

#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

E·XF

| Product Status                  | Active                                                     |
|---------------------------------|------------------------------------------------------------|
| Core Processor                  | ARM920T                                                    |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                             |
| Speed                           | 150MHz                                                     |
| Co-Processors/DSP               | -                                                          |
| RAM Controllers                 | SDRAM                                                      |
| Graphics Acceleration           | No                                                         |
| Display & Interface Controllers | LCD                                                        |
| Ethernet                        | -                                                          |
| SATA                            | -                                                          |
| USB                             | USB 1.x (1)                                                |
| Voltage - I/O                   | 1.8V, 3.0V                                                 |
| Operating Temperature           | 0°C ~ 70°C (TA)                                            |
| Security Features               | -                                                          |
| Package / Case                  | 256-LFBGA                                                  |
| Supplier Device Package         | 256-PBGA (14x14)                                           |
| Purchase URL                    | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9328mxlvm15 |
|                                 |                                                            |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



- Video Port
- General-Purpose I/O (GPIO) Ports
- Bootstrap Mode
- Multimedia Accelerator (MMA)
- Power Management Features
- Operating Voltage Range: 1.7 V to 1.9 V core, 1.7 V to 3.3 V I/O
- 256-pin MAPBGA Package
- 225-contact MAPBGA Package

## 1.2 Target Applications

The i.MXL processor is targeted for advanced information appliances, smart phones, Web browsers, digital MP3 audio players, handheld computers, and messaging applications.

## **1.3 Ordering Information**

Table 1 provides ordering information.

| Package Type    | Frequency | Temperature   | Solderball Type | Order Number       |
|-----------------|-----------|---------------|-----------------|--------------------|
| 256-lead MAPBGA | 200 MHz   | 0°C to 70°C   | Pb-free         | MC9328MXLVM20(R2)  |
|                 |           | -30°C to 70°C | Pb-free         | MC9328MXLDVM20(R2) |
|                 | 150 MHz   | 0°C to 70°C   | Pb-free         | MC9328MXLVM15(R2)  |
|                 |           | -30°C to 70°C | Pb-free         | MC9328MXLDVM15(R2) |
|                 |           | -40°C to 85°C | Pb-free         | MC9328MXLCVM15(R2) |
| 225-lead MAPBGA | 200 MHz   | 0°C to 70°C   | Pb-free         | MC9328MXLVP20(R2)  |
|                 |           | -30°C to 70°C | Pb-free         | MC9328MXLDVP20(R2) |
|                 | 150 MHz   | 0°C to 70°C   | Pb-free         | MC9328MXLVP15(R2)  |
|                 |           | -30°C to 70°C | Pb-free         | MC9328MXLDVP15(R2) |
|                 |           | -40°C to 85°C | Pb-free         | MC9328MXLCVP15(R2) |

Table 1. i.MXL Ordering Information

## 1.4 Conventions

This document uses the following conventions:

- $\overline{\text{OVERBAR}}$  is used to indicate a signal that is active when pulled low: for example,  $\overline{\text{RESET}}$ .
- Logic level one is a voltage that corresponds to Boolean true (1) state.
- Logic level zero is a voltage that corresponds to Boolean false (0) state.
- To set a bit or bits means to establish logic level one.
- To *clear* a bit or bits means to establish logic level zero.
- A *signal* is an electronic construct whose state conveys or changes in state convey information.



Signals and Connections

|         | 225         | 225 256     | Primary |     | Alternate   |                  | GF  | GPIO |             |     |     |      |         |
|---------|-------------|-------------|---------|-----|-------------|------------------|-----|------|-------------|-----|-----|------|---------|
| Voltage | BGA<br>Ball | BGA<br>Ball | Signal  | Dir | Pull-<br>Up | Signal           | Dir | Mux  | Pull<br>-Up | AIN | BIN | AOUT | Default |
| NVDD1   | F1          | E1          | A20     | 0   |             | ETMPIPE<br>STAT0 | 0   | PA28 | 69K         |     |     |      | A20     |
| NVDD1   | F4          | F2          | D27     | I/O | 69K         |                  |     |      |             |     |     |      |         |
| NVDD1   | F2          | F4          | A19     | 0   |             | ETMTRAC<br>EPKT3 | 0   | PA27 | 69K         |     |     |      | A19     |
| NVDD1   | G3          | E4          | D26     | I/O | 69K         |                  |     |      |             |     |     |      |         |
| NVDD1   | G2          | F1          | A18     | 0   |             | ETMTRAC<br>EPKT2 | 0   | PA26 | 69K         |     |     |      | A18     |
| NVDD1   | G4          | F3          | D25     | I/O | 69K         |                  |     |      |             |     |     |      |         |
| NVDD1   | G1          | G2          | A17     | 0   |             | ETMTRAC<br>EPKT1 | 0   | PA25 | 69K         |     |     |      | A17     |
| NVDD1   | H4          | G3          | D24     | I/O | 69K         |                  |     |      |             |     |     |      |         |
| NVDD1   | H2          | F5          | A16     | 0   |             | ETMTRAC<br>EPKT0 | 0   | PA24 | 69K         |     |     |      | A16     |
| NVDD1   | H3          | G4          | D23     | I/O | 69K         |                  |     |      |             |     |     |      |         |
| NVDD1   | H1          | G1          | A15     | 0   |             |                  |     |      |             |     |     |      |         |
| NVDD1   | H5          | H2          | D22     | I/O | 69K         |                  |     |      |             |     |     |      |         |
| NVDD1   | J1          | H3          | A14     | 0   |             |                  |     |      |             |     |     |      |         |
| NVDD1   | J3          | G5          | D21     | I/O | 69K         |                  |     |      |             |     |     |      |         |
| NVDD1   | K1          | H1          | A13     | 0   |             |                  |     |      |             |     |     |      |         |
| NVDD1   | J4          | H4          | D20     | I/O | 69K         |                  |     |      |             |     |     |      |         |
| NVDD1   | J2          | J1          | A12     | 0   |             |                  |     |      |             |     |     |      |         |
| NVDD1   | K4          | J4          | D19     | I/O | 69K         |                  |     |      |             |     |     |      |         |
| NVDD1   | K2          | J2          | A11     | 0   |             |                  |     |      |             |     |     |      |         |
| NVDD1   | L4          | J3          | D18     | I/O | 69K         |                  |     |      |             |     |     |      |         |
| NVDD1   | L1          | K1          | A10     | 0   |             |                  |     |      |             |     |     |      |         |
| NVDD1   | L3          | K4          | D17     | I/O | 69K         |                  |     |      |             |     |     |      |         |
| NVDD1   | L2          | К3          | A9      | 0   |             |                  |     |      |             |     |     |      |         |
| NVDD1   | M1          | K2          | D16     | I/O | 69K         |                  |     |      |             |     |     |      |         |
| NVDD1   | N1          | L1          | A8      | 0   |             |                  |     |      |             |     |     |      |         |
| NVDD1   | M2          | L4          | D15     | I/O | 69K         |                  |     |      |             |     |     |      |         |
| NVDD1   | N2          | L2          | A7      | 0   |             |                  |     |      |             |     |     |      |         |
| NVDD1   | P1          | L5          | D14     | I/O | 69K         |                  |     |      |             |     |     |      |         |
| NVDD1   | R1          | M4          | A6      | 0   |             |                  |     |      |             |     |     |      |         |
| NVDD1   | M3          | L3          | D13     | I/O | 69K         |                  |     |      |             |     |     |      |         |
| NVDD1   | P2          | M1          | A5      | 0   |             |                  |     |      |             |     |     |      |         |
| NVDD1   | N3          | M2          | D12     | I/O | 69K         |                  |     |      |             |     |     |      |         |
| NVDD1   | P3          | N1          | A4      | 0   |             |                  |     |      |             |     |     |      |         |
| NVDD1   | R2          | M3          | D11     | I/O | 69K         |                  |     |      |             |     |     |      |         |

#### Table 3. MC9328MXLMC9328MXS Signal Multiplexing Scheme (Continued)



# **3** Electrical Characteristics

This section contains the electrical specifications and timing diagrams for the i.MXL processor.

### 3.1 Maximum Ratings

Table 4 provides information on maximum ratings which are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits listed in Recommended Operating Range Table 5 on page 18 or the DC Characteristics table.

| Symbol              | Rating                                      | Minimum          | Maximum           | Unit |
|---------------------|---------------------------------------------|------------------|-------------------|------|
| NV <sub>DD</sub>    | DC I/O Supply Voltage                       | -0.3             | 3.3               | V    |
| QV <sub>DD</sub>    | DC Internal (core = 150 MHz) Supply Voltage | -0.3             | 1.9               | V    |
| QV <sub>DD</sub>    | DC Internal (core = 200 MHz) Supply Voltage | -0.3             | 2.0               | V    |
| AV <sub>DD</sub>    | DC Analog Supply Voltage                    | -0.3             | 3.3               | V    |
| BTRFV <sub>DD</sub> | DC Bluetooth Supply Voltage                 | -0.3             | 3.3               | V    |
| VESD_HBM            | ESD immunity with HBM (human body model)    | _                | 2000              | V    |
| VESD_MM             | ESD immunity with MM (machine model)        | _                | 100               | V    |
| ILatchup            | Latch-up immunity                           | -                | 200               | mA   |
| Test                | Storage temperature                         | -55              | 150               | °C   |
| Pmax                | Power Consumption                           | 800 <sup>1</sup> | 1300 <sup>2</sup> | mW   |

| Table 4. Maximum | Ratings |
|------------------|---------|
|------------------|---------|

<sup>1</sup> A typical application with 30 pads simultaneously switching assumes the GPIO toggling and instruction fetches from the ARM<sup>®</sup> core-that is, 7x GPIO, 15x Data bus, and 8x Address bus.

<sup>2</sup> A worst-case application with 70 pads simultaneously switching assumes the GPIO toggling and instruction fetches from the ARM core-that is, 32x GPIO, 30x Data bus, 8x Address bus. These calculations are based on the core running its heaviest OS application at 200MHz, and where the whole image is running out of SDRAM. QVDD at 2.0V, NVDD and AVDD at 3.3V, therefore, 180mA is the worst measurement recorded in the factory environment, max 5mA is consumed for OSC pads, with each toggle GPIO consuming 4mA.

## 3.2 Recommended Operating Range

Table 5 provides the recommended operating ranges for the supply voltages and temperatures. The i.MXL processor has multiple pairs of VDD and VSS power supply and return pins. QVDD and QVSS pins are used for internal logic. All other VDD and VSS pins are for the I/O pads voltage supply, and each pair of VDD and VSS provides power to the enclosed I/O pads. This design allows different peripheral supply voltage levels in a system.

Because AVDD pins are supply voltages to the analog pads, it is recommended to isolate and noise-filter the AVDD pins from other VDD pins.

For more information about I/O pads grouping per VDD, please refer to Table 2 on page 4.



# **4** Functional Description and Application Information

This section provides the electrical information including and timing diagrams for the individual modules of the i.MXL.

# 4.1 Embedded Trace Macrocell

All registers in the ETM9 are programmed through a JTAG interface. The interface is an extension of the ARM920T processor's TAP controller, and is assigned scan chain 6. The scan chain consists of a 40-bit shift register comprised of the following:

- 32-bit data field
- 7-bit address field
- A read/write bit

The data to be written is scanned into the 32-bit data field, the address of the register into the 7-bit address field, and a 1 into the read/write bit.

A register is read by scanning its address into the address field and a 0 into the read/write bit. The 32-bit data field is ignored. A read or a write takes place when the TAP controller enters the UPDATE-DR state. The timing diagram for the ETM9 is shown in Figure 2. See Table 9 for the ETM9 timing parameters used in Figure 2.



Figure 2. Trace Port Timing Diagram

| Table 9  | Trace | Port | Timina  | Diagram | Parameter | Table |
|----------|-------|------|---------|---------|-----------|-------|
| Table 3. | Have  | FUIL | rinning | Diagram | Falametei | Table |

| Ref No. | Parameter       | 1.8 ±   | 0.1 V   | 3.0 ±   | Unit    |      |
|---------|-----------------|---------|---------|---------|---------|------|
|         |                 | Minimum | Maximum | Minimum | Maximum | Onit |
| 1       | CLK frequency   | 0       | 85      | 0       | 100     | MHz  |
| 2a      | Clock high time | 1.3     | -       | 2       | -       | ns   |
| 2b      | Clock low time  | 3       | -       | 2       | -       | ns   |
| 3a      | Clock rise time | -       | 4       | -       | 3       | ns   |
| Зb      | Clock fall time | _       | 3       | -       | 3       | ns   |



## 4.3 Reset Module

The timing relationships of the Reset module with the POR and RESET\_IN are shown in Figure 3 and Figure 4.

#### NOTE

Be aware that NVDD must ramp up to at least 1.8V before QVDD is powered up to prevent forward biasing.





#### Table 14. DTACK WAIT Read Cycle DMA Enabled: WSC = 111111, DTACK\_SEL=1, HCLK=96MHz (Continued)

| Number | Characteristic   | 3.0 ± 0.3 V |         |      |  |
|--------|------------------|-------------|---------|------|--|
|        |                  | Minimum     | Maximum | Onic |  |
| 12     | Wait pulse width | 1T          | 1020T   | ns   |  |
|        |                  |             |         |      |  |

Note:

1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)

2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur only when EBC bit in CS5L register is clear.

3. Address becomes valid and  $\overline{CS}$  asserts at the start of read access cycle.

4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state.

### 4.4.2.3 WAIT Write Cycle without DMA



Figure 8. WAIT Write Cycle without DMA

#### Table 15. WAIT Write Cycle without DMA: WSC = 111111, DTACK\_SEL=1, HCLK=96MHz

| Number | Characteristic                                | 3.0 ± 0    | Unit      |    |
|--------|-----------------------------------------------|------------|-----------|----|
|        | Characteristic                                | Minimum    | Maximum   |    |
| 1      | CS5 assertion time                            | See note 2 | _         | ns |
| 2      | EB assertion time                             | See note 2 | _         | ns |
| 3      | CS5 pulse width                               | 3Т         | -         | ns |
| 4      | RW negated before CS5 is negated              | 2.5T-3.63  | 2.5T-1.16 | ns |
| 5      | RW negated to Address inactive                | 64.22      | -         | ns |
| 6      | Wait asserted after $\overline{CS5}$ asserted | _          | 1020T     | ns |



**Functional Description and Application Information** 



Figure 11. WSC = 1, WEA = 1, WEN = 1, A.HALF/E.HALF







**Functional Description and Application Information** 







**Functional Description and Application Information** 









Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register





Functional Description and Application Information







### 4.4.4 Non-TFT Panel Timing



Figure 33. Non-TFT Panel Timing

| Table 17. | Non | TFT | Panel | Timing | Diagram |
|-----------|-----|-----|-------|--------|---------|
|-----------|-----|-----|-------|--------|---------|

| Symbol | Parameter                       | Allowed Register<br>Minimum Value <sup>1, 2</sup> | Actual Value          | Unit              |
|--------|---------------------------------|---------------------------------------------------|-----------------------|-------------------|
| T1     | HSYN to VSYN delay <sup>3</sup> | 0                                                 | HWAIT2+2              | Tpix <sup>4</sup> |
| T2     | HSYN pulse width                | 0                                                 | HWIDTH+1              | Tpix              |
| Т3     | VSYN to SCLK                    | -                                                 | $0 \leq T3 \leq Ts^5$ | -                 |
| T4     | SCLK to HSYN                    | 0                                                 | HWAIT1+1              | Тріх              |

<sup>1</sup> Maximum frequency of LCDC\_CLK is 48 MHz, which is controlled by Peripheral Clock Divider Register.

<sup>2</sup> Maximum frequency of SCLK is HCLK / 5, otherwise LD output will be wrong.

<sup>3</sup> VSYN, HSYN and SCLK can be programmed as active high or active low. In the above timing diagram, all these 3 signals are active high.

<sup>4</sup> Tpix is the pixel clock period which equals LCDC\_CLK period \* (PCD + 1).

<sup>5</sup> Ts is the shift clock period. Ts = Tpix \* (panel data bus width).

# 4.5 SPI Timing Diagrams

To use the internal transmit (TX) and receive (RX) data FIFOs when the SPI 1 module is configured as a master, two control signals are used for data transfer rate control: the  $\overline{SS}$  signal (output) and the  $\overline{SPI}_RDY$  signal (input). The SPI1 Sample Period Control Register (PERIODREG1) and the SPI2 Sample Period Control Register (PERIODREG2) can also be programmed to a fixed data transfer rate for either SPI 1 or SPI 2. When the SPI 1 module is configured as a slave, the user can configure the SPI1 Control Register (CONTROLREG1) to match the external SPI master's timing. In this configuration,  $\overline{SS}$  becomes an input signal, and is used to latch data into or load data out to the internal data shift registers, as well as to increment the data FIFO. Figure 34 through Figure 38 show the timing relationship of the master SPI using different triggering mechanisms.



Functional Description and Application Information



After a card receives its RCA, it switches to data transfer mode. As shown on the first diagram in Figure 44, SD\_CMD lines in this mode are driven with push-pull drivers. The command is followed by a period of two Z bits (allowing time for direction switching on the bus) and then by P bits pushed up by the responding card. The other two diagrams show the separating periods  $N_{RC}$  and  $N_{CC}$ .





Figure 45 shows basic read operation timing. In a read operation, the sequence starts with a single block read command (which specifies the start address in the argument field). The response is sent on the SD\_CMD lines as usual. Data transmission from the card starts after the access time delay  $N_{AC}$ , beginning from the last bit of the read command. If the system is in multiple block read mode, the card sends a continuous flow of data blocks with distance  $N_{AC}$  until the card sees a stop transmission command. The data stops two clock cycles after the end bit of the stop command.



**Functional Description and Application Information** 



Figure 45. Timing Diagrams at Data Read

Figure 46 shows the basic write operation timing. As with the read operation, after the card response, the data transfer starts after  $N_{WR}$  cycles. The data is suffixed with CRC check bits to allow the card to check for transmission errors. The card sends back the CRC check result as a CC status token on the data line. If there was a transmission error, the card sends a negative CRC status (101); otherwise, a positive CRC status (010) is returned. The card expects a continuous flow of data blocks if it is configured to multiple block mode, with the flow terminated by a stop transmission command.



| Ref<br>No. | Parameter                                                                        |         | 3.0 ± 0.3 V |      |  |
|------------|----------------------------------------------------------------------------------|---------|-------------|------|--|
|            | i diameter                                                                       | Minimum | Maximum     | Onit |  |
| 12         | MS_SDIO output delay time <sup>1,2</sup>                                         | _       | 3           | ns   |  |
| 13         | MS_SDIO input setup time for MS_SCLKO rising edge (RED bit = $0$ ) <sup>3</sup>  | 18      | _           | ns   |  |
| 14         | MS_SDIO input hold time for MS_SCLKO rising edge (RED bit = $0$ ) <sup>3</sup>   | 0       | _           | ns   |  |
| 15         | MS_SDIO input setup time for MS_SCLKO falling edge (RED bit = $1$ ) <sup>4</sup> | 23      | _           | ns   |  |
| 16         | MS_SDIO input hold time for MS_SCLKO falling edge (RED bit = $1$ ) <sup>4</sup>  | 0       | _           | ns   |  |

<sup>1</sup> Loading capacitor condition is less than or equal to 30pF.

<sup>2</sup> An external resistor (100 ~ 200 ohm) should be inserted in series to provide current control on the MS\_SDIO pin, because of a possibility of signal conflict between the MS\_SDIO pin and Memory Stick SDIO pin when the pin direction changes.

<sup>3</sup> If the MSC2[RED] bit = 0, MSHC samples MS\_SDIO input data at MS\_SCLKO rising edge.

<sup>4</sup> If the MSC2[RED] bit = 1, MSHC samples MS\_SDIO input data at MS\_SCLKO falling edge.

### 4.9 Pulse-Width Modulator

The PWM can be programmed to select one of two clock signals as its source frequency. The selected clock signal is passed through a divider and a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin. Its timing diagram is shown in Figure 51 and the parameters are listed in Table 26.



Figure 51. PWM Output Timing Diagram

| Ref No. | Parameter                         | 1.8 ± 0.1 V |         | 3.0 ± 0.3 V |         | Unit |
|---------|-----------------------------------|-------------|---------|-------------|---------|------|
|         |                                   | Minimum     | Maximum | Minimum     | Maximum | onit |
| 1       | System CLK frequency <sup>1</sup> | 0           | 87      | 0           | 100     | MHz  |
| 2a      | Clock high time <sup>1</sup>      | 3.3         | _       | 5/10        | -       | ns   |
| 2b      | Clock low time <sup>1</sup>       | 7.5         | -       | 5/10        | -       | ns   |
| За      | Clock fall time <sup>1</sup>      | -           | 5       | -           | 5/10    | ns   |

Table 26. PWM Output Timing Parameter Table



Figure 57. USB Device Timing Diagram for Data Transfer from USB Transceiver (RX)

| Table 31. USB Device Timing Parameter Ta | able for Data Transfer from USB | Transceiver (RX) |
|------------------------------------------|---------------------------------|------------------|
|------------------------------------------|---------------------------------|------------------|

| Bef No | Parameter                                         | 3.0 ±   | Unit    |      |  |
|--------|---------------------------------------------------|---------|---------|------|--|
|        | i ardineter                                       | Minimum | Maximum | onne |  |
| 1      | t <sub>FEOPR</sub> ; Receiver SE0 interval of EOP | 82      | _       | ns   |  |

#### I<sup>2</sup>C Module 4.12

The I<sup>2</sup>C communication protocol consists of seven elements: START, Data Source/Recipient, Data Direction, Slave Acknowledge, Data, Data Acknowledge, and STOP.



Figure 58. Definition of Bus Timing for I<sup>2</sup>C







Figure 62. SSI Receiver External Clock Timing Diagram

| Pof No                                                           | Barometor                                                                     | 1.8 ± 0.1 V |         | 3.0 ± 0.3 V |         | Unit |  |  |
|------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------|---------|-------------|---------|------|--|--|
| nei No.                                                          | Farameter                                                                     | Minimum     | Maximum | Minimum     | Maximum | Unit |  |  |
|                                                                  | Internal Clock Operation <sup>1</sup> (Port C Primary Function <sup>2</sup> ) |             |         |             |         |      |  |  |
| 1                                                                | STCK/SRCK clock period <sup>1</sup>                                           | 95          | _       | 83.3        | _       | ns   |  |  |
| 2                                                                | STCK high to STFS (bl) high <sup>3</sup>                                      | 1.5         | 4.5     | 1.3         | 3.9     | ns   |  |  |
| 3                                                                | SRCK high to SRFS (bl) high <sup>3</sup>                                      | -1.2        | -1.7    | -1.1        | -1.5    | ns   |  |  |
| 4                                                                | STCK high to STFS (bl) low <sup>3</sup>                                       | 2.5         | 4.3     | 2.2         | 3.8     | ns   |  |  |
| 5                                                                | SRCK high to SRFS (bl) low <sup>3</sup>                                       | 0.1         | -0.8    | 0.1         | -0.8    | ns   |  |  |
| 6                                                                | STCK high to STFS (wI) high <sup>3</sup>                                      | 1.48        | 4.45    | 1.3         | 3.9     | ns   |  |  |
| 7                                                                | SRCK high to SRFS (wI) high <sup>3</sup>                                      | -1.1        | -1.5    | -1.1        | -1.5    | ns   |  |  |
| 8                                                                | STCK high to STFS (wI) low <sup>3</sup>                                       | 2.51        | 4.33    | 2.2         | 3.8     | ns   |  |  |
| 9                                                                | SRCK high to SRFS (wI) low <sup>3</sup>                                       | 0.1         | -0.8    | 0.1         | -0.8    | ns   |  |  |
| 10                                                               | STCK high to STXD valid from high impedance                                   | 14.25       | 15.73   | 12.5        | 13.8    | ns   |  |  |
| 11a                                                              | STCK high to STXD high                                                        | 0.91        | 3.08    | 0.8         | 2.7     | ns   |  |  |
| 11b                                                              | STCK high to STXD low                                                         | 0.57        | 3.19    | 0.5         | 2.8     | ns   |  |  |
| 12                                                               | STCK high to STXD high impedance                                              | 12.88       | 13.57   | 11.3        | 11.9    | ns   |  |  |
| 13                                                               | SRXD setup time before SRCK low                                               | 21.1        | -       | 18.5        | -       | ns   |  |  |
| 14                                                               | SRXD hold time after SRCK low                                                 | 0           | _       | 0           | _       | ns   |  |  |
| External Clock Operation (Port C Primary Function <sup>2</sup> ) |                                                                               |             |         |             |         |      |  |  |
| 15                                                               | STCK/SRCK clock period <sup>1</sup>                                           | 92.8        | _       | 81.4        | _       | ns   |  |  |
| 16                                                               | STCK/SRCK clock high period                                                   | 27.1        | _       | 40.7        | -       | ns   |  |  |
| 17                                                               | STCK/SRCK clock low period                                                    | 61.1        | _       | 40.7        | _       | ns   |  |  |

#### Table 33. SSI (Port C Primary Function) Timing Parameter Table











| Ref No. | Parameter               | Min   | Мах | Unit |
|---------|-------------------------|-------|-----|------|
| 1       | csi_vsync to csi_hsync  | 180   | -   | ns   |
| 2       | csi_hsync to csi_pixclk | 1     | _   | ns   |
| 3       | csi_d setup time        | 1     | _   | ns   |
| 4       | csi_d hold time         | 1     | _   | ns   |
| 5       | csi_pixclk high time    | 10.42 | _   | ns   |
| 6       | csi_pixclk low time     | 10.42 | _   | ns   |
| 7       | csi_pixclk frequency    | 0     | 48  | MHz  |

| Table 35. | Gated | Clock | Mode | Timing | Parame | ters |
|-----------|-------|-------|------|--------|--------|------|
|-----------|-------|-------|------|--------|--------|------|



\_\_\_\_\_

NOTES