

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Obsolete
ARM920T
1 Core, 32-Bit
150MHz
-
SDRAM
No
LCD
-
-
USB 1.x (1)
1.8V, 3.0V
-40°C ~ 85°C (TA)
-
225-LFBGA
225-MAPBGA (13x13)
https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9328mxlcvp15r2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4 Functional Description and Application Information

This section provides the electrical information including and timing diagrams for the individual modules of the i.MXL.

4.1 Embedded Trace Macrocell

All registers in the ETM9 are programmed through a JTAG interface. The interface is an extension of the ARM920T processor's TAP controller, and is assigned scan chain 6. The scan chain consists of a 40-bit shift register comprised of the following:

- 32-bit data field
- 7-bit address field
- A read/write bit

The data to be written is scanned into the 32-bit data field, the address of the register into the 7-bit address field, and a 1 into the read/write bit.

A register is read by scanning its address into the address field and a 0 into the read/write bit. The 32-bit data field is ignored. A read or a write takes place when the TAP controller enters the UPDATE-DR state. The timing diagram for the ETM9 is shown in Figure 2. See Table 9 for the ETM9 timing parameters used in Figure 2.

Figure 2. Trace Port Timing Diagram

Table 9	Trace	Port	Timina	Diagram	Parameter	Table
Table 3.	Have	FUIL	rinning	Diagram	Falametei	Table

Ref No.	Parameter	1.8 ±	0.1 V	3.0 ±	Unit	
	Farameter	Minimum	Maximum	Minimum	Maximum	Onit
1	CLK frequency	0	85	0	100	MHz
2a	Clock high time	1.3	-	2	-	ns
2b	Clock low time	3	-	2	-	ns
3a	Clock rise time	-	4	-	3	ns
Зb	Clock fall time	_	3	-	3	ns

4.3 Reset Module

The timing relationships of the Reset module with the POR and RESET_IN are shown in Figure 3 and Figure 4.

NOTE

Be aware that NVDD must ramp up to at least 1.8V before QVDD is powered up to prevent forward biasing.

Functional Description and Application Information

Figure 5. EIM Bus Timing Diagram

Table 12	EIM	Bus	Timing	Parameter	Table
----------	-----	-----	--------	-----------	-------

Pof No	Parameter	1.8 ± 0.1 V			3.0 ± 0.3 V			Unit
nei No.		Min	Typical	Max	Min	Typical	Max	Unit
1a	Clock fall to address valid	2.48	3.31	9.11	2.4	3.2	8.8	ns
1b	Clock fall to address invalid	1.55	2.48	5.69	1.5	2.4	5.5	ns
2a	Clock fall to chip-select valid	2.69	3.31	7.87	2.6	3.2	7.6	ns
2b	Clock fall to chip-select invalid	1.55	2.48	6.31	1.5	2.4	6.1	ns
3a	Clock fall to Read (Write) Valid	1.35	2.79	6.52	1.3	2.7	6.3	ns
Зb	Clock fall to Read (Write) Invalid	1.86	2.59	6.11	1.8	2.5	5.9	ns

MC9328MXL Technical Data, Rev. 8

Table 14. DTACK WAIT Read Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz (Continued)

Number	Characteristic	3.0 ± 0.3 V			
Number		Minimum	Maximum	Onic	
12	Wait pulse width	1T	1020T	ns	

Note:

1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)

2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur only when EBC bit in CS5L register is clear.

3. Address becomes valid and \overline{CS} asserts at the start of read access cycle.

4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state.

4.4.2.3 WAIT Write Cycle without DMA

Figure 8. WAIT Write Cycle without DMA

Table 15. WAIT Write Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz

Number	Characteristic	3.0 ± 0.3 V			
	Characteristic	Minimum	Maximum		
1	CS5 assertion time	See note 2	_	ns	
2	EB assertion time	See note 2	_	ns	
3	CS5 pulse width	3Т	-	ns	
4	RW negated before CS5 is negated	2.5T-3.63	2.5T-1.16	ns	
5	RW negated to Address inactive	64.22	-	ns	
6	Wait asserted after $\overline{CS5}$ asserted	_	1020T	ns	

Functional Description and Application Information

Figure 11. WSC = 1, WEA = 1, WEN = 1, A.HALF/E.HALF

Functional Description and Application Information

4.4.4 Non-TFT Panel Timing

Figure 33. Non-TFT Panel Timing

Table 17.	Non	TFT	Panel	Timing	Diagram
-----------	-----	-----	-------	--------	---------

Symbol	Parameter	Allowed Register Minimum Value ^{1, 2}	Actual Value	Unit
T1	HSYN to VSYN delay ³	0	HWAIT2+2	Tpix ⁴
T2	HSYN pulse width	0	HWIDTH+1	Tpix
Т3	VSYN to SCLK	-	$0 \leq T3 \leq Ts^5$	-
T4	SCLK to HSYN	0	HWAIT1+1	Тріх

¹ Maximum frequency of LCDC_CLK is 48 MHz, which is controlled by Peripheral Clock Divider Register.

² Maximum frequency of SCLK is HCLK / 5, otherwise LD output will be wrong.

³ VSYN, HSYN and SCLK can be programmed as active high or active low. In the above timing diagram, all these 3 signals are active high.

⁴ Tpix is the pixel clock period which equals LCDC_CLK period * (PCD + 1).

⁵ Ts is the shift clock period. Ts = Tpix * (panel data bus width).

4.5 SPI Timing Diagrams

To use the internal transmit (TX) and receive (RX) data FIFOs when the SPI 1 module is configured as a master, two control signals are used for data transfer rate control: the \overline{SS} signal (output) and the \overline{SPI}_RDY signal (input). The SPI1 Sample Period Control Register (PERIODREG1) and the SPI2 Sample Period Control Register (PERIODREG2) can also be programmed to a fixed data transfer rate for either SPI 1 or SPI 2. When the SPI 1 module is configured as a slave, the user can configure the SPI1 Control Register (CONTROLREG1) to match the external SPI master's timing. In this configuration, \overline{SS} becomes an input signal, and is used to latch data into or load data out to the internal data shift registers, as well as to increment the data FIFO. Figure 34 through Figure 38 show the timing relationship of the master SPI using different triggering mechanisms.

Figure 38. Slave SPI Timing Diagram FIFO Advanced by SS Rising Edge

Table 20. LCDC SCLK Timing Parameter Table

Figure 41. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing

Table 21.	4/8/16	Bit/Pixel	TFT	Color	Mode	Panel	Timing
-----------	--------	-----------	-----	-------	------	-------	--------

Symbol	Description	Minimum	Corresponding Register Value	Unit
T1	End of OE to beginning of VSYN	T5+T6 +T7+T9	(VWAIT1·T2)+T5+T6+T7+T9	Ts
T2	HSYN period	XMAX+5	XMAX+T5+T6+T7+T9+T10	Ts
Т3	VSYN pulse width	T2	VWIDTH-(T2)	Ts
T4	End of VSYN to beginning of OE	2	VWAIT2·(T2)	Ts
T5	HSYN pulse width	1	HWIDTH+1	Ts
Т6	End of HSYN to beginning to T9	1	HWAIT2+1	Ts
T7	End of OE to beginning of HSYN	1	HWAIT1+1	Ts

Table 24. Timing Values for Figure 43 through Figure 47

Parameter	Symbol	Minimum	Maximum	Unit				
MMC/SD bus clock, CLK (All values are referred to minimum (VIH) and maximum (VIL)								
Command response cycle	NCR	2	64	Clock cycles				
Identification response cycle	NID	5	5	Clock cycles				
Access time delay cycle	NAC	2	TAAC + NSAC	Clock cycles				

Parameter	Symbol	Minimum	Maximum	Unit			
Command read cycle	NRC	8	-	Clock cycles			
Command-command cycle	NCC	8	-	Clock cycles			
Command write cycle	NWR	2	-	Clock cycles			
Stop transmission cycle	NST	2	2	Clock cycles			
TAAC: Data read access time -1 defined in CSD register bit[119:112] NSAC: Data read access time -2 in CLK cycles (NSAC-100) defined in CSD register bit[111:104]							

Table 24. Timing Values for Figure 43 through Figure 47 (Continued)

4.7.2 SDIO-IRQ and ReadWait Service Handling

In SDIO, there is a 1-bit or 4-bit interrupt response from the SDIO peripheral card. In 1-bit mode, the interrupt response is simply that the SD_DAT[1] line is held low. The SD_DAT[1] line is not used as data in this mode. The memory controller generates an interrupt according to this low and the system interrupt continues until the source is removed (SD_DAT[1] returns to its high level).

In 4-bit mode, the interrupt is less simple. The interrupt triggers at a particular period called the "Interrupt Period" during the data access, and the controller must sample SD_DAT[1] during this short period to determine the IRQ status of the attached card. The interrupt period only happens at the boundary of each block (512 bytes).

ReadWait is another feature in SDIO that allows the user to submit commands during the data transfer. In this mode, the block temporarily pauses the data transfer operation counter and related status, yet keeps the clock running, and allows the user to submit commands as normal. After all commands are submitted, the user can switch back to the data transfer operation and all counter and status values are resumed as access continues.

Ref No.	Parameter	1.8 ± 0.1 V		3.0 ±	Unit	
		Minimum	Maximum	Minimum	Maximum	Unit
3b	Clock rise time ¹	_	6.67	_	5/10	ns
4a	Output delay time ¹	5.7	-	5	_	ns
4b	Output setup time ¹	5.7	_	5	_	ns

 Table 26. PWM Output Timing Parameter Table (Continued)

¹ C_L of PWMO = 30 pF

4.10 SDRAM Controller

This section shows timing diagrams and parameters associated with the SDRAM (synchronous dynamic random access memory) Controller.

Functional Description and Application Information

Figure 53. SDRAM Write Cycle Timing Diagram

Ref No.	Parameter	1.8 ±	0.1 V	3.0 ± 0.3 V		Unit
	r al all'elei	Minimum	Maximum	Minimum	Maximum	Onit
1	SDRAM clock high-level width	2.67	_	4	-	ns
2	SDRAM clock low-level width	6	_	4	_	ns
3	SDRAM clock cycle time	11.4	_	10	-	ns
4	Address setup time	3.42	_	3	_	ns
5	Address hold time	2.28	-	2	-	ns
6	Precharge cycle period ¹	t _{RP} ²	-	t _{RP2}	-	ns
7	Active to read/write command delay	t _{RCD2}	-	t _{RCD2}	-	ns
8	Data setup time	4.0	-	2	-	ns
9	Data hold time	2.28	_	2	_	ns

Table 28. SDRAM Write Timing Parameter Table

¹ Precharge cycle timing is included in the write timing diagram.

² t_{RP} and t_{RCD} = SDRAM clock cycle time. These settings can be found in the *MC9328MXL reference manual*.

Functional Description and Application Information

4.11 USB Device Port

Four types of data transfer modes exist for the USB module: control transfers, bulk transfers, isochronous transfers, and interrupt transfers. From the perspective of the USB module, the interrupt transfer type is identical to the bulk data transfer mode, and no additional hardware is supplied to support it. This section covers the transfer modes and how they work from the ground up.

Data moves across the USB in packets. Groups of packets are combined to form data transfers. The same packet transfer mechanism applies to bulk, interrupt, and control transfers. Isochronous data is also moved in the form of packets, however, because isochronous pipes are given a fixed portion of the USB bandwidth at all times, there is no end-of-transfer.

Functional Description and Application Information

Figure 60. SSI Receiver Internal Clock Timing Diagram

Note: SRXD Input in Synchronous mode only

Figure 61. SSI Transmitter External Clock Timing Diagram

Def No	Barometer	1.8 ± 0.1 V		3.0 ± 0.3 V		11	
Ref NO.	Parameter	Minimum	Maximum	Minimum	Maximum	Unit	
18	STCK high to STFS (bl) high ³	-	92.8	0	81.4	ns	
19	SRCK high to SRFS (bl) high ³	-	92.8	0	81.4	ns	
20	STCK high to STFS (bl) low ³	-	92.8	0	81.4	ns	
21	SRCK high to SRFS (bl) low ³	-	92.8	0	81.4	ns	
22	STCK high to STFS (wI) high ³	-	92.8	0	81.4	ns	
23	SRCK high to SRFS (wl) high ³	-	92.8	0	81.4	ns	
24	STCK high to STFS (wI) low ³	-	92.8	0	81.4	ns	
25	SRCK high to SRFS (wl) low ³	-	92.8	0	81.4	ns	
26	STCK high to STXD valid from high impedance	18.01	28.16	15.8	24.7	ns	
27a	STCK high to STXD high	8.98	18.13	7.0	15.9	ns	
27b	STCK high to STXD low	9.12	18.24	8.0	16.0	ns	
28	STCK high to STXD high impedance	18.47	28.5	16.2	25.0	ns	
29	SRXD setup time before SRCK low	1.14	-	1.0	-	ns	
30	SRXD hole time after SRCK low	0	-	0	-	ns	
Synchronous Internal Clock Operation (Port C Primary Function ²)							
31	SRXD setup before STCK falling	15.4	-	13.5	_	ns	
32	SRXD hold after STCK falling	0	-	0	_	ns	
Synchronous External Clock Operation (Port C Primary Function ²)							
33	SRXD setup before STCK falling	1.14	-	1.0	_	ns	
34	SRXD hold after STCK falling	0	_	0	_	ns	

Table 33. SSI (Port C Primary Function) Timing Parameter Table (Continued)

¹ All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.

² There are 2 sets of I/O signals for the SSI module. They are from Port C primary function (pad 257 to pad 261) and Port B alternate function (pad 283 to pad 288). When SSI signals are configured as outputs, they can be viewed both at Port C primary function and Port B alternate function. When SSI signals are configured as input, the SSI module selects the input based on status of the FMCR register bits in the Clock controller module (CRM). By default, the input are selected from Port C primary function.

³ bl = bit length; wl = word length.

Ref No.	Parameter	Min	Мах	Unit	
1	csi_vsync to csi_hsync	180	-	ns	
2	csi_hsync to csi_pixclk	1	_	ns	
3	csi_d setup time	1	_	ns	
4	csi_d hold time	1	_	ns	
5	csi_pixclk high time	10.42	_	ns	
6	csi_pixclk low time	10.42	_	ns	
7	csi_pixclk frequency	0	48	MHz	

Table 35.	Gated	Clock	Mode	Timing	Parame	ters
-----------	-------	-------	------	--------	--------	------

Pin-Out and Package Information

5.1 MAPBGA 256 Package Dimensions

Figure 67 illustrates the 256 MAPBGA 14 mm \times 14 mm \times 1.30 mm package, with an 0.8 mm pad pitch. The device designator for the MAPBGA package is VH.

NOTES:

ALL DIMENSIONS ARE IN MILLIMETERS.
 INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14 5M-1994.
 MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.
 DATUM A, THE SEATING PLANE IS DEFINED BY SPHERICAL CROWNS OF THE SOLDER BALLS.

Figure 67. i.MXL 256 MAPBGA Mechanical Drawing