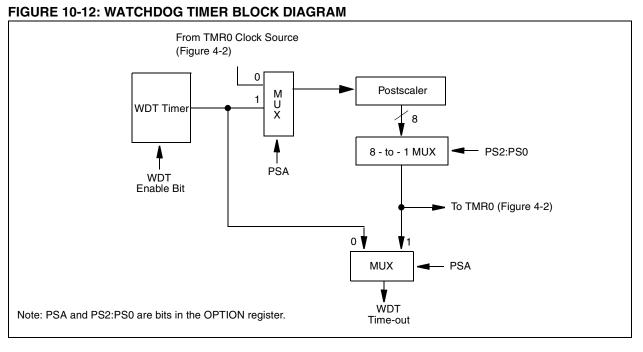
Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition **Note 1:** One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 10-5 for reset value for specific condition.

10.12 Watchdog Timer (WDT)

The Watchdog Timer is as a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction.


During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

The WDT can be permanently disabled by clearing configuration bit WDTE (Section 10.1).

WDT time-out period values may be found in the Electrical Specifications section under parameter #31. Values for the WDT prescaler (actually a postscaler, but shared with the Timer0 prescaler) may be assigned using the OPTION_REG register.

Note: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

Note: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 10-13: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h,181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Figure 10-1 for operation of these bits.

11.0 INSTRUCTION SET SUMMARY

Each PIC16CXXX family instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXXX family instruction set summary in Table 11-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 11-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 11-1OPCODE FIELD
DESCRIPTIONS

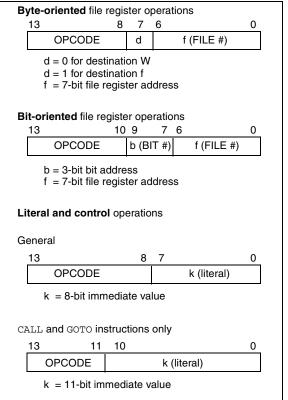
Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
PC	Program Counter
TO	Time-out bit
PD	Power-down bit

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- **Bit-oriented** operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Table 11-2 lists the instructions recognized by the MPASM assembler.

Figure 11-1 shows the general formats that the instructions can have.


Note:	То	maintain	upward	compatibility	with
	futu	re PIC160	CXXX pro	oducts, <u>do not</u>	use
	the	OPTION a	nd TRIS	instructions.	

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 11-1: GENERAL FORMAT FOR INSTRUCTIONS

A description of each instruction is available in the $PIC^{\mathbb{R}}$ Mid-Range MCU Family Reference Manual, DS33023.

TABLE 11-2 PIC16CXXX INSTRUCTION SET

Mnemo		Description	Cycles		14-Bit	Opcode)	Status	Notes
Operan	nds			MSb	MSb LS		LSb	Affected	
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIC	ONS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
		BIT-ORIENTED FILE REGIST	ER OPER	RATION	IS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CONTROL	OPERAT	IONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

13.0 ELECTRICAL CHARACTERISTICS - PIC16C72 SERIES

Absolute Maximum Ratings †

Parameter	PIC16C72	PIC16CR72
Ambient temperature under bias	-55 to +125°C	-55 to +125°C
Storage temperature	-65°C to +150°C	-65°C to +150°C
Voltage on any pin with respect to VSS (except VDD, $\overline{\text{MCLR}}$, and RA4)	-0.3V to (VDD + 0.3V)	-0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS	-0.3 to +7.5V	TBD
Voltage on MCLR with respect to Vss (Note 1)	-0.3 to +14V	TBD
Voltage on RA4 with respect to Vss	-0.3 to +14V	TBD
Total power dissipation (Note 2)	1.0W	1.0W
Maximum current out of Vss pin	300 mA	300 mA
Maximum current into VDD pin	250 mA	250 mA
Input clamp current, Iık (Vı < 0 or Vı > VDD)	± 20 mA	\pm 20 mA
Output clamp current, IOK (Vo < 0 or Vo > VDD)	± 20 mA	± 20 mA
Maximum output current sunk by any I/O pin	25 mA	25 mA
Maximum output current sourced by any I/O pin	25 mA	25 mA
Maximum current sunk by PORTA and PORTB (combined)	200 mA	200 mA
Maximum current sourced by PORTA and PORTB (combined)	200 mA	200 mA
Maximum current sunk by PORTC	200 mA	200 mA
Maximum current sourced by PORTC	200 mA	200 mA

 Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

2. Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD - VOH) x IOH} + Σ (VOI x IOL).

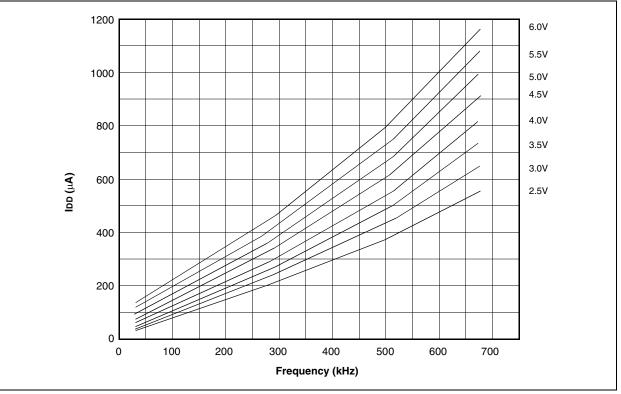
† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC CHAR	ACTERISTICS			ure -40 -40	D°C [`] ≤ TA D°C [°] ≤ TA	≤ +125° ≤ +85°0	vise stated) ² C for extended, C for industrial and
		Operatin Section	0 0				C for commercial DC spec Section 13.1 and
Param No.	Characteristic Sym Min Typt Max Units Conditions						Conditions
	Output High Voltage						
D090	I/O ports (Note 3)	Voн	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С
D090A			Vdd - 0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С
D092A			Vdd - 0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin, PIC16 C 72/ LC 72
			-	-	TBD	V	RA4 pin, PIC16 CR 72/ LCR 72
	Capacitive Loading Specs on Output Pins						
D100	OSC2 pin	COSC2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Сю	-	-	50	pF	
D102	SCL, SDA in I ² C mode	Cb	-	-	400	pF	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.


Note 2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

Note 3: Negative current is defined as current sourced by the pin.

NOTES:

PIC16C72 Series PIC16C72

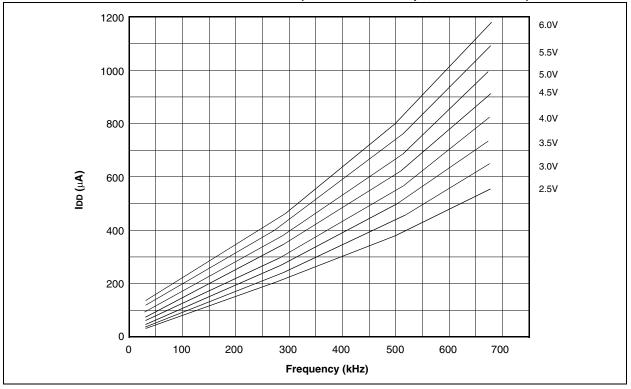
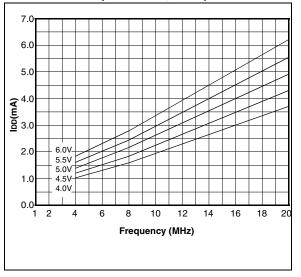
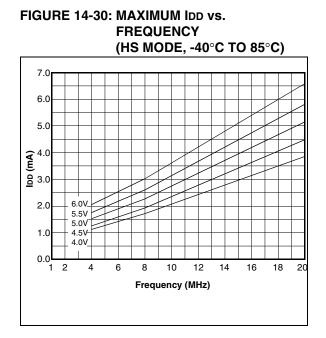
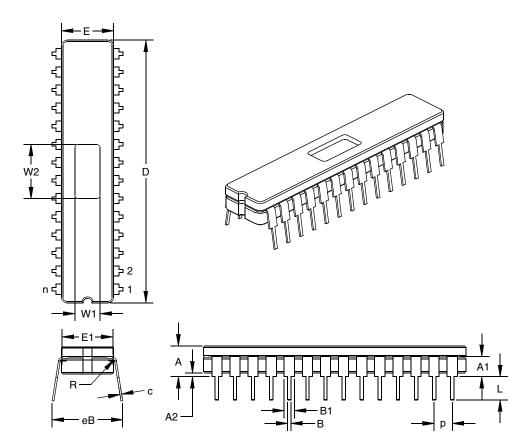




FIGURE 14-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)

FIGURE 14-29: TYPICAL IDD vs. FREQUENCY (HS MODE, 25°C)

TABLE 14-3 TYPICAL EPROM ERASE TIME RECOMMENDATIONS

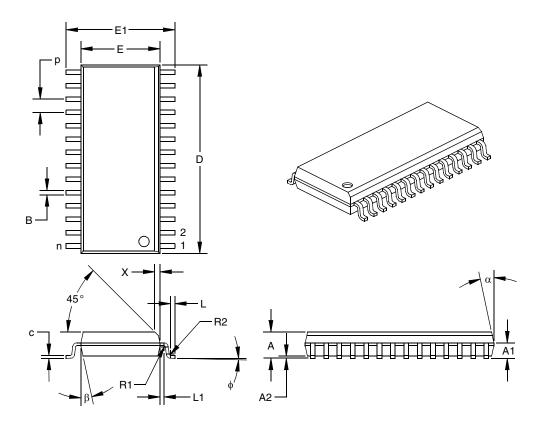

Process Technology	Wavelength (Angstroms)	Intensity (μW/ cm2)	Distance from UV lamp (inches)	Typical Time ⁽¹⁾ (minutes)
57K	2537	12,000	1	15 - 20
77K	2537	12,000	1	20
90K	2537	12,000	1	40
120K	2537	12,000	1	60

Note 1: If these criteria are not met, the erase times will be different.

Note: Fluorescent lights and sunlight both emit ultraviolet light at the erasure wavelength. Leaving a UV erasable device's window uncovered could cause, over time, the devices memory cells to become erased. The erasure time for a fluorescent light is about three years. While sunlight requires only about one week. To prevent the memory cells from losing data an opaque label should be placed over the erasure window.

16.2 <u>28-Lead Ceramic Side Brazed Dual In-Line with Window (300 mil)(JW)</u>

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Units			INCHES*		М	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX	
PCB Row Spacing			0.300			7.62		
Number of Pins	n		28			28		
Pitch	р	0.098	0.100	0.102	2.49	2.54	2.59	
Lower Lead Width	В	0.016	0.019	0.021	0.41	0.47	0.53	
Upper Lead Width	B1	0.050	0.058	0.065	1.27	1.46	1.65	
Shoulder Radius	R	0.010	0.013	0.015	0.25	0.32	0.38	
Lead Thickness	С	0.008	0.010	0.012	0.20	0.25	0.30	
Top to Seating Plane	А	0.170	0.183	0.195	4.32	4.64	4.95	
Top of Lead to Seating Plane	A1	0.107	0.125	0.143	2.72	3.18	3.63	
Base to Seating Plane	A2	0.015	0.023	0.030	0.00	0.57	0.76	
Tip to Seating Plane	L	0.135	0.140	0.145	3.43	3.56	3.68	
Package Length	D	1.430	1.458	1.485	36.32	37.02	37.72	
Package Width	Е	0.285	0.290	0.295	7.24	7.37	7.49	
Radius to Radius Width	E1	0.255	0.270	0.285	6.48	6.86	7.24	
Overall Row Spacing	eB	0.345	0.385	0.425	8.76	9.78	10.80	
Window Width	W1	0.130	0.140	0.150	0.13	0.14	0.15	
Window Length	W2	0.290	0.300	0.310	0.29	0.3	0.31	

* Controlling Parameter.

16.4 <u>28-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body) (SO)</u>

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units			INCHES*		М	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX	
Pitch	р		0.050			1.27		
Number of Pins	n		28			28		
Overall Pack. Height	А	0.093	0.099	0.104	2.36	2.50	2.64	
Shoulder Height	A1	0.048	0.058	0.068	1.22	1.47	1.73	
Standoff	A2	0.004	0.008	0.011	0.10	0.19	0.28	
Molded Package Length	D [‡]	0.700	0.706	0.712	17.78	17.93	18.08	
Molded Package Width	E‡	0.292	0.296	0.299	7.42	7.51	7.59	
Outside Dimension	E1	0.394	0.407	0.419	10.01	10.33	10.64	
Chamfer Distance	Х	0.010	0.020	0.029	0.25	0.50	0.74	
Shoulder Radius	R1	0.005	0.005	0.010	0.13	0.13	0.25	
Gull Wing Radius	R2	0.005	0.005	0.010	0.13	0.13	0.25	
Foot Length	L	0.011	0.016	0.021	0.28	0.41	0.53	
Foot Angle	φ	0	4	8	0	4	8	
Radius Centerline	L1	0.010	0.015	0.020	0.25	0.38	0.51	
Lead Thickness	С	0.009	0.011	0.012	0.23	0.27	0.30	
Lower Lead Width	B [†]	0.014	0.017	0.019	0.36	0.42	0.48	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	

^{*} Controlling Parameter.

[†] Dimension "B" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B."

[‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."

INDEX

A

A/D	
ADCON0 Register	3
ADCON1 Register54	4
ADIF bit55	5
Analog Input Model Block Diagram	6
Analog-to-Digital Converter	3
Block Diagram	5
Configuring Analog Port Pins57	7
Configuring the Interrupt55	5
Configuring the Module55	
Conversion Clock	
Conversions	8
Converter Characteristics94	4
GO/DONE bit58	5
Internal Sampling Switch (Rss) Impedance56	
Sampling Requirements	
Source Impedance	
Using the CCP Trigger58	
Absolute Maximum Ratings77	
ACK	
ADIE bit	
ADIF bit	
ADRES Register	
Application Notes	Č
AN546 (Using the Analog-to-Digital Converter)	3
AN578 (Use of the SSP Module in the I^2C	-
Multi-Master Environment)	9
	Č
B	
-	
-	7
BF	7
BF	
BF	5
BF	5 6
BF	5 6 4
BF	5 6 4 5
BF	5 6 4 5 7
BF	5 6 4 5 7 2
BF	5645723
BF	56457233
BF	564572333
BF	5645723336
BF	56457233369
BF	564572333699
BF	5645723336991
BF	56457233369911
BF	564572333699117
BF	5645723336991175
BF	56457233369911755
BF	564572333699117556
BF	5645723336991175561
BF	56457233369911755610
BF	564572333699117556104
BF	564572333699117556104

C bit		9
Capture/Com	ipare/PWM	
Capture		
Blo	ock Diagram	
CC	P1CON Register	
CC	P1IF	
CC	PR1	
CC	PR1H:CCPR1L	

PIC16C72 Series

Mode	4
Prescaler	4
CCP Timer Resources	3
Compare	
Block Diagram	5
Mode	
Software Interrupt Mode	
Special Event Trigger	
Special Trigger Output of CCP1	
Special Trigger Output of CCP2	
Section	
Special Event Trigger and A/D Conversions	
Capture/Compare/PWM (CCP)	5
PWM Block Diagram	6
PWM Mode	
PWM, Example Frequencies/Resolutions	
CCP1IE bit	
CCP1IF bit	
CCPR1H Register	
CCPR1L Register	
CCPxM0 bit	
CCPxM1 bit	
CCPxM2 bit	
CCPxM2 bit	
CCPxX bit	
CCPxY bit	
CKE	
CKP	
Clock Polarity Select bit, CKP	
Code Examples	+
	,
Changing Between Capture Prescalers	
5	
Initializing PORTB	
Initializing PORTC	
Code Protection	
Configuration Bits	9
D	

D

40, 43
40, 43
9
79
17

Е

—
Electrical Characteristics PIC16C72
External Power-on Reset Circuit 63
F
FSR Register
G
GIE bit 68
I
I/O Ports

	PORTA	19
	PORTB	
	PORTC	
	Section	
l ² C		
	Addressing	48