

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I²C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc72t-04i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16C72 Series

2.2.2.6 PCON REGISTER

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external $\overline{\text{MCLR}}$ Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset condition from a Power-on Reset condition.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

FIGURE 2-8: PCON REGISTER (ADDRESS 8Eh)

4.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control, i.e., it can be changed "on the fly" during program execution.

Note: To avoid an unintended device RESET, a specific instruction sequence (shown in the PIC[®] Mid-Range MCU Reference Manual, DS3023) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.

4.3 <u>Timer0 Interrupt</u>

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP.

FIGURE 4-2: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

TABLE 4-1 REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
01h,101h	TMR0	Timer0	mer0 module's register							xxxx xxxx	uuuu uuuu
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h,181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	—	_	PORTA Data Direction Register					11 1111	11 1111	

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

FIGURE 5-2: TIMER1 BLOCK DIAGRAM

NOTES:

FIGURE 6-2: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	R = Readable bit
bit7				I			bitO	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset
bit 7:	Unimplem	ented: Rea	ad as '0'					
bit 6-3:	TOUTPS3: 0000 = 1:1 0001 = 1:2 • • 1111 = 1:1	TOUTPS0: Postscale Postscale	Timer2 Ou	itput Postsca	ale Select bi	ts		
bit 2:	TMR2ON : 1 1 = Timer2 0 = Timer2	Timer2 On is on is off	bit					
bit 1-0:	T2CKPS1: 00 = Presc 01 = Presc 1x = Presc	T2CKPS0: caler is 1 caler is 4 caler is 16	Timer2 Clo	ock Prescale	Select bits			

TABLE 6-1 **REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
11h	TMR2	12 Timer2 module's register								0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2 Timer2 Period Register							1111 1111	1111 1111		

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer2 module. 2: These bits are unimplemented, read as '0'.

For an example PWM period and duty cycle calculation, see the PIC[®] Mid-Range MCU Reference Manual (DS33023).

7.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.

- Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 7-3 EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 7-4REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value o all othe resets	on er s
0Bh,8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000	x 0000 00	00u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 000	0 0000 00	000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 000	0 0000 00	000
87h	TRISC	PORTC D	PORTC Data Direction Register								1 1111 11	111
11h	TMR2	Timer2 mo	Timer2 module's register								0 0000 00	000
92h	PR2	Timer2 mo	dule's perio	d register						1111 111	1 1111 11	111
12h	T2CON	—	TOUTPS	TOUTPS	TOUTPS	TOUTPS	TMR2O	T2CKPS	T2CKPS	-000 000	0 -000 00	000
			3	2	1	0	N	1	0			
15h	CCPR1L	Capture/Co	ompare/PW	M register1	(LSB)					XXXX XXX	x uuuu uu	uuu
16h	CCPR1H	Capture/Co	ompare/PW	M register1	(MSB)					XXXX XXX	x uuuu uu	uuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 000	000 00	000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.

Note 1: These bits/registers are unimplemented, read as '0'.

SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h) (PIC16C72) FIGURE 8-2:

R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	B/W-0	R/W-0	
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	R = Readable bit
bit7		1	L	1	I	L	bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	WCOL: W 1 = The S (must be c 0 = No col	Irite Collision SPBUF reg cleared in s Ilision	on Detect gister is w software)	bit ritten while	e it is still tr	ansmitting	the previou	us word
bit 6:	SSPOV: F	Receive Ov	erflow De	tect bit				
	In SPI mo 1 = A new the data ir BUF, even set since a 0 = No ove In l^2C mod 1 = A byte in transmi	de byte is reco n SSPSR m n if only tra each new r erflow de is received t mode. SS	eived while egister is l nsmitting eception of d while the SPOV mus	e the SSPE lost. Overfi data, to av (and transr SSPBUF i st be cleare	BUF registe ow can on oid setting nission) is register is a ed in softw	er is still ho ly occur in overflow. initiated b still holding are in eith	olding the pr slave mode In master c y writing to g the previou er mode.	evious data. In case of overflow, e. The user must read the SSP- operation, the overflow bit is not the SSPBUF register. us byte. SSPOV is a "don't care"
1 .2.	0 = No over	erflow			. 1. 14			
DIT 5:		synchronol do	is Serial F	ort Enable	DIT			
	1 = Enable 0 = Disable	<u>de</u> es serial po es serial p	ort and co ort and co	nfigures So nfigures th	CK, SDO, nese pins a	and SDI a as I/O port	s serial por pins	t pins
	<u>In I²C mod</u> 1 = Enable 0 = Disabl In both mo	<u>de</u> es the seria les serial p odes, wher	al port and ort and co n enabled,	d configure onfigures th these pins	es the SDA nese pins a s must be	and SCL as I/O port properly c	pins as ser pins onfigured as	ial port pins s input or output.
bit 4:	CKP: Cloc	ck Polarity	Select bit					
	<u>In SPI mo</u> 1 = Idle st 0 = Idle st	<u>de</u> ate for cloc ate for cloc	ck is a higl ck is a low	h level. Tra level. Trar	nsmit happ Ismit happ	oens on fa ens on ris	lling edge, i ing edge, re	receive on rising edge. aceive on falling edge.
	In I ² C mod SCK relea 1 = Enable 0 = Holds	<u>de</u> ase control e clock clock low (clock stre	tch) (Used	to ensure	data setu	p time)	
bit 3-0:	$\begin{array}{l} \textbf{SSPM3:S} \\ 0000 = \textbf{SI} \\ 0001 = \textbf{SI} \\ 0010 = \textbf{SI} \\ 0010 = \textbf{SI} \\ 0100 = \textbf{SI} \\ 0100 = \textbf{SI} \\ 0101 = \textbf{SI} \\ 0110 = \textbf{I}^{2} \\ 0111 = \textbf{I}^{2} \\ 1110 = \textbf{I}^{2} \\ 1111 = \textbf{I}^{2} \\ \end{array}$	SPM0: Syn PI master of PI master of PI master of PI master of PI slave mo C slave mo C slave mo C slave mo C slave mo C slave mo C slave mo	nchronous operation, operation, operation, operation, ode, clock ode, clock ode, 7-bit a ode, 10-bit ode, 7-bit a ode, 10-bit	Serial Por clock = Fo clock = Fo clock = Fo clock = TN = SCK pir address d master o address wi address wi	rt Mode Se sc/4 sc/16 sc/64 /R2 outpu n. SS pin c n. SS pin c peration (s th start an vith start a	elect bits t/2 ontrol ena ontrol disa slave idle) d stop bit i nd stop bit	bled. bled. SS ca interrupts ei t interrupts o	an be used as I/O pin. nabled enabled
3.2.1 C	OPERATION MODE - PIC	I OF SSP 16C72	MODULE	IN SPI		A block of shown in	diagram of Figure 8-3.	the SSP Module in SPI Mode is

٦

8.3 SPI Mode for PIC16CR72

Γ

This section contains register definitions and operational characteristics of the SPI module on the PIC16CR72 device only. Additional information on SPI operation may be found in the $PIC^{\ensuremath{\mathbb{R}}}$ Mid-Range MCU Reference Manual, DS33023.

FIGURE 8-4: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h) (PIC16CR72)

R/W-0	R/W-0	R-0	<u>R</u> -0	<u>R</u> -0	<u>R</u> -0	R-0	<u>R</u> -0	
SMP	CKE	D/Ā	Р	S	R/W	UA	BF	R = Readable bit
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	SMP: S <u>SPI Mas</u> 1 = Inpu 0 = Inpu <u>SPI Sla</u> SMP m	PI data in <u>ster Oper</u> ut data sa ut data sa <u>ve Mode</u> ust be cle	nput samp r <u>ation</u> ampled at d ampled at d eared whe	le phase end of data middle of da n SPI is use	output time ata output tir ed in slave m	ne node		
bit 6:	CKE : S CKP = 0 $1 = Data$ $0 = Data$ $CKP = 1$ $1 = Data$ $0 = Data$	PI Clock <u>0</u> a transmi a transmi a transmi a transmi	Edge Sele itted on ris itted on fal itted on fal itted on ris	ect ing edge of ling edge o ling edge o ing edge of	f SCK f SCK f SCK f SCK			
bit 5:	D/A : Da 1 = Indi 0 = Indi	ata/Addre cates tha cates tha	ess bit (I ² C at the last b at the last b	mode only byte receive byte receive) ed or transmi ed or transmi	tted was da tted was ac	ata Idress	
bit 4:	 4: P: Stop bit (I²C mode only. This bit is cleared when the SSP module is disabled, or when the Start bit is detected last, SSPEN is cleared) 1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET) 0 = Stop bit was not detected last 							
bit 3:	S : Start detecter 1 = Indi 0 = Star	t bit (I ² C d last, SS cates tha rt bit was	mode only SPEN is cl it a start bi not detect	: This bit is eared) t has been ted last	cleared whe	en the SSP st (this bit is	module is o '0' on RESI	disabled, or when the Stop bit is ET)
bit 2:	R/W : Ro This bit address 1 = Rea 0 = Writ	ead/Write holds th match to ad te	e bit inform ne R/W bit o the next	ation (I ² C r informatio start bit, sto	mode only) n following t op bit, or AC	he last ado K bit.	dress match	n. This bit is only valid from the
bit 1:	UA : Up 1 = Indi 0 = Add	date Add cates tha Iress doe	ress (10-b it the user is not need	it I ² C mode needs to u I to be upda	e only) pdate the ad ated	dress in the	e SSPADD r	register
bit 0:	BF: Buf Receive	fer Full S (SPI an ceive com	status bit d I ² C mod pplete, SSI	es) PBUF is full	l emet:			
	0 = Rec <u>Transmi</u> 1 = Trar 0 = Trar	eive not i <u>t</u> (I ² C mo nsmit in p nsmit con	complete, ode only) progress, S nplete, SS	SSPBUF is SPBUF is t PBUF is en	s empty full npty			

8.4.1.3 TRANSMISSION

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The \overline{ACK} pulse will be sent on the ninth bit, and pin RC3/SCK/SCL is held low. The transmit data must be loaded into the SSP-BUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 8-9). An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not \overline{ACK}), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP.

Register	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Inter- rupt
W	xxxx xxxx	uuuu uuuu	
INDF	N/A	N/A	N/A
TMR0	XXXX XXXX	uuuu uuuu	սսսս սսսս
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu (3)	uuuq quuu (3)
FSR	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	0x 0000	Ou 0000	uu uuuu
PORTB	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTC	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu(1)
PIR1	-0 0000	-0 0000	-u uuuu(1)
TMR1L	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR1H	XXXX XXXX	uuuu uuuu	uuuu uuuu
T1CON	00 0000	uu uuuu	uu uuuu
TMR2	0000 0000	0000 0000	uuuu uuuu
T2CON	-000 0000	-000 0000	-uuu uuuu
SSPBUF	XXXX XXXX	uuuu uuuu	uuuu uuuu
SSPCON	0000 0000	0000 0000	uuuu uuuu
CCPR1L	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCPR1H	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCP1CON	00 0000	00 0000	uu uuuu
ADRES	XXXX XXXX	uuuu uuuu	uuuu uuuu
ADCON0	0000 00-0	0000 00-0	uuuu uu-u
OPTION	1111 1111	1111 1111	uuuu uuuu
TRISA	11 1111	11 1111	uu uuuu
TRISB	1111 1111	1111 1111	uuuu uuuu
TRISC	1111 1111	1111 1111	uuuu uuuu
PIE1	-0 0000	-0 0000	-u uuuu
PCON	Ou	uu	uu
PR2	1111 1111	1111 1111	1111 1111
SSPADD	0000 0000	0000 0000	uuuu uuuu
SSPSTAT	00 0000	00 0000	uu uuuu
ADCON1	000	000	uuu

TABLE 10-6INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition **Note 1:** One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 10-5 for reset value for specific condition.

FIGURE 10-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

FIGURE 10-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

FIGURE 10-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 10-10: SLOW RISE TIME (MCLR TIED TO VDD)

	5V
VDD	0V1V
MCLR	
INTERNAL POR	
PWRT TIME-OUT	
OST TIME-OUT	
INTERNAL RESET	

Other peripherals cannot generate interrupts since during SLEEP, no on-chip clocks are present.

When the **SLEEP** instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

10.13.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

• If the interrupt occurs before the execution of a

SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.

· If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the $\overline{\text{TO}}$ bit will be set and the $\overline{\text{PD}}$ bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

		Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
INT pin	-		 	
INTF flag (INTCON<1>)		Interrupt Latency (Note 2)		
GIE bit (INTCON<7>)			1 1 1	
INSTRUCTION FLOW		1 1 1 1	1 1	
PC X PC X PC+1 X PC+2 X	PC+2	X PC + 2	(0004h	0005h
$ \begin{array}{c} \text{Instruction } \\ \text{fetched} \end{array} \Big \begin{array}{c} \text{Inst}(\text{PC}) = \text{SLEEP} & \text{Inst}(\text{PC}+1) \end{array} \\ \end{array} $	Inst(PC + 2)	1 I 1 I 1 I	Inst(0004h)	Inst(0005h)
Instruction executed Inst(PC - 1) SLEEP	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

FIGURE 10-14: WAKE-UP FROM SLEEP THROUGH INTERRUPT

- 3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

CLKOUT is not available in these osc modes, but shown here for timing reference.

10.14 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip does not recommend code pro-
	tecting windowed devices.

10.15 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.

For ROM devices, these values are submitted along with the ROM code.

In-Circuit Serial Programming[™] 10.16

PIC16CXXX family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

For complete details of serial programming, please refer to the In-Circuit Serial Programming (ICSP™) Guide, DS30277.

FIGURE 13-13: I²C BUS DATA TIMING

TABLE 13-11 I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100	Тнідн	Clock high time	100 kHz mode	4.0	-	μS	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY			
101	TLOW	Clock low time	100 kHz mode	4.7	-	μS	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	—	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY			
102	TR	SDA and SCL rise time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
103	TF	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
90	TSU:STA	START condition setup time	100 kHz mode	4.7		μs	Only relevant for repeated START condition
			400 kHz mode	0.6		μS	
91 THD	THD:STA	START condition hold time	100 kHz mode	4.0		μS	After this period the first clock
			400 kHz mode	0.6	—	μs	pulse is generated
106	THD:DAT	ID:DAT Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92	Tsu:sto	STO STOP condition setup time	100 kHz mode	4.7	—	μs	
			400 kHz mode	0.6	—	μs	
109	ΤΑΑ	Output valid from clock	100 kHz mode	—	3500	ns	Note 1
			400 kHz mode	_		ns	
110	TBUF	Bus free time	100 kHz mode	4.7		μS	Time the bus must be free
			400 kHz mode	1.3		μs	start
	Cb	Bus capacitive loading		—	400	pF	

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

Note 2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz)S I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

TABLE 13-12 A/D CONVERTER CHARACTERISTICS:

PIC16C72/CR72-04 (Commercial, Industrial, Extended) PIC16C72/CR72-10 (Commercial, Industrial, Extended) PIC16C72/CR72-20 (Commercial, Industrial, Extended) PIC16LC72/LCR72-04 (Commercial, Industrial)

Param No.	Sym	Char	acteristic	Min	Тур†	Max	Units	Conditions
A01	NR	Resolution		_	_	8 bits	bit	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A02	EABS	Total Absolute error		_		< ± 1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A03	EIL	Integral linearity error		—	_	< ± 1	LSb	$\begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A04	Edl	Differential linearity error		_	_	< ± 1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A05	EFS	Full scale error		_	Ι	< ± 1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A06	EOFF	Offset error		_		< ± 1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A10	—	Monotonicity		—	guaranteed	_		$VSS \leq VAIN \leq VREF$
A20	VREF	Reference voltage		2.5V	_	VDD + 0.3	V	
A25	Vain	Analog input voltage		Vss - 0.3	_	VREF + 0.3	V	
A30	Zain	Recommended impedance of analog voltage source		_		10.0	kΩ	
A40	IAD	AD A/D conversion current (VDD)	PIC16C72/CR72	—	180	_	μA	Average current con- sumption when A/D is on. (Note 1)
			PIC16LC72/LCR72	—	90	_	μ A	
A50	A50 IREF VREF input current (Note 2)		10		1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 9.1.	
				—	_	10	μA	During A/D Conversion cycle

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current.

The power-down current spec includes any such leakage from the A/D module.

Note 2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

FIGURE 14-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)

FIGURE 14-23: TYPICAL XTAL STARTUP TIME vs. Vdd (HS MODE, 25°C)

FIGURE 14-24: TYPICAL XTAL STARTUP TIME vs. Vdd (XT MODE, 25°C)

TABLE 14-2	CAPACITOR SELECTION FOR			
	CRYSTAL OSCILLATORS			

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF
Crystals Used			

Used		
32 kHz	Epson C-001R32.768K-A	± 20 PPM
200 kHz	STD XTL 200.000KHz	± 20 PPM
1 MHz	ECS ECS-10-13-1	± 50 PPM
4 MHz	ECS ECS-40-20-1	± 50 PPM
8 MHz	EPSON CA-301 8.000M-C	± 30 PPM
20 MHz	EPSON CA-301 20.000M-C	± 30 PPM

NOTES: