

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                          |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | H8SX                                                                            |
| Core Size                  | 32-Bit Single-Core                                                              |
| Speed                      | 50MHz                                                                           |
| Connectivity               | SCI, SmartCard                                                                  |
| Peripherals                | DMA, PWM, WDT                                                                   |
| Number of I/O              | 82                                                                              |
| Program Memory Size        | -                                                                               |
| Program Memory Type        | ROMIess                                                                         |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 40K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                       |
| Data Converters            | -                                                                               |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -20°C ~ 75°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 120-LQFP                                                                        |
| Supplier Device Package    | 120-LQFP (14x14)                                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/ds61651cn50fpv |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 3.4 Address Map

#### 3.4.1 Address Map (Advanced Mode)

Figure 3.1 shows the address map.



Figure 3.1 Address Map (Advanced Mode)

RENESAS

# 5.6 Interrupt Control Modes and Interrupt Operation

The interrupt controller has two interrupt control modes: interrupt control mode 0 and interrupt control mode 2. Interrupt operations differ depending on the interrupt control mode. The interrupt control mode is selected by INTCR. Table 5.3 shows the differences between interrupt control mode 0 and interrupt control mode 2.

| Interrupt<br>Control Mode | Priority Setting<br>Register | Interrupt<br>Mask Bit | Description                                                                                                                                                                   |
|---------------------------|------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                         | Default                      | I                     | The priority levels of the interrupt sources are<br>fixed default settings.<br>The interrupts except for NMI and sleep<br>interrupt is masked by the I bit.                   |
| 2                         | IPR                          | l2 to l0              | Eight priority levels can be set for interrupt<br>sources except for NMI and sleep interrupt with<br>IPR.<br>8-level interrupt mask control is performed by<br>bits I2 to I0. |

#### Table 5.3 Interrupt Control Modes

## 5.6.1 Interrupt Control Mode 0

In interrupt control mode 0, interrupt requests except for NMI and sleep interrupt are masked by the I bit in CCR of the CPU. Figure 5.3 shows a flowchart of the interrupt acceptance operation in this case.

- 1. If an interrupt request occurs when the corresponding interrupt enable bit is set to 1, the interrupt request is sent to the interrupt controller.
- 2. If the I bit in CCR is set to 1, NMI and sleep interrupt is accepted, and other interrupt requests are held pending. If the I bit is cleared to 0, an interrupt request is accepted.
- 3. For multiple interrupt requests, the interrupt controller selects the interrupt request with the highest priority, sends the request to the CPU, and holds other interrupt requests pending.
- 4. When the CPU accepts the interrupt request, it starts interrupt exception handling after execution of the current instruction has been completed.
- 5. The PC and CCR contents are saved to the stack area during the interrupt exception handling. The PC contents saved on the stack are the address of the first instruction to be executed after returning from the interrupt handling routine.
- 6. Next, the I bit in CCR is set to 1. This masks all interrupts except NMI and sleep interrupt.

# RENESAS

#### 5.6.4 Interrupt Response Times

Table 5.4 shows interrupt response times – the interval between generation of an interrupt request and execution of the first instruction in the interrupt handling routine. The symbols for execution states used in table 5.4 are explained in table 5.5.

The stack area in on-chip RAM enables high-speed processing.

#### Table 5.4 Interrupt Response Times

|                                                                 | Normal Mode* <sup>5</sup>                                                            |                                | Advan                                        | ced Mode                       | Maximum Mode* <sup>5</sup>     |                                |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Execution State                                                 | Interrupt<br>Control<br>Mode 0                                                       | Interrupt<br>Control<br>Mode 2 | Interrupt<br>Control<br>Mode 0               | Interrupt<br>Control<br>Mode 2 | Interrupt<br>Control<br>Mode 0 | Interrupt<br>Control<br>Mode 2 |
| Interrupt priority determination*1                              |                                                                                      |                                | :                                            | 3                              |                                |                                |
| Number of states until executing instruction ends* <sup>2</sup> |                                                                                      |                                | 1 to 19                                      | 9 + 2·S                        |                                |                                |
| PC, CCR, EXR stacking                                           | $S_{\!\scriptscriptstyle \rm K}$ to $2{\cdot}S_{\!\scriptscriptstyle \rm K}{}^{*^6}$ | 2·S <sub>κ</sub>               | $S_{\kappa}$ to $2 \cdot S_{\kappa}^{*^{6}}$ | 2·S <sub>κ</sub>               | 2·S <sub>κ</sub>               | 2·S <sub>κ</sub>               |
| Vector fetch                                                    |                                                                                      |                                | ę                                            | S <sub>h</sub>                 |                                |                                |
| Instruction fetch*3                                             |                                                                                      |                                | 2                                            | S,                             |                                |                                |
| Internal processing*4                                           |                                                                                      |                                | :                                            | 2                              |                                |                                |
| Total (using on-chip memory)                                    | 10 to 31                                                                             | 11 to 31                       | 10 to 31                                     | 11 to 31                       | 11 to 31                       | 11 to 31                       |

Notes: 1. Two states for an internal interrupt.

2. In the case of the MULXS or DIVXS instruction

3. Prefetch after interrupt acceptance or for an instruction in the interrupt handling routine.

- 4. Internal operation after interrupt acceptance or after vector fetch
- 5. Not available in this LSI.
- 6. When setting the SP value to 4n, the interrupt response time is  $S_{\kappa}$ ; when setting to 4n + 2, the interrupt response time is  $2 \cdot S_{\kappa}$ .



#### 6.2.1 Bus Width Control Register (ABWCR)

| Bit           | 15    | 14    | 13    | 12    | 11    | 10    | 9     | 8     |
|---------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Bit Name      | ABWH7 | ABWH6 | ABWH5 | ABWH4 | ABWH3 | ABWH2 | ABWH1 | ABWH0 |
| Initial Value | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1/0   |
| R/W           | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
|               |       |       |       |       |       |       |       |       |
| Bit           | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
| Bit Name      | ABWL7 | ABWL6 | ABWL5 | ABWL4 | ABWL3 | ABWL2 | ABWL1 | ABWL0 |
| Initial Value | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| R/W           | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |

ABWCR specifies the data bus width for each area in the external address space.

Note: \* Initial value at 16-bit bus initiation is H'FEFF, and that at 8-bit bus initiation is H'FFFF.

|     |          | Initial |     |             |            |                                        |
|-----|----------|---------|-----|-------------|------------|----------------------------------------|
| Bit | Bit Name | Value*1 | R/W | Descriptio  | on         |                                        |
| 15  | ABWH7    | 1       | R/W | Area 7 to 0 | ) Bus Wi   | dth Control                            |
| 14  | ABWH6    | 1       | R/W | These bits  | select w   | hether the corresponding area is to be |
| 13  | ABWH5    | 1       | R/W | designated  | d as 8-bit | access space or 16-bit access space.   |
| 12  | ABWH4    | 1       | R/W | ABWHn       | ABWLn      | (n = 7 to 0)                           |
| 11  | ABWH3    | 1       | R/W | х           | 0:         | Setting prohibited                     |
| 10  | ABWH2    | 1       | R/W | 0           | 1:         | Area n is designated as 16-bit access  |
| 9   | ABWH1    | 1       | R/W |             |            | space                                  |
| 8   | ABWL0    | 1/0     | R/W | 1           | 1:         | Area n is designated as 8-bit access   |
| 7   | ABWL7    | 1       | R/W |             |            | 0000                                   |
| 6   | ABWL6    | 1       | R/W |             |            |                                        |
| 5   | ABWL5    | 1       | R/W |             |            |                                        |
| 4   | ABWL4    | 1       | R/W |             |            |                                        |
| 3   | ABWL3    | 1       | R/W |             |            |                                        |
| 2   | ABWL2    | 1       | R/W |             |            |                                        |
| 1   | ABWL1    | 1       | R/W |             |            |                                        |
| 0   | ABWL0    | 1       | R/W |             |            |                                        |

[Legend]

×: Don't care

Notes: 1. Initial value at 16-bit bus initiation is H'FEFF, and that at 8-bit bus initiation is H'FFFF.

RENESAS

2. An address space specified as byte control SRAM interface must not be specified as 8bit access space.

| Bit    | Rit Name   | Initial<br>Value | R/W        | Description                                                                                             |
|--------|------------|------------------|------------|---------------------------------------------------------------------------------------------------------|
|        |            | value            |            |                                                                                                         |
| 0      | VV52       | 1                | H/W        | Area 5 Walt Control 2 to 0                                                                              |
| 5<br>4 | W51<br>W50 | 1                | R/W<br>R/W | These bits select the number of program wait cycles when accessing area 5 while bit AST5 in ASTCR is 1. |
|        |            | ·                |            | 000: Program cycle wait not inserted                                                                    |
|        |            |                  |            | 001: 1 program wait cycle inserted                                                                      |
|        |            |                  |            | 010: 2 program wait cycles inserted                                                                     |
|        |            |                  |            | 011: 3 program wait cycles inserted                                                                     |
|        |            |                  |            | 100: 4 program wait cycles inserted                                                                     |
|        |            |                  |            | 101: 5 program wait cycles inserted                                                                     |
|        |            |                  |            | 110: 6 program wait cycles inserted                                                                     |
|        |            |                  |            | 111: 7 program wait cycles inserted                                                                     |
| 3      |            | 0                | R          | Reserved                                                                                                |
|        |            |                  |            | This is a read-only bit and cannot be modified.                                                         |
| 2      | W42        | 1                | R/W        | Area 4 Wait Control 2 to 0                                                                              |
| 1      | W41        | 1                | R/W        | These bits select the number of program wait cycles                                                     |
| 0      | W40        | 1                | R/W        | when accessing area 4 while bit AS14 in AS1CR is 1.                                                     |
|        |            |                  |            | 000: Program wait cycle not inserted                                                                    |
|        |            |                  |            | 001: 1 program wait cycle inserted                                                                      |
|        |            |                  |            | 010: 2 program wait cycles inserted                                                                     |
|        |            |                  |            | 011: 3 program wait cycles inserted                                                                     |
|        |            |                  |            | 100: 4 program wait cycles inserted                                                                     |
|        |            |                  |            | 101: 5 program wait cycles inserted                                                                     |
|        |            |                  |            | 110: 6 program wait cycles inserted                                                                     |
|        |            |                  |            | 111: 7 program wait cycles inserted                                                                     |



|     |          | Initial |     |                                                                                                  |
|-----|----------|---------|-----|--------------------------------------------------------------------------------------------------|
| Bit | Bit Name | Value   | R/W | Description                                                                                      |
| 15  | CSXH7    | 0       | R/W | CS and Address Signal Assertion Period Control 1                                                 |
| 14  | CSXH6    | 0       | R/W | These bits specify whether or not the Th cycle is to be                                          |
| 13  | CSXH5    | 0       | R/W | inserted (see figure 6.3). When an area for which bit                                            |
| 12  | CSXH4    | 0       | R/W | $\overline{\text{CSn}}$ and address signals are asserted, is inserted before                     |
| 11  | CSXH3    | 0       | R/W | the normal access cycle.                                                                         |
| 10  | CSXH2    | 0       | R/W | 0: In access to area n, the $\overline{\text{CSn}}$ and address assertion                        |
| 9   | CSXH1    | 0       | R/W | period (Th) is not extended                                                                      |
| 8   | CSXH0    | 0       | R/W | 1: In access to area n, the $\overline{\text{CSn}}$ and address assertion                        |
|     |          |         |     | period (Th) is extended                                                                          |
|     |          |         |     | (n = 7 to 0)                                                                                     |
| 7   | CSXT7    | 0       | R/W | CS and Address Signal Assertion Period Control 2                                                 |
| 6   | CSXT6    | 0       | R/W | These bits specify whether or not the Tt cycle is to be                                          |
| 5   | CSXT5    | 0       | R/W | inserted (see figure 6.3). When an area for which bit                                            |
| 4   | CSXT4    | 0       | R/W | $\overline{\text{CSn}}$ and address signals are retained, is inserted after                      |
| 3   | CSXT3    | 0       | R/W | the normal access cycle.                                                                         |
| 2   | CSXT2    | 0       | R/W | 0: In access to area n, the $\overline{\text{CSn}}$ and address assertion                        |
| 1   | CSXT1    | 0       | R/W | period (Tt) is not extended                                                                      |
| 0   | CSXT0    | 0       | R/W | 1: In access to area n, the $\overline{\text{CSn}}$ and address assertion                        |
|     |          |         |     | period (Tt) is extended                                                                          |
|     |          |         |     | (n = 7 to 0)                                                                                     |
| 0   | CSXT0    | 0       | R/W | 1: In access to area n, the CSn and address assertion<br>period (Tt) is extended<br>(n = 7 to 0) |

Note: \* In burst ROM interface, the CSXTn settings are ignored.

#### 6.6.4 Wait Control

This LSI can extend the bus cycle by inserting wait cycles (Tw) when the external address space is accessed. There are two ways of inserting wait cycles: program wait (Tpw) insertion and pin wait (Ttw) insertion using the  $\overline{WAIT}$  pin.

#### (1) Program Wait Insertion

From 0 to 7 wait cycles can be inserted automatically between the  $T_2$  state and  $T_3$  state for 3-state access space, according to the settings in WTCRA and WTCRB.

### (2) Pin Wait Insertion

For 3-state access space, when the WAITE bit in BCR1 is set to 1 and the ICR bit for the corresponding pin is set to 1, wait input by means of the  $\overline{WAIT}$  pin is enabled. When the external address space is accessed in this state, a program wait ( $T_{PW}$ ) is first inserted according to the WTCRA and WTCRB settings. If the  $\overline{WAIT}$  pin is low at the falling edge of B $\phi$  in the last T2 or Tpw cycle, another Ttw cycle is inserted until the  $\overline{WAIT}$  pin is brought high. The pin wait insertion is effective when the Tw cycles are inserted to seven cycles or more, or when the number of Tw cycles to be inserted is changed according to the external devices. The WAITE bit is common to all areas. For details on ICR, see section 9, I/O Ports.

Figure 6.20 shows an example of wait cycle insertion timing. After a reset, the 3-state access is specified, the program wait is inserted for seven cycles, and the  $\overline{WAIT}$  input is disabled.





Figure 6.20 Example of Wait Cycle Insertion Timing



### (4) P24/PO4/TIOCA4/TIOCB4/TMRI1/SCK1

The pin function is switched as shown below according to the combination of the TPU, SCI, and PPG register settings and P24DDR bit setting.

|             |                                | Setting   |         |        |          |  |  |  |
|-------------|--------------------------------|-----------|---------|--------|----------|--|--|--|
|             |                                | TPU       | SCI     | PPG    | I/O Port |  |  |  |
| Module Name | Pin Function                   | TIOCB4_OE | SCK1_OE | PO4_OE | P24DDR   |  |  |  |
| TPU         | TIOCB4 output                  | 1         | _       | —      | —        |  |  |  |
| SCI         | SCK1 output                    | 0         | 1       | _      | —        |  |  |  |
| PPG         | PO4 output                     | 0         | 0       | 1      | —        |  |  |  |
| I/O port    | P24 output                     | 0         | 0       | 0      | 1        |  |  |  |
|             | P24 input<br>(initial setting) | 0         | 0       | 0      | 0        |  |  |  |

### (5) P23/PO3/TIOCC3/TIOCD3/IRQ11-A

The pin function is switched as shown below according to the combination of the TPU and PPG register settings and P23DDR bit setting.

|             |                                | Setting   |        |          |  |  |
|-------------|--------------------------------|-----------|--------|----------|--|--|
|             |                                | TPU       | PPG    | I/O Port |  |  |
| Module Name | Pin Function                   | TIOCD3_OE | PO3_OE | P23DDR   |  |  |
| TPU         | TIOCD3 output                  | 1         |        | _        |  |  |
| PPG         | PO3 output                     | 0         | 1      |          |  |  |
| I/O port    | P23 output                     | 0         | 0      | 1        |  |  |
|             | P23 input<br>(initial setting) | 0         | 0      | 0        |  |  |

#### Section 9 I/O Ports

| Port |   | Output<br>Specification<br>Signal Name | Output<br>Signal<br>Name | Signal Selection<br>Register Settings | Peripheral Module Settings                                                                                                                                                                                                                          |  |  |
|------|---|----------------------------------------|--------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| P6   | 5 | DACK3_OE                               | DACK3                    | PFCR7.DMAS3[A,B] = 01                 | DACR.AMS = 1, DMDR.DACKE = 1                                                                                                                                                                                                                        |  |  |
|      |   | TMO3_OE                                | ТМОЗ                     |                                       | TCSR.OS[3,2] = 01/10/11 or TCSR.OS[1,0] = 01/10/11                                                                                                                                                                                                  |  |  |
|      | 4 | TEND3_OE                               | TEND3                    | PFCR7.DMAS3[A,B] =<br>01              | DMDR.TENDE = 1                                                                                                                                                                                                                                      |  |  |
|      | 2 | DACK2_OE                               | DACK2                    | PFCR7.DMAS2[A,B] =<br>01              | DACR.AMS = 1, DMDR.DACKE = 1                                                                                                                                                                                                                        |  |  |
|      |   | TMO2_OE                                | TMO2                     |                                       | TCSR.OS[3,2] = 01/10/11 or TCSR.OS[1,0] = 01/10/11                                                                                                                                                                                                  |  |  |
|      |   | SCK4_OE                                | SCK4                     |                                       | When SCMR.SMIF = 1:<br>SCR.TE = 1 or SCR.RE = 1 while<br>SMR.GM = 0, SCR.CKE [1, 0] = 01 or<br>while SMR.GM = 1<br>When SCMR.SMIF = 0:<br>SCR.TE = 1 or SCR.RE = 1 while<br>SMR.C/A = 0, SCR.CKE [1, 0] = 01 or<br>while SMR.C/A = 1, SCR.CKE 1 = 0 |  |  |
|      | 1 | TEND2_OE                               | TEND2                    | PFCR7.DMAS2[A,B] =<br>01              | DMDR.TENDE = 1                                                                                                                                                                                                                                      |  |  |
|      | 0 | TxD4_OE                                | TxD4                     |                                       | SCR.TE = 1                                                                                                                                                                                                                                          |  |  |
| PA   | 7 | B¢_OE                                  | Вφ                       |                                       | PADDR.PA7DDR = 1, SCKCR.POSEL1 = 0                                                                                                                                                                                                                  |  |  |
|      | 6 | AH_OE                                  | ĀĦ                       |                                       | MPXCR.MPXEn (n = 7 to 3) = 1                                                                                                                                                                                                                        |  |  |
|      |   | BS-B_OE                                | BS                       | PFCR2.BSS = 1                         | PFCR2.BSE = 1                                                                                                                                                                                                                                       |  |  |
|      |   | AS_OE                                  | ĀS                       |                                       | PFCR2.ASOE = 1                                                                                                                                                                                                                                      |  |  |
|      | 5 | RD_OE                                  | RD                       |                                       |                                                                                                                                                                                                                                                     |  |  |
|      | 4 | LUB_OE                                 | LUB                      |                                       | PFCR6.LHWROE = 1 or SRAMCR.BCSELn = 1                                                                                                                                                                                                               |  |  |
|      |   | LHWR_OE                                | LHWR                     |                                       | PFCR6.LHWROE = 1                                                                                                                                                                                                                                    |  |  |
|      | 3 | LLB_OE                                 | LLB                      |                                       | SRAMCR.BCSELn = 1                                                                                                                                                                                                                                   |  |  |
|      |   | LLWR_OE                                | LLWR                     |                                       | SRAMCR.BCSELn = 0                                                                                                                                                                                                                                   |  |  |
|      | 1 | BACK_OE                                | BACK                     |                                       | BCR1.BRLE = 1                                                                                                                                                                                                                                       |  |  |
|      |   | (RD/WR)_OE                             | RD/WR                    |                                       | PFCR2.REWRE = 1 or SRAMCR.BCSELn = 1                                                                                                                                                                                                                |  |  |
|      | 0 | BS-A_OE                                | BS                       | PFCR2.BSS = 0                         | PFCR2.BSE = 1                                                                                                                                                                                                                                       |  |  |
|      |   | BREQO_OE                               | BREQO                    |                                       | BCR1.BRLE = 1, BCR1.BREQOE = 1                                                                                                                                                                                                                      |  |  |

RENESAS

|      |   | Output<br>Specification | Output<br>Signal | Signal Selection                       |                            |
|------|---|-------------------------|------------------|----------------------------------------|----------------------------|
| Port |   | Signal Name             | Name             | Register Settings                      | Peripheral Module Settings |
| PB   | 3 | CS3_OE                  | CS3              |                                        | PFCR0.CS3E = 1             |
|      |   | CS7A_OE                 | CS7              | PFCR1.CS7S[A,B] = 00                   | PFCR0.CS7E = 1             |
|      | 2 | CS2A_OE                 | CS2              | PFCR2.CS2S = 0                         | PFCR0.CS2E = 1             |
|      |   | CS6A_OE                 | CS6              | PFCR1.CS6S[A,B] = 00                   | PFCR0.CS6E = 1             |
|      | 1 | CS1_OE                  | CS1              |                                        | PFCR0.CS1E = 1             |
|      |   | CS2B_OE                 | CS2              | PFCR2.CS2S = 1                         | PFCR0.CS2E = 1             |
|      |   | CS5A_OE                 | CS5              | PFCR1.CS5S[A,B] = 00                   | PFCR0.CS5E = 1             |
|      |   | CS6B_OE                 | CS6              | PFCR1.CS6S[A,B] = 01                   | PFCR0.CS6E = 1             |
|      |   | CS7B_OE                 | CS7              | PFCR1.CS7S[A,B] = 01                   | PFCR0.CS7E = 1             |
|      | 0 | CS0_OE                  | CS0              |                                        | PFCR0.CS0E = 1             |
|      |   | CS4A_OE                 | CS4              | PFCR1.CS4S[A,B] = 00<br>PFCR0.CS4E = 1 | PFCR0.CS4E = 1             |
|      |   | CS5B_OE                 | CS5              | PFCR1.CS5S[A,B] = 01                   | PFCR0.CS5E = 1             |
| PD   | 7 | A7_OE                   | A7               |                                        |                            |
| 1 D  | 6 | A6_OE                   | A6               |                                        |                            |
|      | 5 | A5_OE                   | A5               |                                        |                            |
|      | 4 | A4_OE                   | A4               |                                        |                            |
|      | 3 | A3_OE                   | A3               |                                        |                            |
|      | 2 | A2_OE                   | A2               |                                        |                            |
|      | 1 | A1_OE                   | A1               |                                        |                            |
|      | 0 | A0_OE                   | A0               |                                        |                            |
| PE   | 7 | A15_OE                  | A15              |                                        |                            |
|      | 6 | A14_OE                  | A14              |                                        |                            |
|      | 5 | A13_OE                  | A13              |                                        |                            |
|      | 4 | A12_OE                  | A12              |                                        |                            |
|      | 3 | A11_OE                  | A11              |                                        |                            |
|      | 2 | A10_OE                  | A10              |                                        |                            |
|      | 1 | A9_OE                   | A9               |                                        |                            |
|      | 0 | A8_OE                   | A8               |                                        |                            |

## 9.3.2 Port Function Control Register 1 (PFCR1)

PFCR1 selects the  $\overline{CS}$  output pins.

| Bit           | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|---------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Bit Name      | CS7SA | CS7SB | CS6SA | CS6SB | CS5SA | CS5SB | CS4SA | CS4SB |
| Initial Value | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W           | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |

|          | Initial                                                              |                                                                         |                                                                                                |
|----------|----------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Bit Name | Value                                                                | R/W                                                                     | Description                                                                                    |
| CS7SA*   | 0                                                                    | R/W                                                                     | CS7 Output Pin Select                                                                          |
| CS7SB*   | 0                                                                    | R/W                                                                     | Selects the output pin for $\overline{CS7}$ when $\overline{CS7}$ output is enabled (CS7E = 1) |
|          |                                                                      |                                                                         | 00: Specifies pin PB3 as $\overline{CS7}$ -A output                                            |
|          |                                                                      |                                                                         | 01: Specifies pin PB1 as CS7-B output                                                          |
|          |                                                                      |                                                                         | 10: Specifies pin PF7 as $\overline{CS7}$ -C output                                            |
|          |                                                                      |                                                                         | 11: Setting prohibited                                                                         |
| CS6SA*   | 0                                                                    | R/W                                                                     | CS6 Output Pin Select                                                                          |
| CS6SB*   | 0                                                                    | R/W                                                                     | Selects the output pin for $\overline{CS6}$ when $\overline{CS6}$ output is enabled (CS6E = 1) |
|          |                                                                      |                                                                         | 00: Specifies pin PB2 as CS6-A output                                                          |
|          |                                                                      |                                                                         | 01: Specifies pin PB1 as CS6-B output                                                          |
|          |                                                                      |                                                                         | 10: Specifies pin PF7 as CS6-C output                                                          |
|          |                                                                      |                                                                         | 11: Specifies pin PF6 as CS6-D output                                                          |
| CS5SA*   | 0                                                                    | R/W                                                                     | CS5 Output Pin Select                                                                          |
| CS5SB*   | 0                                                                    | R/W                                                                     | Selects the output pin for $\overline{CS5}$ when $\overline{CS5}$ output is enabled (CS5E = 1) |
|          |                                                                      |                                                                         | 00: Specifies pin PB1 as CS5-A output                                                          |
|          |                                                                      |                                                                         | 01: Specifies pin PB0 as CS5-B output                                                          |
|          |                                                                      |                                                                         | 10: Specifies pin PF7 as CS5-C output                                                          |
|          |                                                                      |                                                                         | 11: Specifies pin PF5 as $\overline{CS5}$ -D output                                            |
|          | Bit Name<br>CS7SA*<br>CS7SB*<br>CS6SA*<br>CS6SB*<br>CS5SA*<br>CS5SB* | Initial<br>ValueBit NameValueCS7SA*0CS7SB*0CS6SA*0CS6SB*0CS5SA*0CS5SB*0 | Initial<br>ValueR/WCS7SA*0R/WCS7SB*0R/WCS6SA*0R/WCS6SB*0R/WCS5SA*0R/WCS5SA*0R/W                |



### **10.4.3** Buffer Operation

Buffer operation, provided for channels 0 and 3, enables TGRC and TGRD to be used as buffer registers.

Buffer operation differs depending on whether TGR has been designated as an input capture register or a compare match register.

Table 10.29 shows the register combinations used in buffer operation.

| Channel | Timer General Register | Buffer Register |  |  |
|---------|------------------------|-----------------|--|--|
| 0       | TGRA_0                 | TGRC_0          |  |  |
|         | TGRB_0                 | TGRD_0          |  |  |
| 3       | TGRA_3                 | TGRC_3          |  |  |
|         | TGRB_3                 | TGRD_3          |  |  |

 Table 10.29 Register Combinations in Buffer Operation

• When TGR is an output compare register

When a compare match occurs, the value in the buffer register for the corresponding channel is transferred to the timer general register.

This operation is illustrated in figure 10.12.



Figure 10.12 Compare Match Buffer Operation

#### (b) Phase counting mode 2

Figure 10.26 shows an example of phase counting mode 2 operation, and table 10.34 summarizes the TCNT up/down-count conditions.





| TCLKA (Channels 1 and 5)<br>TCLKC (Channels 2 and 4) | TCLKB (Channels 1 and 5)<br>TCLKD (Channels 2 and 4) | Operation  |
|------------------------------------------------------|------------------------------------------------------|------------|
| High level                                           | Ł                                                    | Don't care |
| Low level                                            | ł                                                    | Don't care |
| Ł                                                    | Low level                                            | Don't care |
| ł                                                    | High level                                           | Up-count   |
| High level                                           | ł                                                    | Don't care |
| Low level                                            | F                                                    | Don't care |
| Ł                                                    | High level                                           | Don't care |
| Ł                                                    | Low level                                            | Down-count |

[Legend]

F: Rising edge

L: Falling edge

#### 11.4.2 Sample Setup Procedure for Normal Pulse Output

Figure 11.4 shows a sample procedure for setting up normal pulse output.



Figure 11.4 Setup Procedure for Normal Pulse Output (Example)



## 18.5 Usage Notes

#### 18.5.1 Notes on Clock Pulse Generator

1. The following points should be noted since the frequency of  $\phi$  (I $\phi$ : system clock, P $\phi$ : peripheral module clock, B $\phi$ : external bus clock) supplied to each module changes according to the setting of SCKCR.

Select a clock division ratio that is within the operation guaranteed range of clock cycle time  $t_{cyc}$  shown in the AC timing of electrical characteristics.

The setting should be within the operation guaranteed range of 8 MHz  $\leq$  I $\phi \leq$  50 MHz, 8 MHz  $\leq$  P $\phi \leq$  35 MHz, and 8 MHz  $\leq$  B $\phi \leq$  50 MHz.

2. All the on-chip peripheral modules (except for the DTC) operate on the  $P\phi$ . Therefore, note that the time processing of modules such as a timer and SCI differs before and after changing the clock division ratio.

In addition, wait time for clearing software standby mode differs by changing the clock division ratio. For details, see section 19.5.3, Setting Oscillation Settling Time after Clearing Software Standby Mode.

- 3. The relationship among the system clock, peripheral module clock, and external bus clock is  $I\phi \ge P\phi$  and  $I\phi \ge B\phi$ . In addition, the system clock setting has the highest priority. Accordingly,  $P\phi$  or  $B\phi$  may have the frequency set by bits ICK2 to ICK0 regardless of the settings of bits PCK2 to PCK0 or BCK2 to BCK0.
- 4. Figure 18.5 shows the clock modification timing. After a value is written to SCKCR, this LSI waits for the current bus cycle to complete. After the current bus cycle completes, each clock frequency will be modified within one cycle (worst case) of the external input clock.



# Section 20 List of Registers

The register list gives information on the on-chip I/O register addresses, how the register bits are configured, and the register states in each operating mode. The information is given as shown below.

- 1. Register addresses (address order)
- Registers are listed from the lower allocation addresses.
- Registers are classified according to functional modules.
- The number of Access Cycles indicates the number of states based on the specified reference clock. For details, refer to section 6.5.4, External Bus Interface.
- Among the internal I/O register area, addresses not listed in the list of registers are undefined or reserved addresses. Undefined and reserved addresses cannot be accessed. Do not access these addresses; otherwise, the operation when accessing these bits and subsequent operations cannot be guaranteed.
- 2. Register bits
- Bit configurations of the registers are listed in the same order as the register addresses.
- Reserved bits are indicated by in the bit name column.
- Space in the bit name field indicates that the entire register is allocated to either the counter or data.
- For the registers of 16 or 32 bits, the MSB is listed first. Byte configuration description order is subject to big endian.
- 3. Register states in each operating mode
- Register states are listed in the same order as the register addresses.
- For the initialized state of each bit, refer to the register description in the corresponding section.
- The register states shown here are for the basic operating modes. If there is a specific reset for an on-chip peripheral module, refer to the section on that on-chip peripheral module.



|                                   |              |          |         |        |       | Access       |
|-----------------------------------|--------------|----------|---------|--------|-------|--------------|
|                                   |              | Number o | f       |        | Data  | Cycles       |
| Register Name                     | Abbreviation | Bits     | Address | Module | Width | (Read/Write) |
| Timer counter_0                   | TCNT_0       | 8        | H'FFFB8 | TMR_0  | 16    | 2Ρφ/2Ρφ      |
| Timer counter_1                   | TCNT_1       | 8        | H'FFFB9 | TMR_1  | 16    | 2Ρφ/2Ρφ      |
| Timer counter control register_0  | TCCR_0       | 8        | H'FFFBA | TMR_0  | 16    | 2Ρφ/2Ρφ      |
| Timer counter control register_1  | TCCR_1       | 8        | H'FFFBB | TMR_1  | 16    | 2Ρφ/2Ρφ      |
| Timer start register              | TSTR         | 8        | H'FFFBC | TPU    | 16    | 2P\$/2P\$    |
| Timer synchronous register        | TSYR         | 8        | H'FFFBD | TPU    | 16    | 2Pø/2Pø      |
| Timer control register_0          | TCR_0        | 8        | H'FFFC0 | TPU_0  | 16    | 2Pø/2Pø      |
| Timer mode register_0             | TMDR_0       | 8        | H'FFFC1 | TPU_0  | 16    | 2Ρφ/2Ρφ      |
| Timer I/O control register H_0    | TIORH_0      | 8        | H'FFFC2 | TPU_0  | 16    | 2Pø/2Pø      |
| Timer I/O control register L_0    | TIORL_0      | 8        | H'FFFC3 | TPU_0  | 16    | 2Pø/2Pø      |
| Timer interrupt enable register_0 | TIER_0       | 8        | H'FFFC4 | TPU_0  | 16    | 2Pø/2Pø      |
| Timer status register_0           | TSR_0        | 8        | H'FFFC5 | TPU_0  | 16    | 2Ρφ/2Ρφ      |
| Timer counter_0                   | TCNT_0       | 16       | H'FFFC6 | TPU_0  | 16    | 2Ρφ/2Ρφ      |
| Timer general register A_0        | TGRA_0       | 16       | H'FFFC8 | TPU_0  | 16    | 2Pø/2Pø      |
| Timer general register B_0        | TGRB_0       | 16       | H'FFFCA | TPU_0  | 16    | 2P\$/2P\$    |
| Timer general register C_0        | TGRC_0       | 16       | H'FFFCC | TPU_0  | 16    | 2P\$/2P\$    |
| Timer general register D_0        | TGRD_0       | 16       | H'FFFCE | TPU_0  | 16    | 2Pø/2Pø      |
| Timer control register_1          | TCR_1        | 8        | H'FFFD0 | TPU_1  | 16    | 2Pø/2Pø      |
| Timer mode register_1             | TMDR_1       | 8        | H'FFFD1 | TPU_1  | 16    | 2Ρφ/2Ρφ      |
| Timer I/O control register_1      | TIOR_1       | 8        | H'FFFD2 | TPU_1  | 16    | 2Pø/2Pø      |
| Timer interrupt enable register_1 | TIER_1       | 8        | H'FFFD4 | TPU_1  | 16    | 2Pø/2Pø      |
| Timer status register_1           | TSR_1        | 8        | H'FFFD5 | TPU_1  | 16    | 2Pø/2Pø      |
| Timer counter_1                   | TCNT_1       | 16       | H'FFFD6 | TPU_1  | 16    | 2Ρφ/2Ρφ      |
| Timer general register A_1        | TGRA_1       | 16       | H'FFFD8 | TPU_1  | 16    | 2Pø/2Pø      |
| Timer general register B_1        | TGRB_1       | 16       | H'FFFDA | TPU_1  | 16    | 2Ρφ/2Ρφ      |



| Register<br>Abbreviation | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit 25/17/9/1 | Bit 24/16/8/0 | Module |
|--------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------|---------------|--------|
| DMRSR_0                  |                   |                   |                   |                   |                   |                   |               |               | DMAC_0 |
| DMRSR_1                  |                   |                   |                   |                   |                   |                   |               |               | DMAC_1 |
| DMRSR_2                  |                   |                   |                   |                   |                   |                   |               |               | DMAC_2 |
| DMRSR_3                  |                   |                   |                   |                   |                   |                   |               |               | DMAC_3 |
| IPRA                     | _                 | IPRA14            | IPRA13            | IPRA12            | _                 | IPRA10            | IPRA9         | IPRA8         | INTC   |
|                          | _                 | IPRA6             | IPRA5             | IPRA4             | _                 | IPRA2             | IPRA1         | IPRA0         |        |
| IPRB                     | _                 | IPRB14            | IPRB13            | IPRB12            | _                 | IPRB10            | IPRB9         | IPRB8         |        |
|                          | _                 | IPRB6             | IPRB5             | IPRB4             | _                 | IPRB2             | IPRB1         | IPRB0         |        |
| IPRC                     | _                 | IPRC14            | IPRC13            | IPRC12            | _                 | IPRC10            | IPRC9         | IPRC8         |        |
|                          | _                 | IPRC6             | IPRC5             | IPRC4             | _                 | IPRC2             | IPRC1         | IPRC0         |        |
| IPRE                     | _                 | _                 | _                 | _                 | _                 | IPRE10            | IPRE9         | IPRE8         |        |
|                          | _                 | _                 | _                 | _                 | _                 | _                 | _             | _             |        |
| IPRF                     | _                 | _                 | _                 | _                 | _                 | IPRF10            | IPRF9         | IPRF8         |        |
|                          | _                 | IPRF6             | IPRF5             | IPRF4             | _                 | IPRF2             | IPRF1         | IPRF0         |        |
| IPRG                     | _                 | IPRG14            | IPRG13            | IPRG12            | _                 | IPRG10            | IPRG9         | IPRG8         |        |
|                          | _                 | IPRG6             | IPRG5             | IPRG4             | _                 | IPRG2             | IPRG1         | IPRG0         |        |
| IPRH                     | _                 | IPRH14            | IPRH13            | IPRH12            | _                 | IPRH10            | IPRH9         | IPRH8         |        |
|                          |                   | IPRH6             | IPRH5             | IPRH4             | _                 | IPRH2             | IPRH1         | IPRH0         |        |
| IPRI                     |                   | IPRI14            | IPRI13            | IPRI12            | _                 | IPRI10            | IPRI9         | IPRI8         |        |
|                          | _                 | IPRI6             | IPRI5             | IPRI4             | _                 | IPRI2             | IPRI1         | IPRI0         |        |
| IPRK                     |                   | IPRK14            | IPRK13            | IPRK12            | _                 | _                 | _             | _             |        |
|                          | —                 | IPRK6             | IPRK5             | IPRK4             | _                 | IPRK2             | IPRK1         | IPRK0         |        |
| IPRL                     | _                 | IPRL14            | IPRL13            | IPRL12            | _                 | IPRL10            | IPRL9         | IPRL8         |        |
|                          |                   | IPRL6             | IPRL5             | IPRL4             | _                 | _                 | _             | _             |        |
| ISCRH                    | _                 | _                 | _                 | _                 | _                 | _                 | _             | _             |        |
|                          | IRQ11SR           | IRQ11SF           | IRQ10SR           | IRQ10SF           | IRQ9SR            | IRQ9SF            | IRQ8SR        | IRQ8SF        |        |
| ISCRL                    | IRQ7SR            | IRQ7SF            | IRQ6SR            | IRQ6SF            | IRQ5SR            | IRQ5SF            | IRQ4SR        | IRQ4SF        |        |
|                          | IRQ3SR            | IRQ3SF            | IRQ2SR            | IRQ2SF            | IRQ1SR            | IRQ1SF            | IRQ0SR        | IRQ0SF        |        |



| Register<br>Abbreviation | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4  | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit 25/17/9/1 | Bit 24/16/8/0 | Module |
|--------------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|---------------|---------------|--------|
| SYSCR                    | _                 | _                 | MACS              |                    | FETCHMD           | _                 | EXPE          | RAME          | SYSTEM |
|                          | _                 | _                 | _                 | _                  | _                 | _                 | DTCMD         | _             |        |
| SCKCR                    | PSTOP1            | _                 | POSEL1            |                    | _                 | ICK2              | ICK1          | ICK0          |        |
|                          | _                 | PCK2              | PCK1              | PCK0               | _                 | BCK2              | BCK1          | BCK0          |        |
| SBYCR                    | SSBY              | OPE               | _                 | STS4               | STS3              | STS2              | STS1          | STS0          |        |
|                          | SLPIE             | _                 | _                 | _                  | _                 | _                 | _             | _             |        |
| MSTPCRA                  | ACSE              | MSTPA14           | MSTPA13           | MSTPA12            | MSTPA11           | MSTPA10           | MSTPA9        | MSTPA8        |        |
|                          | MSTPA7            | MSTPA6            | MSTPA5            | MSTPA4             | MSTPA3            | MSTPA2            | MSTPA1        | MSTPA0        |        |
| MSTPCRB                  | MSTPB15           | MSTPB14           | MSTPB13           | MSTPB12            | MSTPB11           | MSTPB10           | MSTPB9        | MSTPB8        |        |
|                          | MSTPB7            | MSTPB6            | MSTPB5            | MSTPB4             | MSTPB3            | MSTPB2            | MSTPB1        | MSTPB0        |        |
| MSTPCRC                  | MSTPC15           | MSTPC14           | MSTPC13           | MSTPC12            | MSTPC11           | MSTPC10           | MSTPC9        | MSTPC8        |        |
|                          | MSTPC7            | MSTPC6            | MSTPC5            | MSTPC4             | MSTPC3            | MSTPC2            | MSTPC1        | MSTPC0        |        |
| SEMR_2                   | _                 | _                 | _                 | _                  | ABCS              | ACS2              | ACS1          | ACS0          | SCI_2  |
| SMR_3*1                  | C/Ā               | CHR               | PE                | O/E                | STOP              | MP                | CKS1          | CKS0          | SCI_3  |
|                          | (GM)              | (BLK)             | (PE)              | $(O/\overline{E})$ | (BCP0)            | (BCP0)            |               |               |        |
| BRR_3                    |                   |                   |                   |                    |                   |                   |               |               |        |
| SCR_3*1                  | TIE               | RIE               | TE                | RE                 | MPIE              | TEIE              | CKE1          | CKE0          |        |
| TDR_3                    |                   |                   |                   |                    |                   |                   |               |               |        |
| SSR_3*1                  | TDRE              | RDRF              | ORER              | FER<br>(ERS)       | PER               | TEND              | MPB           | MPBT          |        |
| RDR_3                    |                   |                   |                   |                    |                   |                   |               |               |        |
| SCMR_3                   | _                 |                   |                   |                    | SDIR              | SINV              |               | SMIF          |        |
| SMR_4*1                  | C/Ā               | CHR               | PE                | O/E                | STOP              | MP                | CKS1          | CKS0          | SCI_4  |
|                          | (GM)              | (BLK)             | (PE)              | $(O/\overline{E})$ | (BCP1)            | (BCP0)            |               |               |        |
| BRR_4                    |                   |                   |                   |                    |                   |                   |               |               |        |
| SCR_4*1                  | TIE               | RIE               | TE                | RE                 | MPIE              | TEIE              | CKE1          | CKE0          |        |
| TDR_4                    |                   |                   |                   |                    |                   |                   |               |               |        |
| SSR_4*1                  | TDRE              | RDRF              | ORER              | FER<br>(ERS)       | PER               | TEND              | MPB           | MPBT          |        |
| RDR_4                    |                   |                   |                   |                    |                   |                   |               |               |        |
| SCMR_4                   | _                 |                   | _                 |                    | SDIR              | SINV              |               | SMIF          | ·      |

