

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc72t-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Data Memory Organization

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 and RP0 are the bank select bits.

RP1*	RP0	(STATUS<6:5>)
		(

 $= 00 \rightarrow Bank0$

- $= 01 \rightarrow \text{Bank1}$
- = $10 \rightarrow$ Bank2 (not implemented)
- = 11 \rightarrow Bank3 (not implemented)

* Maintain this bit clear to ensure upward compatibility with future products.

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM.

All implemented banks contain special function registers. Some "high use" special function registers from one bank may be mirrored in another bank for code reduction and quicker access (ex; the STATUS register is in Bank 0 and Bank 1).

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly or indirectly through the File Select Register FSR (Section 2.5).

FIGURE 2-2: REGISTER FILE MAP

File Address	3		File Address						
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h						
01h	TMR0	OPTION	81h						
02h	PCL	PCL	82h						
03h	STATUS	STATUS	83h						
04h	FSR	FSR	84h						
05h	PORTA	TRISA	85h						
06h	PORTB	TRISB	86h						
07h	PORTC	TRISC	87h						
08h			88h						
09h			89h						
0Ah	PCLATH	PCLATH	8Ah						
0Bh	INTCON	INTCON	8Bh						
0Ch	PIR1	PIE1	8Ch						
0Dh			8Dh						
0Eh	TMR1L	PCON	8Eh						
0Fh	TMR1H		8Fh						
10h	T1CON		90h						
11h	TMR2		91h						
12h	T2CON	PR2	92h						
13h	SSPBUF	SSPADD	93h						
14h	SSPCON	SSPSTAT	94h						
15h	CCPR1L		95h						
16h	CCPR1H		96h						
17h	CCP1CON		97h						
18h			98h						
19h			99h						
1Ah			9Ah						
1Bh			9Bh						
1Ch			9Ch						
1Dh			9Dh						
1Eh	ADRES		9Eh						
1Fh	ADCON0	ADCON1	9Fh						
20h	Conorol	Conorol	A0h						
	Purpose	Purpose							
	Register	Register							
			Con						
7Fh	Donk 0	Dorde 1	🔟 FFh						
	вапк О	Bank I							
Unimplemented data memory locations, read as '0'. Note 1: Not a physical register.									

3.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PIC[®] Mid-Range MCU Reference Manual, DS33023.

3.1 PORTA and the TRISA Register

PORTA is a 6-bit wide bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (=1) will make the corresponding PORTA pin an input, i.e., put the corresponding output driver in a hi-impedance mode. Clearing a TRISA bit (=0) will make the corresponding PORTA pin an output, i.e., put the contents of the output latch on the selected pin.

Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note:	On a Power-on Reset, these pins are con-
	figured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 3-1: INITIALIZING PORTA

BCF	STATUS,	RP0	;	
CLRF	PORTA		;	Initialize PORTA by
			;	clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISA		;	Set RA<3:0> as inputs
			;	RA<5:4> as outputs
			;	TRISA<7:6> are always
			;	read as '0'.

FIGURE 3-1: BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

FIGURE 3-2: BLOCK DIAGRAM OF RA4/ T0CKI PIN

3.2 PORTB and the TRISB Register

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (=1) will make the corresponding PORTB pin an input, i.e., put the corresponding output driver in a hi-impedance mode. Clearing a TRISB bit (=0) will make the corresponding PORTB pin an output, i.e., put the contents of the output latch on the selected pin.

EXAMPLE 3-1: INITIALIZING PORTB

BCF	STATUS,	RP0	;	
CLRF	PORTB		;	Initialize PORTB by
			;	clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISB		;	Set RB<3:0> as inputs
			;	RB<5:4> as outputs
			;	RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overline{\text{RBPU}}$ (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

FIGURE 3-4: BLOCK DIAGRAM OF RB7:RB4 PINS

5.0 TIMER1 MODULE

The Timer1 module timer/counter has the following features:

- 16-bit timer/counter (Two 8-bit registers; TMR1H and TMR1L)
- Readable and writable (Both registers)
- Internal or external clock select
- Interrupt on overflow from FFFFh to 0000h
- Reset from CCP module trigger

Timer1 has a control register, shown in Figure 5-1. Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Figure 5-2 is a simplified block diagram of the Timer1 module.

Additional information on timer modules is available in the $PIC^{@}$ Mid-Range MCU Reference Manual, DS33023.

5.1 <u>Timer1 Operation</u>

Timer1 can operate in one of these modes:

- As a timer
- As a synchronous counter
- As an asynchronous counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on every rising edge of the external clock input.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored.

Timer1 also has an internal "reset input". This reset can be generated by the CCP module (Section 7.0).

FIGURE 5-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	R = Readable bit
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7-6:	Unimple	mented: F	Read as '0'					
bit 5-4:	T1CKPS 11 = 1:8 10 = 1:4 01 = 1:2 00 = 1:1	1:T1CKPS Prescale v Prescale v Prescale v Prescale v	60: Timer1 alue alue alue alue alue	Input Cloc	k Prescale	e Select bit	S	
bit 3:	T1OSCE 1 = Oscill 0 = Oscill Note: The	N: Timer1 ator is ena ator is shu e oscillator	Oscillator bled it off inverter a	Enable Co nd feedba	ontrol bit ck resistor	are turned	off to elimi	nate power drain
bit 2:	T1SYNC:	Timer1 E	xternal Clo	ock Input S	Synchroniza	ation Contr	ol bit	
	<u>TMR1CS</u> 1 = Do no 0 = Synch	<u>= 1</u> ot synchror nronize ext	nize exterr ternal cloc	nal clock in k input	put			
	<u>TMR1CS</u> This bit is	<u>= 0</u> ignored. ⁻	Timer1 use	es the inter	rnal clock v	vhen TMR	1CS = 0.	
bit 1:	TMR1CS 1 = Extern 0 = Intern	: Timer1 C nal clock fi nal clock (F	lock Soure rom pin R(⁻ OSC/4)	ce Select b C0/T1OSC	oit 9/T1CKI (or	n the rising	edge)	
bit 0:	TMR1ON 1 = Enabl 0 = Stops	l: Timer1 C les Timer1 s Timer1	Dn bit					

For an example PWM period and duty cycle calculation, see the PIC[®] Mid-Range MCU Reference Manual (DS33023).

7.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.

- Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 7-3 EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 7-4REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value o all othe resets	on er s
0Bh,8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000	x 0000 00	00u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 000	0 0000 00	000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 000	0 0000 00	000
87h	TRISC	PORTC D	ata Directio	on Register						1111 111	1 1111 11	111
11h	TMR2	Timer2 mo	dule's regis	ter						0000 000	0 0000 00	000
92h	PR2	Timer2 mo	dule's perio	d register						1111 111	1 1111 11	111
12h	T2CON	—	TOUTPS	TOUTPS	TOUTPS	TOUTPS	TMR2O	T2CKPS	T2CKPS	-000 000	0 -000 00	000
			3	2	1	0	N	1	0			
15h	CCPR1L	Capture/Co	ompare/PW		XXXX XXX	x uuuu uu	uuu					
16h	CCPR1H	Capture/Compare/PWM register1 (MSB)									x uuuu uu	uuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 000	000 00	000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.

Note 1: These bits/registers are unimplemented, read as '0'.

PIC16C72 Series

8.2 SPI Mode for PIC16C72

Γ

This section contains register definitions and operational characteristics of the SPI module on the PIC16C72 device only. Additional information on SPI operation may be found in the PIC[®] Mid-Range MCU Reference Manual, DS33023.

FIGURE 8-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h) (PIC16C72)

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0							
—	_	D/Ā	Р	S	R/W	UA	BF	R = Readable bit						
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset						
bit 7-6:	Unimpl	emented	Read as	'0'										
bit 5:	 D/Ā: Data/Address bit (I²C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address 													
bit 4:	P : Stop 1 = Indi 0 = Stop	bit (I ² C m cates that b bit was i	ode only. a stop bit not detecte	This bit is o has been o ed last	cleared wher detected last	the SSP n (this bit is '	nodule is dis '0' on RESE	abled, SSPEN is cleared) T)						
bit 3:	S : Start 1 = Indi 0 = Star	bit (I ² C m cates that rt bit was	node only. a start bit not detecte	This bit is o has been ed last	cleared wher detected last	n the SSP n t (this bit is	nodule is dis '0' on RESE	abled, SSPEN is cleared) T)						
bit 2:	R/W : Re This bit match to 1 = Rea 0 = Writ	ead/Write holds the o the next id	bit informa R/W bit in start bit, s	ation (I ² C r nformation stop bit, or	node only) following the ACK bit.	ast addre	ess match. T	his bit is valid from the address						
bit 1:	UA : Up 1 = Indi 0 = Add	date Addr cates that lress does	ess (10-bi the user r not need	t I ² C mode needs to up to be upda	only) odate the add ated	dress in the	SSPADD re	egister						
bit 0:	BF: Buf	fer Full St	atus bit											
	<u>Receive</u> 1 = Rec 0 = Rec	e (SPI and eive com eive not c	l I ² C mode plete, SSP complete, S	es) BUF is full SSPBUF is	empty									
	<u>Transmi</u> 1 = Trar 0 = Trar	it (I ² C moonsmit in pr rismit in pr	de only) ogress, St plete, SSF	SPBUF is f 'BUF is en	ull apty									

SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h) (PIC16C72) FIGURE 8-2:

R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	B/W-0	R/W-0	
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	R = Readable bit
bit7		1	L	1	I	L	bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	WCOL: W 1 = The S (must be c 0 = No col	Irite Collision SPBUF reg cleared in s Ilision	on Detect gister is w software)	bit ritten while	e it is still tr	ansmitting	the previou	us word
bit 6:	SSPOV: F	Receive Ov	erflow De	tect bit				
	In SPI mo 1 = A new the data ir BUF, even set since a 0 = No ove In l^2C mod 1 = A byte in transmi	de byte is reco n SSPSR m n if only tra each new r erflow de is received t mode. SS	eived while egister is l nsmitting eception (d while the SPOV mus	e the SSPE lost. Overfi data, to av (and transr SSPBUF i st be cleare	BUF registe ow can on oid setting nission) is register is a ed in softw	er is still ho ly occur in overflow. initiated b still holding are in eith	olding the pr slave mode In master c y writing to g the previou er mode.	evious data. In case of overflow, e. The user must read the SSP- operation, the overflow bit is not the SSPBUF register. us byte. SSPOV is a "don't care"
1 .1. 7 .	0 = No over	erflow			. 1. 14			
DIT 5:		synchronol do	is Serial F	ort Enable	DIT			
	1 = Enable 0 = Disable	<u>de</u> es serial po es serial p	ort and co ort and co	nfigures So onfigures th	CK, SDO, nese pins a	and SDI a as I/O port	s serial por pins	t pins
	<u>In I²C mod</u> 1 = Enable 0 = Disabl In both mo	<u>de</u> es the seria les serial p odes, wher	al port and ort and co n enabled,	d configure onfigures th these pins	es the SDA nese pins a s must be	and SCL as I/O port properly c	pins as ser pins onfigured as	ial port pins s input or output.
bit 4:	CKP: Cloc	ck Polarity	Select bit					
	<u>In SPI mo</u> 1 = Idle st 0 = Idle st	<u>de</u> ate for cloc ate for cloc	ck is a higl ck is a low	h level. Tra level. Trar	nsmit happ Ismit happ	oens on fa ens on ris	lling edge, i ing edge, re	receive on rising edge. aceive on falling edge.
	In I ² C mod SCK relea 1 = Enable 0 = Holds	<u>de</u> ase control e clock clock low (clock stre	tch) (Used	to ensure	data setu	p time)	
bit 3-0:	$\begin{array}{l} \textbf{SSPM3:S} \\ 0000 = \textbf{SI} \\ 0001 = \textbf{SI} \\ 0010 = \textbf{SI} \\ 0010 = \textbf{SI} \\ 0100 = \textbf{SI} \\ 0100 = \textbf{SI} \\ 0101 = \textbf{SI} \\ 0110 = \textbf{I}^{2} \\ 0111 = \textbf{I}^{2} \\ 1110 = \textbf{I}^{2} \\ 1111 = \textbf{I}^{2} \\ \end{array}$	SPM0: Syn PI master of PI master of PI master of PI master of PI slave mo C slave mo C slave mo C slave mo C slave mo C slave mo C slave mo	nchronous operation, operation, operation, operation, ode, clock ode, clock ode, 7-bit a ode, 10-bit ode, 7-bit a ode, 10-bit	Serial Por clock = Fo clock = Fo clock = Fo clock = TN = SCK pir address d master o address wi address wi	rt Mode Se sc/4 sc/16 sc/64 /R2 outpu n. SS pin c n. SS pin c peration (s th start an vith start a	elect bits t/2 ontrol ena ontrol disa slave idle) d stop bit i nd stop bit	bled. bled. SS ca interrupts ei t interrupts o	an be used as I/O pin. nabled enabled
3.2.1 C	OPERATION MODE - PIC	I OF SSP 16C72	MODULE	IN SPI		A block of shown in	diagram of Figure 8-3.	the SSP Module in SPI Mode is

8.4.1.1 ADDRESSING

Once the SSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set (interrupt is generated if enabled) - on the falling edge of the ninth SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address the first byte would equal

'1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- 2. Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of Address, if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated START condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

TABLE 8-3	DATA	TRANSFER	RECEIVED	BYTE	ACTIONS

Status Bits as Data Transfer is Received			Oursents AOK	Set bit SSPIF
BF	SSPOV	$SSPSR \to SSPBUF$	Pulse	(SSP interrupt occurs if enabled)
0	0	Yes	Yes	Yes
1	0	No	No	Yes
1	1	No	No	Yes
0	1	No	No	Yes

8.4.2 MASTER OPERATION

Master operation is supported in firmware using interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I^2C bus may be taken when the P bit is set, or the bus is idle and both the S and P bits are clear.

In master operation, the SCL and SDA lines are manipulated in firmware by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received

Master operation can be done with either the slave mode idle (SSPM3:SSPM0 = 1011) or with the slave active. When both master operation and slave modes are used, the software needs to differentiate the source(s) of the interrupt.

For more information on master operation, see AN554 - Software Implementation of I^2C Bus Master.

8.4.3 MULTI-MASTER OPERATION

In multi-master operation, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In multi-master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, these are:

- Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

For more information on master operation, see AN578 - Use of the SSP Module in the of I^2C Multi-Master Environment.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchronou	Synchronous Serial Port Receive Buffer/Transmit Register					xxxx xxxx	uuuu uuuu		
93h	SSPADD	Synchronou	is Serial F	Port (I ² C n	node) Ado	dress Reg	jister			0000 0000	0000 0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
94h	SSPSTAT	SMP ⁽²⁾	CKE ⁽²⁾	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
87h	TRISC	PORTC Dat	ta Directio	on register						1111 1111	1111 1111

TABLE 8-4REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'.

Shaded cells are not used by SSP module in SPI mode. Note 1: These bits are unimplemented, read as '0'.

2: The SMP and CKE bits are implemented on the PIC16CR72 only. On the PIC16C72, these two bits are unimplemented, read as '0'.

10.2 Oscillator Configurations

10.2.1 OSCILLATOR TYPES

The PIC16CXXX family can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

10.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 10-2). The PIC16CXXX family oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 10-3).

FIGURE 10-2: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

- mended values of C1 and C2. 2: A series resistor (RS) may be required for
 - AT strip cut crystals. 3: BE varies with the crystal chosen
 - 3: RF varies with the crystal chosen.

FIGURE 10-3: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 10-1 CERAMIC RESONATORS

Ranges Tested:						
Mode	Freq	OSC1				
ХТ	455 kHz	68 - 100 p				

XI	455 KHZ 68 - 100 PF		68 - 100 pF				
	2.0 MHz	15 - 68 pF	15 - 68 pF				
	4.0 MHz	15 - 68 pF	15 - 68 pF				
HS	8.0 MHz	10 - 68 pF	10 - 68 pF				
	16.0 MHz	10 - 22 pF	10 - 22 pF				
The	se values are f	for design guidar	nce only. See				
note	es at bottom of p	bage.					
Resonators Used:							
455 kHz Panasonic EFO-A455K04B ± 0.3%							
2.0 MHz Murata Erie CSA2.00MG			± 0.5%				
4.0 MHz Murata Erie CSA4.00MG ± 0.5%							
8.0 MHz Murata Erie CSA8.00MT		± 0.5%					

OSC2

All resonators used did not have built-in capacitors.

TABLE 10-2CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Оѕс Туре	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
ХТ	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF

These values are for design guidance only. See notes at bottom of page.

Crystals Used					
32 kHz	Epson C-001R32.768K-A	± 20 PPM			
200 kHz	STD XTL 200.000KHz	± 20 PPM			
1 MHz	ECS ECS-10-13-1	± 50 PPM			
4 MHz	ECS ECS-40-20-1	± 50 PPM			
8 MHz	EPSON CA-301 8.000M-C	± 30 PPM			
20 MHz	EPSON CA-301 20.000M-C	± 30 PPM			

Note 1: Recommended values of C1 and C2 are identical to the ranges tested (Table 10-1).

- 2: Higher capacitance increases the stability of oscillator but also increases the start-up time.
- 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
- 4: Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification.

10.10 Interrupts

The PIC16C72/CR72 has 8 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts. For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs. The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit

10.10.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 10.13 for details on SLEEP mode.

10.10.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 4.0)

10.10.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 3.2)

FIGURE 10-11: INTERRUPT LOGIC

10.11 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt, i.e., W register and STATUS register. This will have to be implemented in software.

Example 10-1 stores and restores the W and STATUS registers. The register, W_TEMP, must be defined in each bank and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1).

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Executes the ISR code.
- d) Restores the STATUS register (and bank select bit).
- e) Restores the W register.

EXAMPLE 10-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

MOVWF	W_TEMP	;Copy W to W_TEMP register, could be bank one or zero
SWAPF	STATUS,W	;Swap status to be saved into W
CLRF	STATUS	;bank 0, regardless of current bank, Clears IRP,RP1,RP0
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
:		
: Interrupt S	Service Routine (ISR) - ι	user defined
:		
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

Other peripherals cannot generate interrupts since during SLEEP, no on-chip clocks are present.

When the **SLEEP** instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

10.13.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

• If the interrupt occurs before the execution of a

SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.

· If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the $\overline{\text{TO}}$ bit will be set and the $\overline{\text{PD}}$ bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

		Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
INT pin	-		 	
INTF flag (INTCON<1>)		Interrupt Latency (Note 2)		
GIE bit (INTCON<7>)			1 1 1	
INSTRUCTION FLOW		1 1 1 1	1 1	
PC X PC X PC+1 X PC+2 X	PC+2	X PC + 2	(0004h	0005h
$ \begin{array}{c} \text{Instruction } \\ \text{fetched} \end{array} \Big \begin{array}{c} \text{Inst}(\text{PC}) = \text{SLEEP} & \text{Inst}(\text{PC}+1) \end{array} \\ \end{array} $	Inst(PC + 2)	1 I 1 I 1 I	Inst(0004h)	Inst(0005h)
Instruction executed Inst(PC - 1) SLEEP	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

FIGURE 10-14: WAKE-UP FROM SLEEP THROUGH INTERRUPT

- 3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

CLKOUT is not available in these osc modes, but shown here for timing reference.

10.14 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip does not recommend code pro-
	tecting windowed devices.

10.15 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.

For ROM devices, these values are submitted along with the ROM code.

In-Circuit Serial Programming[™] 10.16

PIC16CXXX family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

For complete details of serial programming, please refer to the In-Circuit Serial Programming (ICSP™) Guide, DS30277.

11.0 INSTRUCTION SET SUMMARY

Each PIC16CXXX family instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXXX family instruction set summary in Table 11-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 11-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 11-1OPCODE FIELD
DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
PC	Program Counter
TO	Time-out bit
PD	Power-down bit

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- **Bit-oriented** operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Table 11-2 lists the instructions recognized by the MPASM assembler.

Figure 11-1 shows the general formats that the instructions can have.

Note:	То	maintain	upward	compatibility	with
	futu	re PIC160	CXXX pro	oducts, <u>do not</u>	use
	the	OPTION a	nd TRIS	instructions.	

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 11-1: GENERAL FORMAT FOR INSTRUCTIONS

A description of each instruction is available in the $PIC^{\mathbb{R}}$ Mid-Range MCU Family Reference Manual, DS33023.

PIC16C72 Series

TABLE 13-1 CROSS REFERENCE OF DEVICE SPECS (PIC16C72) FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

OSC	PIC16C72-04	PIC16C72-10	PIC16C72-20	PIC16LC72-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.	t to 6.0V VDD: 4.5V to 5.5V VDD: 4.5V to 5.5V VDD: 2.5V A max. at 5.5V IDD: 2.7 mA typ. at 5.5V IDD: 2.7 mA typ. at 5.5V IDD: 2.7 mA typ. at 5.5V A max. at 4V IPD: 1.5 μA typ. at 4V IPD: 1.5 μA typ. at 4V IPD: 1.5 μA typ. at 4V Hz max. Freq: 4 MHz max. Freq: 4 MHz max. Freq: 4 MHz max.		VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 5.0 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
хт	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 5.0 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 10 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 10 MHz max.	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	Not recommended for use in LP mode	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5.0 μA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5.0 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications.

It is recommended that the user select the device type that ensures the specifications required.

TABLE 13-2 CROSS REFERENCE OF DEVICE SPECS (PIC16CR72) FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

OSC	PIC16CR72-04	PIC16CR72-10	PIC16CR72-20	PIC16LCR72-04	JW Devices
RC	VDD: 4.0V to 5.5V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 5.5V IDD: 3.8 mA max. at 3.0V IPD: 5.0 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 5.5V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
хт	VDD: 4.0V to 5.5V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 5.5V IDD: 3.8 mA max. at 3.0V IPD: 5.0 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 5.5V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 10 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 10 MHz max.	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 5.5V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	Not recommended for use in LP mode	VDD: 2.5V to 5.5V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5.0 μA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 5.5V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5.0 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

13.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS		3. TCC:ST	(I ² C specifications only)		
2. TppS		4. Ts	(I ² C specifications only)		
Т					
F	Frequency	т	Time		
Lowercase letters (pp) and their meanings:					
рр					
сс	CCP1	osc	OSC1		
ck	CLKOUT	rd	RD		
cs	CS	rw	RD or WR		
di	SDI	sc	SCK		
do	SDO	SS	SS		
dt	Data in	tO	ТОСКІ		
ю	I/O port	t1	T1CKI		
mc	MCLR	wr	WR		
Uppercase letters a	nd their meanings:				
S					
F	Fall	Р	Period		
н	High	R	Rise		
1	Invalid (Hi-impedance)	V	Valid		
L	Low	Z	Hi-impedance		
I ² C only					
AA	output access	High	High		
BUF	Bus free	Low	Low		
TCC:ST (I ² C specifications only)					
CC					
HD	Hold	SU	Setup		
ST					
DAT	DATA input hold	STO	STOP condition		
STA	START condition				

FIGURE 13-1: LOAD CONDITIONS

FIGURE 13-5: BROWN-OUT RESET TIMING

TABLE 13-5RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	—	_	μS	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	_	—	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
34	Tıoz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	—	_	2.1	μS	
35	TBOR	Brown-out Reset pulse width	100	_	—	μS	$VDD \le BVDD (D005)$

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 14-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)

FIGURE 14-25: TYPICAL IDD vs. FREQUENCY (LP MODE, 25°C)

FIGURE 14-26: MAXIMUM IDD vs. FREQUENCY (LP MODE, 85°C TO -40°C)

FIGURE 14-27: TYPICAL IDD vs. FREQUENCY (XT MODE, 25°C)

FIGURE 14-28: MAXIMUM IDD vs. FREQUENCY (XT MODE, -40°C TO 85°C)

