
Intel - EP2A40F1020C9 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	3840
Number of Logic Elements/Cells	38400
Total RAM Bits	655360
Number of I/O	735
Number of Gates	3000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1020-BBGA
Supplier Device Package	1020-FBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2a40f1020c9

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1. APEX II Device Features				
Feature	EP2A15	EP2A25	EP2A40	EP2A70
Maximum gates	1,900,000	2,750,000	3,000,000	5,250,000
Typical gates	600,000	900,000	1,500,000	3,000,000
LEs	16,640	24,320	38,400	67,200
RAM ESBs	104	152	160	280
Maximum RAM bits	425,984	622,592	655,360	1,146,880
True-LVDS channels	36 (1)	36 (1)	36 (1)	36 (1)
Flexible-LVDS™ channels (2)	56	56	88	88
True-LVDS PLLs (3)	4	4	4	4
General-purpose PLL outputs (4)	8	8	8	8
Maximum user I/O pins	492	612	735	1,060

Notes to Table 1:

(1) Each device has 36 input channels and 36 output channels.

(2) EP2A15 and EP2A25 devices have 56 input and 56 output channels; EP2A40 and EP2A70 devices have 88 input and 88 output channels.

(3) PLL: phase-locked loop. True-LVDS PLLs are dedicated to implement True-LVDS functionality.

(4) Two internal outputs per PLL are available. Additionally, the device has one external output per PLL pair (two external outputs per device).

...and More Features

I/O features

- Up to 380 Gbps of I/O capability
- 1-Gbps True-LVDS, LVPECL, PCML, and HyperTransport support on 36 input and 36 output channels that feature clock synchronization circuitry and independent clock multiplication and serialization/deserialization factors
- Common networking and communications bus I/O standards such as RapidIO, CSIX, Utopia IV, and POS-PHY Level 4 enabled
- 400-megabits per second (Mbps) Flexible-LVDS and HyperTransport support on up to 88 input and 88 output channels (input channels also support LVPECL)
- Support for high-speed external memories, including ZBT, QDR, and DDR SRAM, and SDR and DDR SDRAM
- Compliant with peripheral component interconnect Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2* for 3.3-V operation at 33 or 66 MHz and 32 or 64 bits
- Compliant with 133-MHz PCI-X specifications
- Support for other advanced I/O standards, including AGP, CTT, SSTL-3 and SSTL-2 Class I and II, GTL+, and HSTL Class I and II
- Six dedicated registers in each I/O element (IOE): two input registers, two output registers, and two output-enable registers
- Programmable bus hold feature
- Programmable pull-up resistor on I/O pins available during user mode

- Programmable output drive for 3.3-V LVTTL at 4 mA, 12 mA, 24 mA, or I/O standard levels
- Programmable output slew-rate control reduces switching noise
- Hot-socketing operation supported
- Pull-up resistor on I/O pins before and during configuration
- Enhanced internal memory structure
 - High-density 4,096-bit ESBs
 - Dual-Port+ RAM with bidirectional read and write ports
 - Support for many other memory functions, including CAM, FIFO, and ROM
 - ESB packing mode partitions one ESB into two 2,048-bit blocks
- Device configuration
 - Fast byte-wide synchronous configuration minimizes in-circuit reconfiguration time
 - Device configuration supports multiple voltages (either 3.3 V and 2.5 V or 1.8 V)
- Flexible clock management circuitry with eight general-purpose PLL outputs
 - Four general-purpose PLLs with two outputs per PLL
 - Built-in low-skew clock tree
 - Eight global clock signals
 - ClockLock[™] feature reducing clock delay and skew
 - ClockBoostTM feature providing clock multiplication (by 1 to 160) and division (by 1 to 256)
 - ClockShift[™] feature providing programmable clock phase and delay shifting with coarse (90°, 180°, or 270°) and fine (0.5 to 1.0 ns) resolution
- Advanced interconnect structure
 - All-layer copper interconnect for high performance
 - Four-level hierarchical FastTrack[®] interconnect structure for fast, predictable interconnect delays
 - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
 - Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
 - Interleaved local interconnect allowing one LE to drive 29 other LEs through the fast local interconnect
- Advanced software support
 - Software design support and automatic place-and-route provided by the Altera[®] Quartus[™] II development system for Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations
 - Altera MegaCore[®] functions and Altera Megafunction Partners Program (AMPPSM) megafunctions optimized for APEX II architecture

General Description

APEX II devices integrate high-speed differential I/O support using the True-LVDS interface. The dedicated serializer, deserializer, and CDS circuitry in the True-LVDS interface support the LVDS, LVPECL, HyperTransport, and PCML I/O standards. Flexible-LVDS pins located in regular user I/O banks offer additional differential support, increasing the total device bandwidth. This circuitry, together with enhanced IOEs and support for numerous I/O standards, allows APEX II devices to meet high-speed interface requirements.

APEX II devices also include other high-performance features such as bidirectional dual-port RAM, CAM, general-purpose PLLs, and numerous global clocks.

Configuration

The logic, circuitry, and interconnects in the APEX II architecture are configured with CMOS SRAM elements. APEX II devices are reconfigurable and are 100% tested prior to shipment. As a result, test vectors do not have to be generated for fault coverage. Instead, the designer can focus on simulation and design verification. In addition, the designer does not need to manage inventories of different ASIC designs; APEX II devices can be configured on the board for the specific functionality required.

APEX II devices are configured at system power-up with data either stored in an Altera configuration device or provided by a system controller. Altera offers in-system programmability (ISP)-capable configuration devices, which configure APEX II devices via a serial data stream. The enhanced configuration devices can configure any APEX II device in under 100 ms. Moreover, APEX II devices contain an optimized interface that permits microprocessors to configure APEX II devices serially or in parallel, synchronously or asynchronously. This interface also enables microprocessors to treat APEX II devices as memory and to configure the device by writing to a virtual memory location, simplifying reconfiguration.

APEX II devices also support a new byte-wide, synchronous configuration scheme at speeds of up to 66 MHz using EPC16 configuration devices or a microprocessor. This parallel configuration reduces configuration time by using eight data lines to send configuration data versus one data line in serial configuration.

APEX II devices support multi-voltage configuration; device configuration can be performed at 3.3 V and 2.5 V or 1.8 V.

Figure 1. APEX II Device Block Diagram

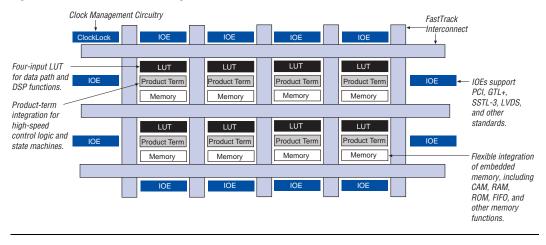
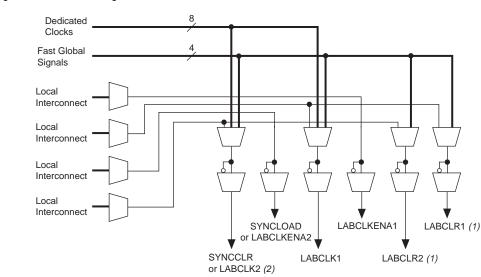



Table 4 lists the resources available in APEX II devices.

Table 4. APEX II Device Resources								
Device	MegaLAB Rows	MegaLAB Columns	ESBs					
EP2A15	26	4	104					
EP2A25	38	4	152					
EP2A40	40	4	160					
EP2A70	70	4	280					

APEX II devices provide eight dedicated clock input pins and four dedicated fast I/O pins that globally drive register control inputs, including clocks. These signals ensure efficient distribution of high-speed, low-skew control signals. The control signals use dedicated routing channels to provide short delays and low skew. The dedicated fast signals can also be driven by internal logic, providing an ideal solution for a clock divider or internally-generated asynchronous control signal with high fan-out. The dedicated clock and fast I/O pins on APEX II devices can also feed logic. Dedicated clocks can also be used with the APEX II generalpurpose PLLs for clock management. The LAB-wide control signals can be generated from the LAB local interconnect, global signals, and dedicated clock pins. The inherent low skew of the FastTrack interconnect enables it to be used for clock distribution. Figure 4 shows the LAB control signal generation circuit.

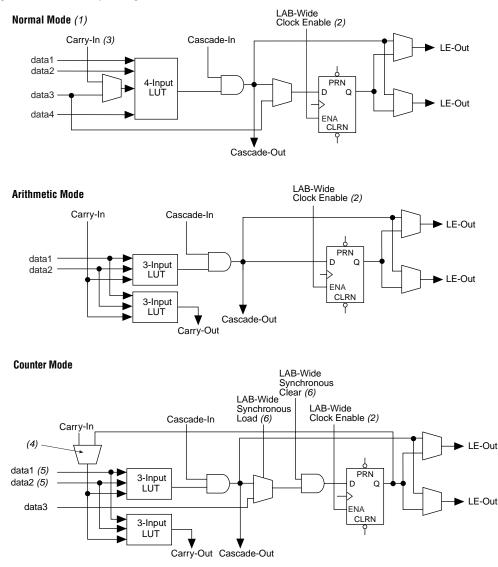
Figure 4. LAB Control Signal Generation

Notes to Figure 4:

- (1) The LABCLR1 and LABCLR2 signals also control asynchronous load and asynchronous preset for LEs within the LAB.
- (2) The SYNCCLR signal can be generated by the local interconnect or global signals.

Logic Element

The LE is the smallest unit of logic in the APEX II architecture. Each LE contains a four-input LUT, which is a function generator that can quickly implement any function of four variables. In addition, each LE contains a programmable register and carry and cascade chains. Each LE drives the local interconnect, MegaLAB interconnect, and FastTrack interconnect routing structures. See Figure 5.


LE Operating Modes

The APEX II LE can operate in one of the following three modes:

- Normal mode
- Arithmetic mode
- Counter mode

Each mode uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available in all LE modes.

The Quartus II software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that specify which LE operating mode to use for optimal performance. Figure 8 shows the LE operating modes.

Figure 8. APEX II LE Operating Modes

Notes to Figure 8:

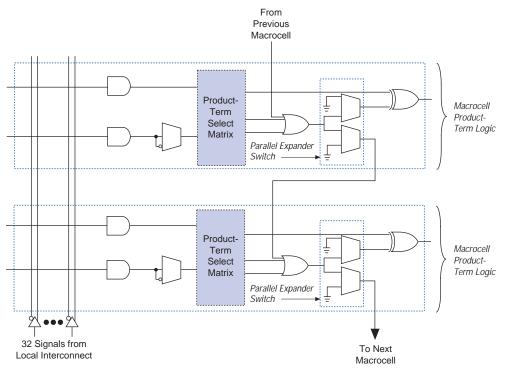
- (1) LEs in normal mode support register packing.
- (2) There are two LAB-wide clock enables per LAB.
- (3) When using the carry-in in normal mode, the packed register feature is unavailable.
- (4) A register feedback multiplexer is available on LE1 of each LAB.
- (5) The DATA1 and DATA2 input signals can supply counter enable, up or down control, or register feedback signals for LEs other than the second LE in a LAB.
- (6) The LAB-wide synchronous clear and LAB-wide synchronous load affect all registers in a LAB.

Altera Corporation

Normal Mode

The normal mode is suitable for general logic applications, combinatorial functions, or wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Quartus II Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. LEs in normal mode support packed registers.

Arithmetic Mode


The arithmetic mode is ideal for implementing adders, accumulators, and comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 8, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, when implementing an adder, this output is the sum of three signals: DATA1, DATA2, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

The Quartus II software implements parameterized functions that use the arithmetic mode automatically where appropriate; the designer does not need to specify how the carry chain will be used.

Counter Mode

The counter mode offers clock enable, counter enable, synchronous up/down control, synchronous clear, and synchronous load options. The counter enable and synchronous up/down control signals are generated from the data inputs of the LAB local interconnect. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. Consequently, if any of the LEs in an LAB use the counter mode, other LEs in that LAB must be used as part of the same counter or be used for a combinatorial function. The Quartus II software automatically places any registers that are not used by the counter into other LABs.

Embedded System Block

The ESB can implement various types of memory blocks, including Dual-Port+ RAM (bidirectional dual-port RAM), dual- and single-port RAM, ROM, FIFO, and CAM blocks.

The ESB includes input and output registers; the input registers synchronize writes, and the output registers can pipeline designs to improve system performance. The ESB offers a bidirectional, dual-port mode, which supports any combination of two port operations: two reads, two writes, or one read and one write at two different clock frequencies. Figure 17 shows the ESB block diagram.

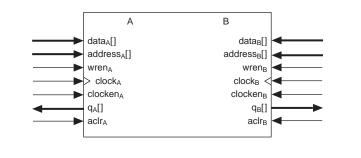
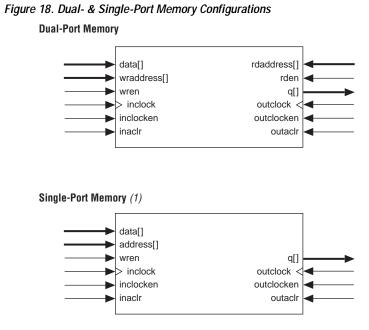
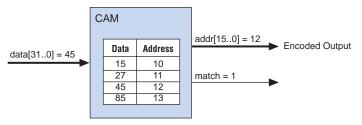
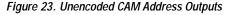
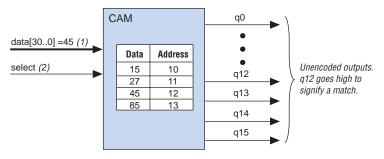



Figure 17. Bidirectional Dual-Port Memory Configuration

In addition to bidirectional dual-port memory, the ESB also supports dual-port, and single-port RAM. Dual-port memory supports a simultaneous read and write. Single-port memory supports independent read and write. Figure 18 shows these different RAM memory port configurations for an ESB.




Note to Figure 18:


(1) Two single-port memory blocks can be implemented in a single ESB.

CAM can generate outputs in three different modes: single-match mode, multiple-match mode, and fast multiple-match mode. In each mode, the ESB outputs the matched data's location as an encoded or unencoded address. When encoded, the ESB outputs an encoded address of the data's location. For instance, if the data is located in address 12, the ESB output is 12. When unencoded, each ESB port uses its 16 outputs to show the location of the data over two clock cycles. In this case, if the data is located in address 12, the 12th output line goes high. Figures 21 and 22 show the encoded CAM outputs and unencoded CAM outputs, respectively.

Notes to Figures 22 and 23:

- (1) For an unencoded output, the ESB only supports 31 input data bits. One input bit is used by the select line to choose one of the two banks of 16 outputs.
- (2) If the select input is a 1, then CAM outputs odd words between 1 through 15. If the select input is a 0, CAM outputs even words between 0 through 14.

In single-match mode, it takes two clock cycles to write into CAM, but only one clock cycle to read from CAM. In this mode, both encoded and unencoded outputs are available without external logic. Single-match mode is better suited for designs without duplicate data in the memory.

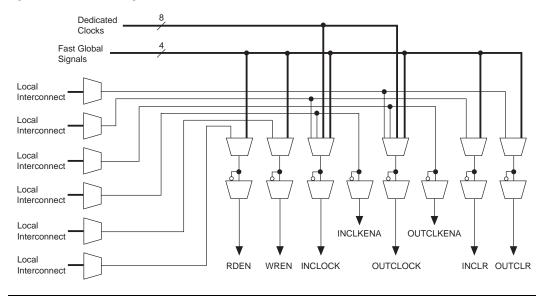


Figure 24. ESB Control Signal Generation

An ESB is fed by the local interconnect, which is driven by adjacent LEs (for high-speed connection to the ESB) or the MegaLAB interconnect. The ESB can drive the local, MegaLAB, or FastTrack interconnect routing structure to drive LEs and IOEs in the same MegaLAB structure or anywhere in the device.

Implementing Logic in ROM

In addition to implementing logic with product terms, the ESB can implement logic functions when it is programmed with a read-only pattern during configuration, creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of ESBs. The large capacity of ESBs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or distributed RAM blocks. Parameterized functions such as LPM functions can take advantage of the ESB automatically. Further, the Quartus II software can implement portions of a design with ESBs where appropriate.

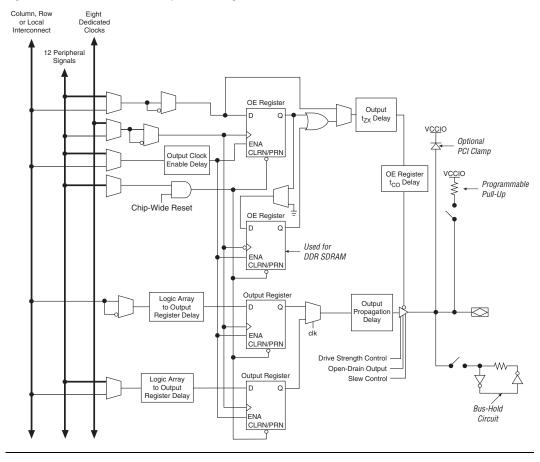


Figure 30. APEX II IOE in DDR Output I/O Configuration

The APEX II IOE operates in bidirectional DDR mode by combining the DDR input and DDR output configurations.

APEX II I/O pins transfer data on a DDR bidirectional bus to support DDR SDRAM at 167 MHz (334 Mbps). The negative-edge-clocked OE register is used to hold the OE signal inactive until the falling edge of the clock. This is done to meet DDR SDRAM timing requirements. QDR SRAMs are also supported with DDR I/O pins on separate read and write ports.

Zero Bus Turnaround SRAM Interface Support

In addition to DDR SDRAM support, APEX II device I/O pins also support interfacing with ZBT SRAM devices at up to 200 MHz. ZBT SRAM blocks are designed to eliminate dead bus cycles when turning a bidirectional bus around between reads and writes, or writes and reads. ZBT allows for 100% bus utilization because ZBT SRAM can be read or written on every clock cycle.

To avoid bus contention, the output clock-to-low-impedance time (t_{ZX}) delay ensures that the t_{ZX} is greater than the clock-to-high-impedance time (t_{XZ}). Phase delay control of clocks to the OE/output and input registers using two general-purpose PLLs enable the APEX II device to meet ZBT t_{CO} and t_{SU} times.

Programmable Drive Strength

The output buffer for each APEX II device I/O pin has a programmable drive strength control for certain I/O standards. The LVTTL standard has several levels of drive strength that the user can control. SSTL-3 class I and II, SSTL-2 class I and II, HSTL class I and II, 3.3-V GTL+, PCI, and PCI-X support a minimum setting. The minimum setting is the lowest drive strength that guarantees the I_{OH}/I_{OL} of the standard. Using minimum settings provides signal slew rate control to reduce system noise and signal overshoot. Table 9 shows the possible settings for the I/O standards with drive strength control.

Each bank can support multiple standards with the same $V_{\rm CCIO}$ for input and output pins. Each bank can support one voltage-referenced I/O standard, but it can support multiple I/O standards with the same $V_{\rm CCIO}$ voltage level. For example, when $V_{\rm CCIO}$ is 3.3 V, a bank can support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs. When the True-LVDS banks are not used for LVDS I/O pins, they support all of the other I/O standards except HSTL Class II output.

True-LVDS Interface

APEX II devices contain dedicated circuitry for supporting differential standards at speeds up to 1.0 Gbps. APEX II devices have dedicated differential buffers and circuitry to support LVDS, LVPECL, HyperTransport, and PCML I/O standards. Four dedicated high-speed PLLs (separate from the general-purpose PLLs) multiply reference clocks and drive high-speed differential serializer/deserializer channels. In addition, CDS circuitry at each receiver channel corrects any fixed clock-to-data skew. All APEX II devices support 36 input channels, 36 output channels, two dedicated receiver PLLs, and two dedicated transmitter PLLs.

The True-LVDS circuitry supports the following standards and applications:

- RapidIO
- POS-PHY Level 4
- Utopia IV
- HyperTransport

APEX II devices support source-synchronous interfacing with LVDS, LVPECL,PCML, or HyperTransport signaling at up to 1 Gbps. Serial channels are transmitted and received along with a low-speed clock. The receiving device then multiplies the clock by a factor of 1, 2, or 4 to 10. The serialization/deserialization rate can be any number from 1, 2, or 4 to 10 and does not have to equal the clock multiplication value.

For example, an 840-Mbps LVDS channel can be received along with an 84-MHz clock. The 84-MHz clock is multiplied by 10 to drive the serial shift register, but the register can be clocked out in parallel at 8- or 10-bits wide at 84 or 105 MHz. See Figures 32 and 33.

The APEX II VCCINT pins must always be connected to a 1.5-V power supply. With a 1.5-V V_{CCINT} level, input pins are 1.5-V, 1.8-V, 2.5-V and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.5-V, 1.8-V, 2.5-V or 3.3-V power supply, depending on the output requirements. The output levels are compatible with systems of the same voltage as the power supply (i.e., when VCCIO pins are connected to a 1.5-V power supply, the output levels are compatible with 1.5-V systems). When VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and is compatible with 3.3-V or 5.0-V systems.

Table 14 summarizes APEX II MultiVolt I/O support.

Table 14.	Table 14. APEX II MultiVolt I/O Support Note (1)										
V _{CCIO} (V)	V) Input Signal Output Signal										
	1.5 V 1.8 V 2.5 V 3.3 V 5.0 V					1.5 V	1.8 V	2.5 V	3.3 V	5.0 V	
1.5	\checkmark	~	\checkmark	~		~					
1.8	 (2) 	\checkmark	\checkmark	~		🗸 (3)	\checkmark				
2.5	 (2) 	 (2) 	\checkmark	\checkmark		(4)	(4)	\checkmark			
3.3	 (2) 	 (2) 	\checkmark	\checkmark	(5)	 (6) 	🗸 (6)	🗸 (6)	~	~	

Notes to Table 14:

The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO} , except for with a 5.0-V (1)input.

These input levels are only allowed if the input standard is set to any V_{REF} standard (i.e., SSTL-3, SSTL-2, HSTL, (2)GTL+, and AGP 2×). The V_{REF} standard inputs are powered by V_{CCINT}. LVTTL, PCI, PCI-X, and AGP 1× standard inputs are powered by V_{CCIO} . As a result, input levels below the V_{CCIO} setting cannot drive these standards. When $V_{CCIO} = 1.8$ V, an APEX II device can drive a 1.5-V device with 1.8-V tolerant inputs.

(3)

When $V_{CCIO} = 2.5$ V, an APEX II device can drive a 1.5-V or 1.8-V device with 2.5-V tolerant inputs. (4)

(5) APEX II devices can be 5.0-V tolerant with the use of an external series resistor and enabling the PCI clamping diode.

When V_{CCIO} = 3.3 V, an APEX II device can drive a 1.5-V, 1.8-V, or 2.5-V device with 3.3-V tolerant inputs. (6)

> Open-drain output pins with a pull-up resistor to the 5.0-V supply and a series register to the I/O pin can drive 5.0-V CMOS input pins that require a V_{IH} of 3.5 V. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The IOL current specification should be considered when selecting a pull-up resistor.

Because APEX II devices can be used in a mixed-voltage environment, Power they have been designed specifically for any possible power-up sequence. Sequencing & Therefore, the V_{CCIO} and V_{CCINT} power supplies may be powered in any Hot Socketing order.

Timing Model The high-performance FastTrack and MegaLAB interconnect routing structures ensure predictable performance, and accurate simulation and timing analysis. In contrast, the unpredictable performance of FPGAs is caused by their segmented connection scheme.

All specifications are always representative of worst-case supply voltage and junction temperature conditions. All output-pin-timing specifications are reported for maximum drive strength.

Figure 41 shows the $f_{\rm MAX}$ timing model for APEX II devices. These parameters can be used to estimate $f_{\rm MAX}$ for multiple levels of logic. However, the Quartus II software timing analysis provides more accurate timing information because the Quartus II software usually has more upto-date timing information than the data sheet until the timing model is final. Also, the Quartus II software can model delays caused by loading and distance effects more accurately than by using the numbers in this data sheet.

Symbol	-7 Speed Grade		-8 Spee	d Grade	-9 Spee	Unit	
	Min	Max	Min	Max	Min	Max	1
t _{ESBARC}		3.12		3.58		4.12	ns
t _{ESBSRC}		3.11		3.58		4.11	ns
t _{ESBAWC}		4.41		5.07		5.83	ns
t _{ESBSWC}		3.82		4.39		5.05	ns
t _{ESBWASU}	1.73		1.99		2.28		ns
t _{ESBWAH}	0.00		0.00		0.00		ns
t _{ESBWDSU}	1.87		2.15		2.47		ns
t _{ESBWDH}	0.00		0.00		0.00		ns
t _{ESBRASU}	2.76		3.17		3.65		ns
t _{ESBRAH}	0.00		0.00		0.00		ns
t _{ESBWESU}	1.98		2.27		2.61		ns
t _{ESBDATASU}	1.06		1.22		1.40		ns
t _{ESBWADDRSU}	1.17		1.34		1.54		ns
t _{ESBRADDRSU}	1.02		1.17		1.35		ns
t _{ESBDATAC01}		1.52		1.75		2.01	ns
t _{ESBDATACO2}		2.35		2.71		3.11	ns
t _{ESBDD}		4.43		5.10		5.87	ns
t _{PD}		2.17		2.49		2.87	ns
t _{PTERMSU}	1.40		1.62		1.86		ns
t _{PTERMCO}		1.08		1.24		1.42	ns

Table 66. EP2A70 f _{MAX} Routing Delays								
Symbol	-7 Spee	d Grade	-8 Spee	d Grade	-9 Spee	Unit		
	Min	Max	Min	Max	Min	Max		
t _{F1-4}	0.15		0.18		0.20		ns	
t _{F5-20}	1.21		1.39		1.60		ns	
t _{F20+}	1.87		2.15		2.55		ns	

Symbol	-7 Speed Grade		-8 Spee	-8 Speed Grade		-9 Speed Grade		
	Min	Мах	Min	Мах	Min	Max		
t _{INSU}	2.27		2.45		2.64		ns	
t _{INH}	0.00		0.00		0.00		ns	
t _{оитсо}	2.00	4.57	2.00	4.89	2.00	5.24	ns	
t _{XZ}		5.87		6.42		7.01	ns	
t _{zx}		5.87		6.42		7.01	ns	
t _{INSUPLL}	1.23		1.35		1.47		ns	
	0.00		0.00		0.00		ns	
t _{OUTCOPLL}	0.50	2.89	0.50	3.10	0.50	3.33	ns	
t _{XZPLL}		4.18		4.62		5.09	ns	
t _{ZXPLL}		4.18	İ	4.62		5.09	ns	

Table 72. EP2A	40 External T	iming Parame	eters for Row	I/O Pins			
Symbol	-7 Speed Grade		-8 Speed Grade		-9 Speed Grade		Unit
	Min	Max	Min	Max	Min	Мах	
t _{INSU}	1.57		1.72		1.88		ns
t _{INH}	0.00		0.00		0.00		ns
t _{оитсо}	2.00	4.90	2.00	5.24	2.00	5.61	ns
t _{xz}		6.47		6.98		7.53	ns
t _{ZX}		6.47		6.98		7.53	ns
	1.15		1.26		1.38		ns
t _{INHPLL}	0.00		0.00		0.00		ns
t _{OUTCOPLL}	0.50	2.60	0.50	2.82	0.50	3.06	ns
t _{XZPLL}		4.17		4.56		4.97	ns
t _{ZXPLL}		4.17		4.56		4.97	ns

Revision
HistoryThe information contained in the APEX II Programmable Logic Device
Family Data Sheet version 3.0 supersedes information published in
previous versions. The following changes were made to the APEX II
Programmable Logic Device Family Data Sheet version 3.0:

- Changed the value from 624 to 400 Mbps throughout the document.
- Deleted the pin count (612) for the EP2A25 device in the 1,020-pin FineLine BGA package (see Table 3).
- Added Table 13.
- Changed the maximum value of 3.6 to 2.4 in Table 20.
- Updated Tables 60 through 67 and Tables 72 through 75.
- Updated Figures 25, 28, and 30.
- Added *Note (1)* to Figure 13.
- Added Figure 43.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_req@altera.com

Copyright © 2002 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending

applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Altera Corporation