

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I²C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc72t-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.3 INTCON REGISTER

The INTCON Register is a readable and writable register which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts. Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 2-5: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0	B/W-0	B/W-0	B/W-0	B/W-0	R/W-0	R/W-0	R/W-x	
GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	R = Readable bit
bit7							bitO	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset
bit 7:	1 = Enab	oal Interru les all un-r les all inte	nasked in					
bit 6:	1 = Enab	ripheral In les all un-r les all per	nasked pe	eripheral ir	nterrupts			
bit 5:	1 = Enab	R0 Overflo les the TN les the TN	IR0 interru		bit			
bit 4:	INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt							
bit 3:	RBIE : RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt							
bit 2:	1 = TMR0	R0 Overflo) register I) register o	nas overflo	owed (mus	t be cleare	d in softwa	ire)	
bit 1:	1 = The F	RB0/INT ex	cternal inte	rupt Flag b errupt occi errupt did	urred (must	be cleare	d in softwar	e)
bit 0:	1 = At lea	st one of	the RB7:R		it nanged stat anged state		e cleared in	software)

2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 2-1: INDIRECT ADDRESSING

- Register file 05 contains the value 10h
- Register file 06 contains the value 0Ah
- Load the value 05 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 06)
- A read of the INDR register now will return the value of 0Ah.

Direct Addressing Indirect Addressing RP1:RP0 from opcode 7 6 0 IRP FSR register 0 (2) (2)bank select location select bank select location select • 00 01 10 11 00h 80h 100h 180h not used (3) (3) Data Memory(1) FFh 1FFh 7Fh 17Fh Bank 0 Bank 1 Bank 2 Bank 3 Note 1: For register file map detail see Figure 2-2. 2: Maintain RP1 and IRP as clear for upward compatibility with future products. 3: Not implemented.

FIGURE 2-11: DIRECT/INDIRECT ADDRESSING

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-2.

EXAMPLE 2-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

NEXT	movwf clrf incf	FSR INDF FSR	;clear INDF register ;inc pointer
	goto	-	;all done? ;NO, clear next
CONTINUE			
	:		;YES, continue

3.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PIC[®] Mid-Range MCU Reference Manual, DS33023.

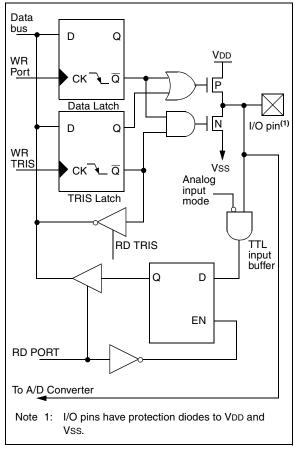
3.1 PORTA and the TRISA Register

PORTA is a 6-bit wide bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (=1) will make the corresponding PORTA pin an input, i.e., put the corresponding output driver in a hi-impedance mode. Clearing a TRISA bit (=0) will make the corresponding PORTA pin an output, i.e., put the contents of the output latch on the selected pin.

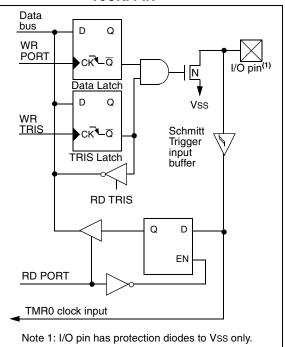
Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).


Note:	On a Power-on Reset, these pins are con-
	figured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.


EXAMPLE 3-1: INITIALIZING PORTA

BCF	STATUS,	RP0	;	
CLRF	PORTA		;	Initialize PORTA by
			;	clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISA		;	Set RA<3:0> as inputs
			;	RA<5:4> as outputs
			;	TRISA<7:6> are always
			;	read as '0'.

FIGURE 3-1: BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

FIGURE 3-2: BLOCK DIAGRAM OF RA4/ T0CKI PIN

PIC16C72 Series

8.2 SPI Mode for PIC16C72

Γ

This section contains register definitions and operational characteristics of the SPI module on the PIC16C72 device only. Additional information on SPI operation may be found in the PIC[®] Mid-Range MCU Reference Manual, DS33023.

1

FIGURE 8-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h) (PIC16C72)

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0			
	—	D/A	Р	S	R/W	UA	BF	R = Readable bit		
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset		
bit 7-6:	Unimpl	emented	: Read as	'0'						
bit 5:	1 = Indi 0 = Indi	cates that cates that	the last b the last b	yte receive	d or transmit d or transmit	ted was ad	dress			
bit 4:	1 = Indi	cates that	node only. a stop bit not detecte	has been	cleared wher detected last	the SSP n (this bit is	nodule is dis '0' on RESE	abled, SSPEN is cleared) T)		
bit 3:	S : Start bit (I^2C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared) 1 = Indicates that a start bit has been detected last (this bit is '0' on RESET) 0 = Start bit was not detected last									
bit 2:	R / \overline{W} : Read/Write bit information (I ² C mode only) This bit holds the R/W bit information following the last address match. This bit is valid from the address match to the next start bit, stop bit, or \overline{ACK} bit. 1 = Read 0 = Write									
bit 1:	UA : Update Address (10-bit I ² C mode only) 1 = Indicates that the user needs to update the address in the SSPADD register 0 = Address does not need to be updated									
bit 0:	BF: Buf	BF: Buffer Full Status bit								
	<u>Receive</u> (SPI and I ² C modes) 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty									
	1 = Trar		ogress, S	SPBUF is f PBUF is en						

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

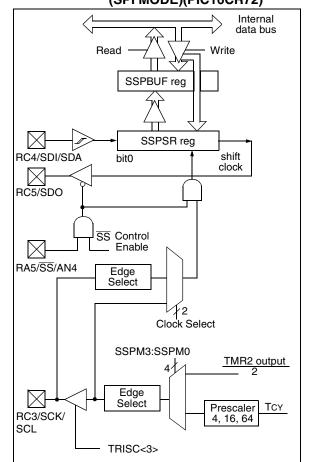
- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL

Additionally a fourth pin may be used when in a slave mode of operation:

Slave Select (SS) RA5/SS/AN4

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master Operation (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Clock Edge (Output data on rising/falling edge of SCK)
- Clock Rate (master operation only)
- Slave Select Mode (Slave mode only)

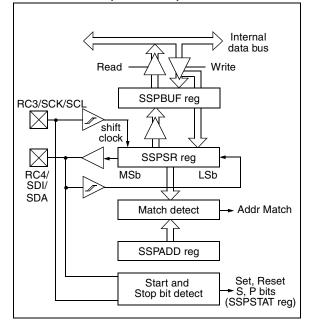

To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON register, and then set bit SSPEN. This configures the SDI, SDO, SCK, and SS pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (master operation) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set

Note:	When the SPI is in Slave Mode with \overline{SS} pin
	control enabled, (SSPCON<3:0> = 0100)
	the SPI module will reset if the \overline{SS} pin is set
	to VDD.

Note: If the SPI is used in Slave Mode with CKE = '1', then the \overline{SS} pin control must be enabled.

FIGURE 8-6: SSP BLOCK DIAGRAM (SPI MODE)(PIC16CR72)


8.4 <u>SSP I²C Operation</u>

The SSP module in I²C mode fully implements all slave functions, except general call support, and provides interrupts on start and stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer. These are the RC3/ SCK/SCL pin, which is the clock (SCL), and the RC4/ SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits.

The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSPCON<5>).

FIGURE 8-7: SSP BLOCK DIAGRAM (I²C MODE)

The SSP module has five registers for I^2C operation. These are the:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with start and stop bit interrupts enabled
- I²C Slave mode (10-bit address), with start and stop bit interrupts enabled
- I²C Firmware controlled master operation, slave is idle

Selection of any I²C mode, with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits.

Additional information on SSP I²C operation may be found in the PIC[®] Mid-Range MCU Reference Manual, DS33023.

8.4.1 SLAVE MODE

In slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the acknowledge (\overline{ACK}) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this $\overline{\text{ACK}}$ pulse. These are if either (or both):

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 8-3 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification as well as the requirement of the SSP module is shown in timing parameter #100 and parameter #101.

NOTES:

9.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The analog-to-digital (A/D) converter module has five inputs for the PIC16C72/R72.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the RA3/AN3/VREF pin.

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

Additional information on the A/D module is available in the PIC[®] Mid-Range MCU Reference Manual, DS33023.

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

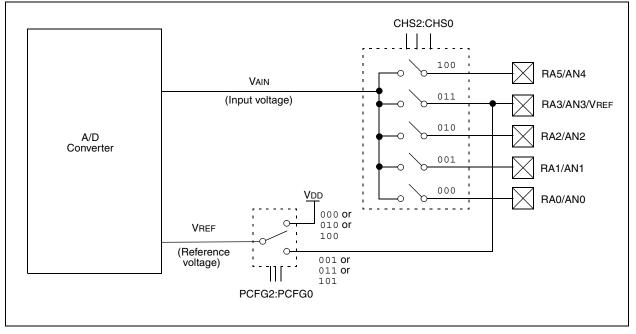
A device reset forces all registers to their reset state. This forces the A/D module to be turned off, and any conversion is aborted.

The ADCON0 register, shown in Figure 9-1, controls the operation of the A/D module. The ADCON1 register, shown in Figure 9-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0		
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE		ADON	R = Readable bit	
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset	
bit 7-6:	ADCS1:ADCS0: A/D Conversion Clock Select bits 00 = Fosc/2 01 = Fosc/8 10 = Fosc/32 11 = FRC (clock derived from an internal RC oscillator)								
bit 5-3:	CHS2:CHS0: Analog Channel Select bits 000 = channel 0, (RA0/AN0) 001 = channel 1, (RA1/AN1) 010 = channel 2, (RA2/AN2) 011 = channel 3, (RA3/AN3) 100 = channel 4, (RA5/AN4)								
bit 2:	GO/DONE: A/D Conversion Status bit								
		onversion onversion		· ·	this bit starts t bit is automati		,	are when the A/D conversion	
bit 1:	Unimpler	nented: F	Read as '0						
bit 0:	ADON : A 1 = A/D c 0 = A/D c	onverter n			l consumes no	operating	g current		

FIGURE 9-1: ADCON0 REGISTER (ADDRESS 1Fh)

The ADRES register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 9-3.


The value that is in the ADRES register is not modified for a Power-on Reset. The ADRES register will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 9.1. After this acquisition time has elapsed the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

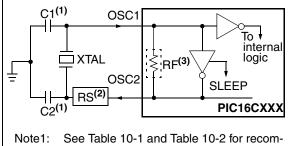
- 1. Configure the A/D module:
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)

FIGURE 9-3: A/D BLOCK DIAGRAM

- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result register (ADRES), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

10.2 Oscillator Configurations

10.2.1 OSCILLATOR TYPES


The PIC16CXXX family can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

10.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

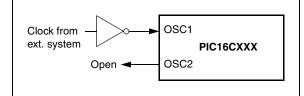

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 10-2). The PIC16CXXX family oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 10-3).

FIGURE 10-2: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

- mended values of C1 and C2. 2: A series resistor (RS) may be required for
 - AT strip cut crystals. 3: BE varies with the crystal chosen
 - 3: RF varies with the crystal chosen.

FIGURE 10-3: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 10-1 CERAMIC RESONATORS

Ranges Tested:						
Mode	Freq	OSC1				

Mode	Freq	OSC1	OSC2			
XT	455 kHz	68 - 100 pF	68 - 100 pF			
	2.0 MHz	15 - 68 pF	15 - 68 pF			
	4.0 MHz	15 - 68 pF	15 - 68 pF			
HS	8.0 MHz	10 - 68 pF	10 - 68 pF			
	16.0 MHz	10 - 22 pF	10 - 22 pF			
These values are for design guidance only. See notes at bottom of page.						
Resonator	Resonators Used:					
455 kHz	Panasonic EFO-A455K04B ± 0.3%					
2.0 MHz	Murata Erie CSA2.00MG ± 0.5%					
4.0 MHz	Murata Erie CSA4.00MG ± 0.5%					
8.0 MHz	Murata Erie	CSA8.00MT	$\pm 0.5\%$			
16.0 MHz	Murata Erie	CSA16.00MX	± 0.5%			

All resonators used did not have built-in capacitors.

TABLE 10-2CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
ХТ	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF
	-		

These values are for design guidance only. See notes at bottom of page.

Crystals Used						
32 kHz	Epson C-001R32.768K-A	± 20 PPM				
200 kHz	STD XTL 200.000KHz	± 20 PPM				
1 MHz	ECS ECS-10-13-1	± 50 PPM				
4 MHz	ECS ECS-40-20-1	± 50 PPM				
8 MHz	EPSON CA-301 8.000M-C	± 30 PPM				
20 MHz	EPSON CA-301 20.000M-C	± 30 PPM				

Note 1: Recommended values of C1 and C2 are identical to the ranges tested (Table 10-1).

- 2: Higher capacitance increases the stability of oscillator but also increases the start-up time.
- 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
- 4: Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification.

10.8 <u>Time-out Sequence</u>

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 10-7, Figure 10-8, Figure 10-9 and Figure 10-10 depict timeout sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 10-9). This is useful for testing purposes or to synchronize more than one PIC16CXXX family device operating in parallel.

Table 10-5 shows the reset conditions for some special function registers, while Table 10-6 shows the reset conditions for all the registers.

10.9 <u>Power Control/Status Register</u> (PCON)

The Power Control/Status Register, PCON has up to two bits, depending upon the device.

Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent resets to see if bit BOR cleared, indicating a BOR occurred. The BOR bit is a "Don't Care" bit and is not necessarily predictable if the Brown-out Reset circuitry is disabled (by clearing bit BODEN in the Configuration Word).

Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

Oscillator Configura-	Powe	r-up	Brown-out	Wake-up from	
tion	PWRTE = 0PWRTE = 1		Brown-out	SLEEP	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc	
RC	72 ms	—	72 ms	—	

TABLE 10-3 TIME-OUT IN VARIOUS SITUATIONS

TABLE 10-4 STATUS BITS AND THEIR SIGNIFICANCE

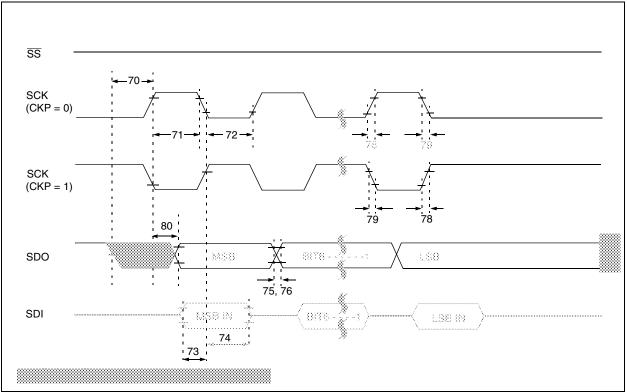
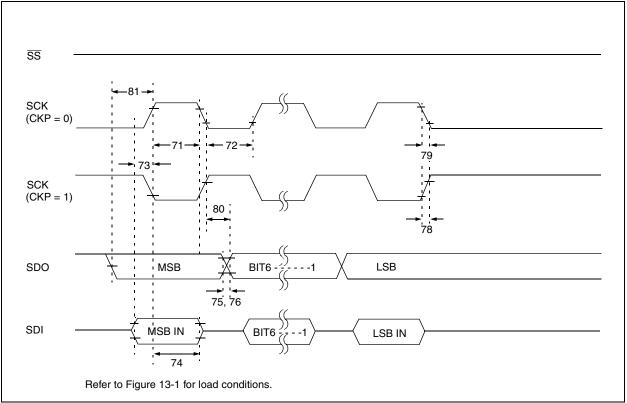
POR	BOR	то	PD		
0	x	1	1	Power-on Reset	
0	x	0	x	llegal, TO is set on POR	
0	x	x	0	Illegal, PD is set on POR	
1	0	x	x	Brown-out Reset	
1	1	0	1	WDT Reset	
1	1	0	0	WDT Wake-up	
1	1	u	u	MCLR Reset during normal operation	
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP	

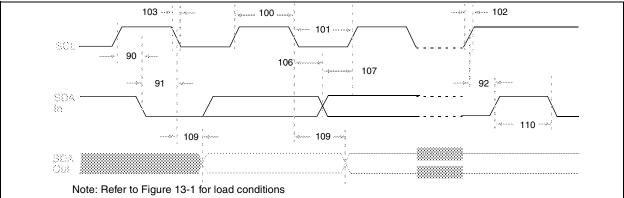
TABLE 10-5 RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 0uuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul 0uuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).


FIGURE 13-8: SPI MASTER OPERATION TIMING (CKE = 0)

© 1998-2013 Microchip Technology Inc.

FIGURE 13-13: I²C BUS DATA TIMING

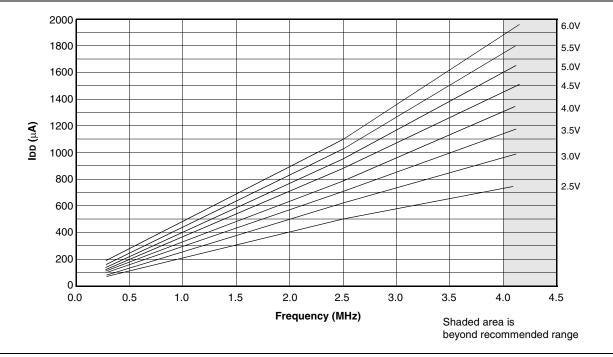
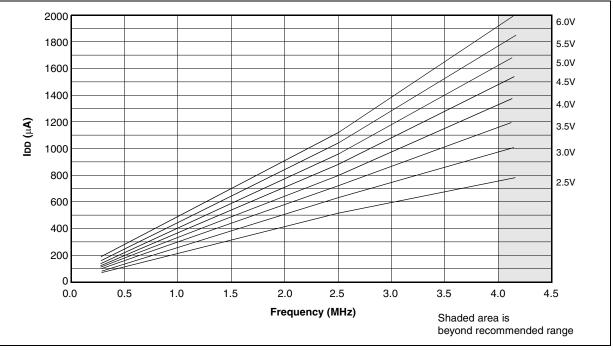


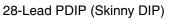
TABLE 13-11 I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characte	eristic	Min	Max	Units	Conditions	
100	Тнідн	Clock high time	100 kHz mode	4.0	_	μs	Device must operate at a mir mum of 1.5 MHz	
			400 kHz mode	0.6	_	μs	Device must operate at a mini- mum of 10 MHz	
			SSP Module	1.5Tcy	—			
101	TLOW	Clock low time	100 kHz mode	4.7	_	μs	Device must operate at a mini mum of 1.5 MHz	
			400 kHz mode	1.3	_	μS	Device must operate at a mini mum of 10 MHz	
			SSP Module	1.5TCY				
102	TR	SDA and SCL rise	100 kHz mode	—	1000	ns		
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF	
103	TF	SDA and SCL fall time	100 kHz mode	—	300	ns		
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF	
90	TSU:STA	START condition setup time	100 kHz mode	4.7		μs	Only relevant for repeated START condition	
			400 kHz mode	0.6		μs		
91	THD:STA	START condition hold time	100 kHz mode	4.0		μs	After this period the first clo	
			400 kHz mode	0.6	_	μs	pulse is generated	
106	THD:DAT	Data input hold time	100 kHz mode	0	—	ns		
			400 kHz mode	0	0.9	μS		
107	TSU:DAT	Data input setup time	100 kHz mode	250		ns	Note 2	
			400 kHz mode	100		ns		
92	Tsu:sto	STOP condition setup	100 kHz mode	4.7	—	μs		
		time	400 kHz mode	0.6	—	μs		
109	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	Note 1	
		clock	400 kHz mode	—	_	ns		
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free	
			400 kHz mode	1.3	_	μs	before a new transmission car start	
	Cb	Bus capacitive loading		—	400	pF		

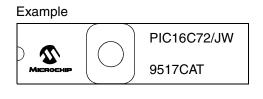

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

Note 2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz)S I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

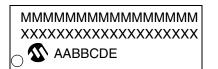
FIGURE 14-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)


NOTES:

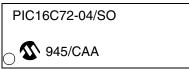
16.0 PACKAGING INFORMATION

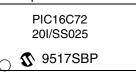

16.1 Package Marking Information

28-Lead Side Brazed Skinny Windowed



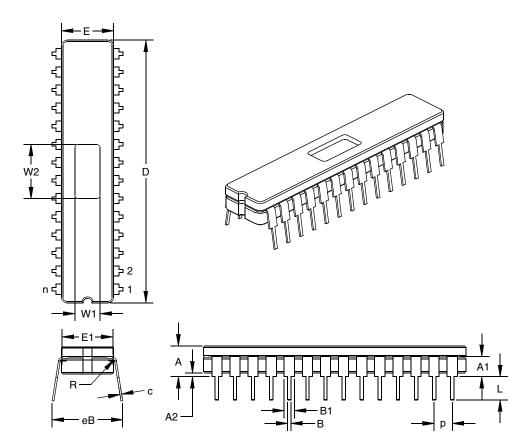
Example


28-Lead SOIC


28-Lead SSOP

Example

Example



Legend:	XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.		
ł	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.			

© 1998-2013 Microchip Technology Inc.

16.2 <u>28-Lead Ceramic Side Brazed Dual In-Line with Window (300 mil)(JW)</u>

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES*			М	ILLIMETERS	6
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
PCB Row Spacing			0.300			7.62	
Number of Pins	n		28			28	
Pitch	р	0.098	0.100	0.102	2.49	2.54	2.59
Lower Lead Width	В	0.016	0.019	0.021	0.41	0.47	0.53
Upper Lead Width	B1	0.050	0.058	0.065	1.27	1.46	1.65
Shoulder Radius	R	0.010	0.013	0.015	0.25	0.32	0.38
Lead Thickness	С	0.008	0.010	0.012	0.20	0.25	0.30
Top to Seating Plane	А	0.170	0.183	0.195	4.32	4.64	4.95
Top of Lead to Seating Plane	A1	0.107	0.125	0.143	2.72	3.18	3.63
Base to Seating Plane	A2	0.015	0.023	0.030	0.00	0.57	0.76
Tip to Seating Plane	L	0.135	0.140	0.145	3.43	3.56	3.68
Package Length	D	1.430	1.458	1.485	36.32	37.02	37.72
Package Width	Е	0.285	0.290	0.295	7.24	7.37	7.49
Radius to Radius Width	E1	0.255	0.270	0.285	6.48	6.86	7.24
Overall Row Spacing	eB	0.345	0.385	0.425	8.76	9.78	10.80
Window Width	W1	0.130	0.140	0.150	0.13	0.14	0.15
Window Length	W2	0.290	0.300	0.310	0.29	0.3	0.31

* Controlling Parameter.

NOTES:

PIC16C72 SERIES PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	$\overline{\uparrow}$ $\overline{\uparrow}$ $\overline{\uparrow}$ $\overline{\uparrow}$ $\overline{-}$	Examples: a) PIC16C72 -04/P 301 = Commercial temp., PDIP package, 4 MHz, normal VDD limits, QTP pattern #301. b) PIC16LC72 - 04I/SO = Industrial temp., SOIC
Device	PIC16C72 ⁽¹⁾ , PIC16C72T ⁽²⁾ PIC16LC72 ⁽¹⁾ , PIC16LC72T ⁽²⁾ PIC16CR72 ⁽¹⁾ , PIC16CR72T ⁽²⁾ PIC16LCR72 ⁽¹⁾ , PIC16LCR72T ⁽²⁾	 c) PIC16C072 - 04//SO = Industrial territy., SOIC package, 200 kHz, Extended VDD limits. c) PIC16CR72 - 10I/P = ROM program memory, Industrial temp., PDIP package, 10MHz, normal VDD limits.
Frequency Range	02 = 2 MHz 04 = 4 MHz 10 = 10 MHz 20 = 20 MHz	Note 1: C= CMOS CR= CMOS ROM LC= Low Power CMOS LCR= ROM Version, Extended Vdd range 2: T = in tape and reel - SOIC, SSOP pack-
Temperature Rang	$ b^{(3)} = 0^{\circ}C \text{ to } 70^{\circ}C \text{ (Commercial)} I = -40^{\circ}C \text{ to } +85^{\circ}C \text{ (Industrial)} E = -40^{\circ}C \text{ to } +125^{\circ}C \text{ (Extended)} $	ages only. 3: b = blank
Package	JW = Ceramic Dual In-Line Package with Wi SO = Small Outline - 300 mil SP = Skinny PDIP SS = Shrink Samll Outline Package - 209 m	
Pattern	3-digit Pattern Code for QTP, ROM (blank otherw	ise)

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

SALES AND SUPPORT

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office (see last page)
- 2. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).
- Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.