Intel - EP2A15F672C7N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	1664
Number of Logic Elements/Cells	16640
Total RAM Bits	425984
Number of I/O	492
Number of Gates	1900000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2a15f672c7n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Description

APEX II devices integrate high-speed differential I/O support using the True-LVDS interface. The dedicated serializer, deserializer, and CDS circuitry in the True-LVDS interface support the LVDS, LVPECL, HyperTransport, and PCML I/O standards. Flexible-LVDS pins located in regular user I/O banks offer additional differential support, increasing the total device bandwidth. This circuitry, together with enhanced IOEs and support for numerous I/O standards, allows APEX II devices to meet high-speed interface requirements.

APEX II devices also include other high-performance features such as bidirectional dual-port RAM, CAM, general-purpose PLLs, and numerous global clocks.

Configuration

The logic, circuitry, and interconnects in the APEX II architecture are configured with CMOS SRAM elements. APEX II devices are reconfigurable and are 100% tested prior to shipment. As a result, test vectors do not have to be generated for fault coverage. Instead, the designer can focus on simulation and design verification. In addition, the designer does not need to manage inventories of different ASIC designs; APEX II devices can be configured on the board for the specific functionality required.

APEX II devices are configured at system power-up with data either stored in an Altera configuration device or provided by a system controller. Altera offers in-system programmability (ISP)-capable configuration devices, which configure APEX II devices via a serial data stream. The enhanced configuration devices can configure any APEX II device in under 100 ms. Moreover, APEX II devices contain an optimized interface that permits microprocessors to configure APEX II devices serially or in parallel, synchronously or asynchronously. This interface also enables microprocessors to treat APEX II devices as memory and to configure the device by writing to a virtual memory location, simplifying reconfiguration.

APEX II devices also support a new byte-wide, synchronous configuration scheme at speeds of up to 66 MHz using EPC16 configuration devices or a microprocessor. This parallel configuration reduces configuration time by using eight data lines to send configuration data versus one data line in serial configuration.

APEX II devices support multi-voltage configuration; device configuration can be performed at 3.3 V and 2.5 V or 1.8 V.

The LAB-wide control signals can be generated from the LAB local interconnect, global signals, and dedicated clock pins. The inherent low skew of the FastTrack interconnect enables it to be used for clock distribution. Figure 4 shows the LAB control signal generation circuit.

Figure 4. LAB Control Signal Generation

Notes to Figure 4:

- (1) The LABCLR1 and LABCLR2 signals also control asynchronous load and asynchronous preset for LEs within the LAB.
- (2) The SYNCCLR signal can be generated by the local interconnect or global signals.

Logic Element

The LE is the smallest unit of logic in the APEX II architecture. Each LE contains a four-input LUT, which is a function generator that can quickly implement any function of four variables. In addition, each LE contains a programmable register and carry and cascade chains. Each LE drives the local interconnect, MegaLAB interconnect, and FastTrack interconnect routing structures. See Figure 5.

Figure 13. Product-Term Logic in ESB

Note ot Figure 13:

(1) PLL outputs cannot drive data input ports.

Macrocells

APEX II macrocells can be configured individually for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register.

Combinatorial logic is implemented in the product terms. The productterm select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as parallel expanders to be used to increase the logic available to another macrocell. One product term can be inverted; the Quartus II software uses this feature to perform DeMorgan's inversion for more efficient implementation of wide OR functions. The Quartus II Compiler can use a NOT-gate push-back technique to emulate an asynchronous preset. Figure 14 shows the APEX II macrocell. CAM can generate outputs in three different modes: single-match mode, multiple-match mode, and fast multiple-match mode. In each mode, the ESB outputs the matched data's location as an encoded or unencoded address. When encoded, the ESB outputs an encoded address of the data's location. For instance, if the data is located in address 12, the ESB output is 12. When unencoded, each ESB port uses its 16 outputs to show the location of the data over two clock cycles. In this case, if the data is located in address 12, the 12th output line goes high. Figures 21 and 22 show the encoded CAM outputs and unencoded CAM outputs, respectively.

Notes to Figures 22 and 23:

- (1) For an unencoded output, the ESB only supports 31 input data bits. One input bit is used by the select line to choose one of the two banks of 16 outputs.
- (2) If the select input is a 1, then CAM outputs odd words between 1 through 15. If the select input is a 0, CAM outputs even words between 0 through 14.

In single-match mode, it takes two clock cycles to write into CAM, but only one clock cycle to read from CAM. In this mode, both encoded and unencoded outputs are available without external logic. Single-match mode is better suited for designs without duplicate data in the memory.

Figure 24. ESB Control Signal Generation

An ESB is fed by the local interconnect, which is driven by adjacent LEs (for high-speed connection to the ESB) or the MegaLAB interconnect. The ESB can drive the local, MegaLAB, or FastTrack interconnect routing structure to drive LEs and IOEs in the same MegaLAB structure or anywhere in the device.

Implementing Logic in ROM

In addition to implementing logic with product terms, the ESB can implement logic functions when it is programmed with a read-only pattern during configuration, creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of ESBs. The large capacity of ESBs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or distributed RAM blocks. Parameterized functions such as LPM functions can take advantage of the ESB automatically. Further, the Quartus II software can implement portions of a design with ESBs where appropriate.

Figure 25. APEX II IOE Structure

The IOEs are located around the periphery of the APEX II device. Each IOE drives a row, column, MegaLAB, or local interconnect when used as an input or bidirectional pin. A row IOE can drive a local, MegaLAB, row, and column interconnect; a column IOE can drive the FastTrack or column interconnect. Figure 26 shows how a row IOE connects to the interconnect.

When using the IOE for DDR inputs, the two input registers are used to clock double rate input data on alternating edges. An input latch is also used within the IOE for DDR input acquisition. The latch holds the data that is present during the clock high times. This allows both bits of data to be synchronous to the same clock edge (either rising or falling). Figure 29 shows an IOE configured for DDR input.

When using the IOE for DDR outputs, the two output registers are configured to clock two data paths from LEs on rising clock edges. These register outputs are multiplexed by the clock to drive the output pin at a \times 2 rate. One output register clocks the first bit out on the clock high time, while the other output register clocks the second bit out on the clock low time. Figure 30 shows the IOE configured for DDR output.

Table 9. Programmable Drive Strength						
I/O Standard	I _{OH} /I _{OL} Current Strength Setting					
LVTTL (3.3 V)	4 mA					
	12 mA					
	24 mA (default)					
LVTTL (2.5 V)	2 mA					
	16 mA (default)					
LVTTL (1.8 V)	2 mA					
	8mA (default)					
LVTTL (1.5 V)	2 mA (default)					
SSTL-3 class I and II	Minimum (default)					
SSTL-2 class I and II						
HSTL class I and II						
GTL+ (3.3 V)						
PCI						
PCI-X						

Open-Drain Output

APEX II devices provide an optional open-drain (equivalent to an opencollector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and writeenable signals) that can be asserted by any of several devices.

Slew-Rate Control

The output buffer for each APEX II device I/O pin has a programmable output slew rate control that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay to rising and falling edges. Each I/O pin has an individual slew rate control, allowing the designer to specify the slew rate on a pin-by-pin basis. The slew rate control affects both the rising and falling edges.

ClockShift Circuitry

General-purpose PLLs in APEX II devices have ClockShift circuitry that provides programmable phase shift. Users can enter a phase shift (in degrees or time units) that affects all PLL outputs. Phase shifts of 90°, 180°, and 270° can be implemented exactly. Other values of phase shifting, or delay shifting in time units, are allowed with a resolution range of 0.5 ns to 1.0 ns. This resolution varies with frequency input and the user-entered multiplication and division factors. The phase shift ability is only possible on a multiplied or divided clock if the input and output frequency have an integer multiple relationship (i.e., $f_{\rm IN}/f_{\rm OUT}$ or $f_{\rm OUT}/f_{\rm IN}$ must be an integer).

Clock Enable Signal

APEX II PLLs have a CLKLK_ENA pin for enabling/disabling all device PLLs. When the CLKLK_ENA pin is high, the PLL drives a clock to all its output ports. When the CLKLK_ENA pin is low, the clock0, clock1, and extclock ports are driven by GND and all of the PLLs go out of lock. When the CLKLK_ENA pin goes high again, the PLL relocks.

The individual enable port for each PLL is programmable. If more than one PLL is instantiated, each one does not have to use the clock enable. To enable/disable the device PLLs with the CLKLK_ENA pin, the inclocken port on the altclklock instance must be connected to the CLKLK_ENA input pin.

Lock Signals

The APEX II device PLL circuits support individual LOCK signals. The LOCK signal drives high when the PLL has locked onto the input clock. LOCK remains high as long as the input remains within specification. It will go low if the input is out of specification. A LOCK pin is optional for each PLL used in the APEX II devices; when not used, they are I/O pins. This signal is not available internally; if it is used in the logic array, it must be fed back in with an input pin.

SignalTap Embedded Logic Analyzer Normal SignalTap Embedded Logic Analyzer Normal SignalTap Embedded SignalTap Embedded SignalTap Embedded SignalTap Embedded SignalZap SignalZap Embedded Signal Signal SignalSignal Signal SignalSignal SignalSignalSignal Signal S

Figure 36. APEX II JTAG Waveforms

Table 19 shows the JTAG timing parameters and values for APEX II devices.

Table 19. APEX II JTAG Timing Parameters & Values							
Symbol	Parameter	Min	Max	Unit			
t _{JCP}	TCK clock period	100		ns			
t _{JCH}	TCK clock high time	50		ns			
t _{JCL}	TCK clock low time	50		ns			
t _{JPSU}	JTAG port setup time	20		ns			
t _{JPH}	JTAG port hold time	45		ns			
t _{JPCO}	JTAG port clock to output		25	ns			
t _{JPZX}	JTAG port high impedance to valid output		25	ns			
t _{JPXZ}	JTAG port valid output to high impedance		25	ns			
t _{JSSU}	Capture register setup time	20		ns			
t _{JSH}	Capture register hold time	45		ns			
t _{JSCO}	Update register clock to output		35	ns			
t _{JSZX}	Update register high impedance to valid output		35	ns			
t _{JSXZ}	Update register valid output to high impedance		35	ns			

APEX II Programmable Logic Device Family Data Sheet

Table 22. APEX II Device DC Operating Conditions Note (7)							
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit	
lı	Input pin leakage current	$V_{I} = V_{CCIO}$ to 0 V (8)	-10		10	μA	
I _{OZ}	Tri-stated I/O pin leakage current	$V_{O} = V_{CCIO}$ to 0 V (8)	-10		10	μA	
I _{CC0}	V _{CC} supply current (standby) (All ESBs in power-down	V _I = ground, no load, no toggling inputs, -7 speed grade		10		mA	
	mode)	V _I = ground, no load, no toggling inputs, -8, -9 speed grades		5		mA	
R _{CONF}	Value of I/O pin pull-	V _{CCIO} = 3.0 V (9)	20		50	kΩ	
	up resistor before	V _{CCIO} = 2.375 V (9)	30		80	kΩ	
	and during configuration	V _{CCIO} = 1.71 V (9)	60		150	kΩ	

Table 23. LVTTL Specifications							
Symbol	Parameter	Conditions	Minimum	Maximum	Units		
V _{CCIO}	Output supply voltage		3.0	3.6	V		
VIH	High-level input voltage		1.7	4.1	V		
V _{IL}	Low-level input voltage		-0.5	0.8	V		
I _I	Input pin leakage current	$V_{IN} = 0 V \text{ or } V_{CCIO}$	-5	5	μΑ		
V _{OH}	High-level output voltage	$I_{OH} = -4$ to -24 mA (10)	2.4		V		
V _{OL}	Low-level output voltage	I _{OL} = 4 to 24 mA <i>(10)</i>		0.45	V		

Table 24. LVCMOS Specifications							
Symbol	Parameter	Conditions	Minimum	Maximum	Units		
V _{CCIO}	Output supply voltage		3.0	3.6	V		
V _{IH}	High-level input voltage		1.7	4.1	V		
V _{IL}	Low-level input voltage		-0.5	0.7	V		
I _I	Input pin leakage current	$V_{IN} = 0 V \text{ or } V_{CCIO}$	-10	10	μA		
V _{OH}	High-level output voltage	V _{CCIO} = 3.0, I _{OH} = -0.1 mA	V _{CCIO} – 0.2		V		
V _{OL}	Low-level output voltage	V _{CCIO} = 3.0, I _{OL} = 0.1 mA		0.2	V		

Table 25. 2.5-V I/O SpecificationsNote (10)							
Symbol	Parameter	Conditions	Minimum	Maximum	Units		
V _{CCIO}	Output supply voltage		2.375	2.625	V		
V _{IH}	High-level input voltage		1.7	4.1	V		
V _{IL}	Low-level input voltage		-0.5	0.7	V		
lı	Input pin leakage current	$V_{IN} = 0 V \text{ or } V_{CCIO}$	-10	10	μΑ		
V _{OH}	High-level output voltage	I _{OH} = -0.1 mA	2.1		V		
		$I_{OH} = -1 \text{ mA}$	2.0		V		
		$I_{OH} = -2$ to -16 mA	1.7		V		
V _{OL}	Low-level output voltage	I _{OL} = 0.1 mA		0.2	V		
		I _{OL} = 1 mA		0.4	V		
		I _{OL} = 2 to 16 mA		0.7	V		

Table 26. 1.8-V I/O Specifications							
Symbol	Parameter	Conditions	Minimum	Maximum	Units		
V _{CCIO}	Output supply voltage		1.65	1.95	V		
VIH	High-level input voltage		$0.65 \times V_{CCIO}$	4.1	V		
V _{IL}	Low-level input voltage		-0.5	$0.35 \times V_{CCIO}$	V		
l _l	Input pin leakage current	$V_{IN} = 0 V \text{ or } V_{CCIO}$	-10	10	μA		
V _{OH}	High-level output voltage	I _{OH} = -2 to -8 mA (10)	$V_{CCIO} - 0.45$		V		
V _{OL}	Low-level output voltage	I _{OL} = 2 to 8 mA (10)		0.45	V		

Table 27. 1.5-V I/O Specifications						
Symbol	Parameter	Conditions	Minimum	Maximum	Units	
V _{CCIO}	Output supply voltage		1.4	1.6	V	
VIH	High-level input voltage		$0.65 imes V_{CCIO}$	4.1	V	
V _{IL}	Low-level input voltage		-0.5	$0.35 \times V_{CCIO}$	V	
l _l	Input pin leakage current	$V_{IN} = 0 V \text{ or } V_{CCIO}$	-10	10	μΑ	
V _{OH}	High-level output voltage	I _{OH} = -2 mA (10)	$0.75 \times V_{CCIO}$		V	
V _{OL}	Low-level output voltage	I _{OL} = 2 mA <i>(10)</i>		$0.25 \times V_{\text{CCIO}}$	V	

Table 28. 3.3-V PCI Specifications							
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units	
V _{CCIO}	Output supply voltage		3.0	3.3	3.6	V	
V _{IH}	High-level input voltage		0.5 imes V _{CCIO}		V _{CCIO} + 0.5	V	
V _{IL}	Low-level input voltage		-0.5		0.3 imes V _{CCIO}	V	
I _I	Input pin leakage current	$0 < V_{IN} < V_{CCIO}$	-10		10	μA	
V _{OH}	High-level output voltage	I _{OUT} = -500 μA	$0.9 \times V_{CCIO}$			V	
V _{OL}	Low-level output voltage	I _{OUT} = 1,500 μA			$0.1 \times V_{CCIO}$	V	

Table 29. F	PCI-X Specifications					
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{CCIO}	Output supply voltage		3.0		3.6	V
V _{IH}	High-level input voltage		0.5 imes V _{CCIO}		V _{CCIO} + 0.5	V
V _{IL}	Low-level input voltage		-0.5		$0.35 imes V_{CCIO}$	V
V _{IPU}	Input pull-up voltage		$0.7 \times V_{CCIO}$			V
IIL	Input leakage current	$0 < V_{IN} < V_{CCIO}$	-10		10	μA
V _{OH}	High-level output voltage	I _{OUT} = -500 μA	$0.9 \times V_{CCIO}$			V
V _{OL}	Low-level output voltage	I _{OUT} = 1,500 μA			0.1 imes V _{CCIO}	V
L _{PIN}	Pin inductance				15	nH

Table 30. GTL+ I/O Specifications						
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{TT}	Termination voltage		1.35	1.5	1.65	V
V _{REF}	Reference voltage		0.88	1.0	1.12	V
V _{IH}	High-level input voltage		V _{REF} + 0.1			V
V _{IL}	Low-level input voltage				$V_{REF} - 0.1$	V
V _{OL}	Low-level output voltage	I _{OL} = 36 mA <i>(10)</i>			0.65	V

Table 31. SSTL-2 Class I Specifications										
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units				
V _{CCIO}	Output supply voltage		2.375	2.5	2.625	V				
V _{TT}	Termination voltage		$V_{REF} - 0.04$	V_{REF}	V _{REF} + 0.04	V				
V _{REF}	Reference voltage		1.15	1.25	1.35	V				
V _{IH}	High-level input voltage		V _{REF} + 0.18		3.0	V				
V _{IL}	Low-level input voltage		-0.3		$V_{REF} - 0.18$	V				
V _{OH}	High-level output voltage	I _{OH} = -7.6 mA (10)	V _{TT} + 0.57			V				
V _{OL}	Low-level output voltage	I _{OL} = 7.6 mA (10)			V _{TT} – 0.57	V				

Table 32. SSTL-2 Class II Specifications

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{CCIO}	Output supply voltage		2.3	2.5	2.7	V
V _{TT}	Termination voltage		V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04	V
V _{REF}	Reference voltage		1.15	1.25	1.35	V
V _{IH}	High-level input voltage		V _{REF} + 0.18		$V_{CCIO} + 0.3$	V
V _{IL}	Low-level input voltage		-0.3		$V_{REF} - 0.18$	V
V _{OH}	High-level output voltage	I _{OH} = -15.2 mA (10)	V _{TT} + 0.76			V
V _{OL}	Low-level output voltage	I _{OL} = 15.2 mA (10)			V _{TT} – 0.76	V

Table 33. SSTL-3 Class I Specifications

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{CCIO}	Output supply voltage		3.0	3.3	3.6	V
V _{TT}	Termination voltage		$V_{REF} - 0.05$	V _{REF}	V _{REF} + 0.05	V
V _{REF}	Reference voltage		1.3	1.5	1.7	V
V _{IH}	High-level input voltage		V _{REF} + 0.2		$V_{CCIO} + 0.3$	V
V _{IL}	Low-level input voltage		-0.3		V _{REF} - 0.2	V
V _{OH}	High-level output voltage	I _{OH} = -8 mA (10)	V _{TT} + 0.6			V
V _{OL}	Low-level output voltage	I _{OL} = 8 mA (10)			V _{TT} – 0.6	V

Table 44. LVPECL Specifications Note (2)										
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units				
V _{CCIO}	I/O supply voltage		3.135	3.3	3.465	V				
V _{IL}	Low-level input voltage		800		2,000	mV				
V _{IH}	High-level input voltage		2,100		V _{CCIO}	mV				
V _{OL}	Low-level output voltage		1,450		1,650	mV				
V _{OH}	High-level output voltage		2,275		2,420	mV				
V _{ID}	Differential input voltage		100	600	2,500	mV				
V _{OD}	Differential output voltage		625	800	970	mV				
t _R	Rise time (20 to 80%)		85		325	ps				
t _F	Fall time (20 to 80%)		85		325	ps				

Table 45. HyperTransport Specifications

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{CCIO}	I/O supply voltage		2.375	2.5	2.625	V
V _{OD}	Differential output voltage		380	600	820	mV
V _{OCM}	Output common mode voltage	R _{TT} = 100 Ω	500	600	700	mV
V _{ID}	Differential input voltage		300	600	900	mV
V _{ICM}	Input common mode voltage		450	600	750	mV
RL	Receiver differential input resistor		90	100	110	Ω

Notes to Tables 42 – 45:

(1) Maximum $V_{\mbox{\scriptsize OD}}$ is measured under static conditions.

(2) When APEX II devices drive LVPECL signals, the APEX II LVPECL outputs must be terminated with a resistor network.

Capacitance

Table 46 and Figure 40 provide information on APEX II device capacitance.

APEX II Programmable Logic Device Family Data Sheet

Table 59. EP2A25 Minimum Pulse Width Timing Parameters									
Symbol	-7 Spee	d Grade	-8 Spee	-8 Speed Grade		-9 Speed Grade			
	Min	Max	Min	Мах	Min	Мах]		
t _{CH}	1.00		1.50		2.12		ns		
t _{CL}	1.00		1.50		2.12		ns		
t _{CLRP}	0.13		0.15		0.17		ns		
t _{PREP}	0.13		0.15		0.17		ns		
t _{ESBCH}	1.00		1.50		2.12		ns		
t _{ESBCL}	1.00		1.50		2.12		ns		
t _{ESBWP}	1.12		1.28		1.48		ns		
t _{ESBRP}	0.88		1.02		1.17		ns		

Table 60. EP2A40 f _{MAX} LE Timing Parameters									
Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit		
	Min	Мах	Min	Мах	Min	Max			
t _{SU}	0.22		0.26		0.29		ns		
t _H	0.22		0.26		0.29		ns		
t _{CO}		0.16		0.18		0.21	ns		
t _{LUT}		0.48		0.55		0.63	ns		

Table 65. EP2A70	f _{MAX} ESB Timi	ng Paramete	rs				
Symbol	-7 Spee	d Grade	-8 Spee	ed Grade	-9 Speed Grade		Unit
	Min	Max	Min	Max	Min	Мах	
t _{ESBARC}		3.12		3.58		4.12	ns
t _{ESBSRC}		3.11		3.58		4.11	ns
t _{ESBAWC}		4.41		5.07		5.83	ns
t _{ESBSWC}		3.82		4.39		5.05	ns
t _{ESBWASU}	1.73		1.99		2.28		ns
t _{ESBWAH}	0.00		0.00		0.00		ns
t _{ESBWDSU}	1.87		2.15		2.47		ns
t _{ESBWDH}	0.00		0.00		0.00		ns
t _{ESBRASU}	2.76		3.17		3.65		ns
t _{ESBRAH}	0.00		0.00		0.00		ns
t _{ESBWESU}	1.98		2.27		2.61		ns
t _{ESBDATASU}	1.06		1.22		1.40		ns
t _{ESBWADDRSU}	1.17		1.34		1.54		ns
t _{ESBRADDRSU}	1.02		1.17		1.35		ns
t _{ESBDATAC01}		1.52		1.75		2.01	ns
t _{ESBDATACO2}		2.35		2.71		3.11	ns
t _{ESBDD}		4.43		5.10		5.87	ns
t _{PD}		2.17		2.49		2.87	ns
t _{PTERMSU}	1.40		1.62		1.86		ns
t _{PTERMCO}		1.08		1.24		1.42	ns

Table 66. EP2A70 f _{MAX} Routing Delays									
Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{F1-4}	0.15		0.18		0.20		ns		
t _{F5-20}	1.21		1.39		1.60		ns		
t _{F20+}	1.87		2.15		2.55		ns		

Table 73. EP2A40 External Timing Parameters for Column I/O Pins										
Symbol	mbol -7 Speed Grade		-8 Spe	-8 Speed Grade		-9 Speed Grade				
	Min	Мах	Min	Max	Min	Max				
t _{INSU}	2.00		2.16		2.33		ns			
t _{INH}	0.00		0.00		0.00		ns			
t _{outco}	2.00	4.96	2.00	5.29	2.00	5.64	ns			
t _{XZ}		7.04		7.59		8.19	ns			
t _{ZX}		7.04		7.59		8.19	ns			
t _{INSUPLL}	1.20		1.31		1.43		ns			
t _{INHPLL}	0.00		0.00		0.00		ns			
t _{OUTCOPLL}	0.50	2.66	0.50	2.87	0.50	3.09	ns			
t _{XZPLL}		4.74		5.17		5.64	ns			
t _{ZXPLL}		4.74		5.17		5.64	ns			

Table 74. EP2A70 External Timing Parameters for Row I/O Pins										
Symbol	nbol -7 Speed Grade		-8 Spe	-8 Speed Grade		-9 Speed Grade				
	Min	Max	Min	Max	Min	Max				
t _{INSU}	2.48		2.68		2.90		ns			
t _{INH}	0.00		0.00		0.00		ns			
t _{оитсо}	2.00	4.76	2.00	5.12	2.00	5.51	ns			
t _{XZ}		5.68		6.19		6.76	ns			
t _{ZX}		5.68		6.19		6.76	ns			
t _{INSUPLL}	1.19		1.30		1.43		ns			
t _{INHPLL}	0.00		0.00		0.00		ns			
toutcopll	0.50	2.52	0.50	2.74	0.50	2.98	ns			
t _{XZPLL}		3.44		3.82		4.23	ns			
t _{ZXPLL}		3.44		3.82		4.23	ns			

Table 75. EP2A70 External Timing Parameters for Column I/O Pins												
Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit					
	Min	Max	Min	Max	Min	Max						
t _{INSU}	2.79		2.99		3.22		ns					
t _{INH}	0.00		0.00		0.00		ns					
tоитсо	2.00	4.91	2.00	5.24	2.00	5.60	ns					
t _{XZ}		6.16		6.71		7.32	ns					
t _{ZX}		6.16		6.71		7.32	ns					
tINSUPLL	1.19		1.30		1.43		ns					
t _{INHPLL}	0.00		0.00		0.00		ns					
t _{OUTCOPLL}	0.50	2.67	0.50	2.86	0.50	3.08	ns					
t _{XZPLL}		3.92		4.34		4.79	ns					
tZXPLL		3.92		4.34		4.79	ns					

Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit
	Min	Max	Min	Max	Min	Мах	
LVCMOS		0.00		0.00		0.00	ns
LVTTL		0.00		0.00		0.00	ns
1.5 V		3.32		3.82		4.20	ns
1.8 V		2.65		3.05		3.36	ns
2.5 V		1.20		1.38		1.52	ns
3.3-V PCI		- 0.68		- 0.78		- 0.85	ns
3.3-V PCI-X		- 0.68		- 0.78		- 0.85	ns
GTL+		- 0.45		- 0.52		- 0.57	ns
SSTL-3 Class I		- 0.52		- 0.60		- 0.66	ns
SSTL-3 Class II		- 0.52		- 0.60		- 0.66	ns
SSTL-2 Class I		- 0.68		- 0.78		- 0.86	ns
SSTL-2 Class II		- 0.81		- 0.93		- 1.02	ns
HSTL Class I		- 0.08		- 0.09		- 0.10	ns
HSTL Class II		- 0.23		- 0.27		- 0.30	ns
LVDS		- 1.41		- 1.62		- 1.79	ns
LVPECL		- 1.38		- 1.58		- 1.74	ns
PCML		- 1.30		- 1.50		- 1.65	ns
CTT		0.00		0.00		0.00	ns
3.3-V AGP 1×		0.00		0.00		0.00	ns
3.3-V AGP 2×		0.00		0.00		0.00	ns
HyperTransport		- 1.22		- 1.41		- 1.55	ns
Differential HSTL		- 1.41		- 1.62		- 1.79	ns

Power Consumption

Detailed power consumption information for APEX II devices will be released via a future interactive power estimator on the Altera web site.

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.