

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	ARM920T
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	200MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	LCD
Ethernet	·
SATA	-
USB	USB 1.x (1)
Voltage - I/O	1.8V, 3.0V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	256-LFBGA
Supplier Device Package	256-PBGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9328mxlvm20r2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Signals and Connections

Signal Name	Function/Notes
SD_DAT [3:0]	Data—If the system designer does not wish to make use of the internal pull-up, via the Pull-up enable register, a 50K–69K external pull up resistor must be added.
	Memory Stick Interface
MS_BS	Memory Stick Bus State (Output)—Serial bus control signal
MS_SDIO	Memory Stick Serial Data (Input/Output)
MS_SCLKO	Memory Stick Serial Clock (Input)—Serial protocol clock source for SCLK Divider
MS_SCLKI	Memory Stick External Clock (Output)—Test clock input pin for SCLK divider. This pin is only for test purposes, not for use in application mode.
MS_PI0	General purpose Input0—Can be used for Memory Stick Insertion/Extraction detect
MS_PI1	General purpose Input1—Can be used for Memory Stick Insertion/Extraction detect
	UARTs – IrDA/Auto-Bauding
UART1_RXD	Receive Data
UART1_TXD	Transmit Data
UART1_RTS	Request to Send
UART1_CTS	Clear to Send
UART2_RXD	Receive Data
UART2_TXD	Transmit Data
UART2_RTS	Request to Send
UART2_CTS	Clear to Send
UART2_DSR	Data Set Ready
UART2_RI	Ring Indicator
UART2_DCD	Data Carrier Detect
UART2_DTR	Data Terminal Ready
	Serial Audio Port – SSI (configurable to I ² S protocol)
SSI_TXDAT	Transmit Data
SSI_RXDAT	Receive Data
SSI_TXCLK	Transmit Serial Clock
SSI_RXCLK	Receive Serial Clock
SSI_TXFS	Transmit Frame Sync
SSI_RXFS	Receive Frame Sync
	l ² C
I2C_SCL	I ² C Clock
I2C_SDA	I ² C Data

Signals and Connections

	225	256	Pr	imary		Alterna	te	GF	010				
Voltage	BGA Ball	BGA Ball	Signal	Dir	Pull- Up	Signal	Dir	Mux	Pull -Up	AIN	BIN	AOUT	Default
NVDD2	D11	G14	LP/HSYN C	0				PD13	69K				PD13
NVDD2	E11	G13	ACD/OE	0				PD12	69K				PD12
NVDD2	C10	G12	CONTRA ST	0				PD11	69K				PD11
NVDD2	B11	F16	SPL_SPR	0		UART2_D SR	0	PD10	69K	SPI2_ TXD			PD10
NVDD2	A12	H10	PS	0		UART2_RI	0	PD9	69K			SPI2_ RXD_1	PD9
NVDD2	F10	G11	CLS	0		UART2_D CD	0	PD8	69K	SPI2_ SS			PD8
NVDD2	A11	F12	REV	0		UART2_D TR	Ι	PD7	69K	SPI2_ SCLK			PD7
NVDD2	B10	F15	LSCLK	0				PD6	69K				PD6
NVDD3	D10	G9	SPI1_MO SI	I/O				PC17	69K				PC17
NVDD3	E10	F9	SPI1_MIS O	I/O				PC16	69K				PC16
NVDD3	B9	E9	SPI1_SS	I/O				PC15	69K				PC15
NVDD3	A10	B9	SPI1_SCL K	I/O				PC14	69K				PC14
NVDD3	A9	D9	SPI1_SPI _RDY	I/O				PC13	69K			DMA_REQ	PC13
NVDD3	E8	A9	UART1_R XD	Ι				PC12	69K				PC12
NVDD3	B8	C9	UART1_T XD	0				PC11	69K				PC11
NVDD3	C9	A8	UART1_R TS	I				PC10	69K				PC10
NVDD3	E9	G8	UART1_C TS	0				PC9	69K				PC9
NVDD3	A8	B8	SSI_TXCL K	I/O				PC8	69K				PC8
NVDD3	C8	F8	SSI_TXFS	I/O				PC7	69K				PC7
NVDD3	F9	E8	SSI_TXDA T	0				PC6	69K				PC6
NVDD3	B7	D8	SSI_RXD AT	I				PC5	69K				PC5
NVDD3	F8	B7	SSI_RXCL K	Ι				PC4	69K				PC4
NVDD3	A7	C8	SSI_RXFS	Ι				PC3	69K				PC3
NVDD4	C7	C7	UART2_R XD	I				PB31	69K				PB31

Table 3. MC9328MXLMC9328MXS Signal Multiplexing Scheme (Continued)

4 Functional Description and Application Information

This section provides the electrical information including and timing diagrams for the individual modules of the i.MXL.

4.1 Embedded Trace Macrocell

All registers in the ETM9 are programmed through a JTAG interface. The interface is an extension of the ARM920T processor's TAP controller, and is assigned scan chain 6. The scan chain consists of a 40-bit shift register comprised of the following:

- 32-bit data field
- 7-bit address field
- A read/write bit

The data to be written is scanned into the 32-bit data field, the address of the register into the 7-bit address field, and a 1 into the read/write bit.

A register is read by scanning its address into the address field and a 0 into the read/write bit. The 32-bit data field is ignored. A read or a write takes place when the TAP controller enters the UPDATE-DR state. The timing diagram for the ETM9 is shown in Figure 2. See Table 9 for the ETM9 timing parameters used in Figure 2.

Figure 2. Trace Port Timing Diagram

Table 9	Trace	Port	Timina	Diagram	Parameter	Table
Table 3.	Have	FUIL	rinning	Diagram	Falametei	Table

Ref No.	Parameter	1.8 ±	0.1 V	3.0 ±	Unit	
		Minimum	Maximum	Minimum	Maximum	Onit
1	CLK frequency	0	85	0	100	MHz
2a	Clock high time	1.3	-	2	-	ns
2b	Clock low time	3	-	2	-	ns
3a	Clock rise time	-	4	-	3	ns
Зb	Clock fall time	_	3	-	3	ns

Functional Description and Application Information

Figure 5. EIM Bus Timing Diagram

Table 12	EIM	Bus	Timing	Parameter	Table
----------	-----	-----	--------	-----------	-------

Ref No.	Parameter		1.8 ± 0.1 V			Unit		
	i arameter		Typical	Max	Min	Typical	Max	Unit
1a	Clock fall to address valid	2.48	3.31	9.11	2.4	3.2	8.8	ns
1b	Clock fall to address invalid	1.55	2.48	5.69	1.5	2.4	5.5	ns
2a	Clock fall to chip-select valid	2.69	3.31	7.87	2.6	3.2	7.6	ns
2b	Clock fall to chip-select invalid	1.55	2.48	6.31	1.5	2.4	6.1	ns
3a	Clock fall to Read (Write) Valid	1.35	2.79	6.52	1.3	2.7	6.3	ns
Зb	Clock fall to Read (Write) Invalid	1.86	2.59	6.11	1.8	2.5	5.9	ns

MC9328MXL Technical Data, Rev. 8

Pof No	Parameter		1.8 ± 0.1 V			Unit		
nei NO.	Falameter	Min	Typical	Max	Min	Typical	Max	Onit
4a	Clock ¹ rise to Output Enable Valid	2.32	2.62	6.85	2.3	2.6	6.8	ns
4b	Clock ¹ rise to Output Enable Invalid	2.11	2.52	6.55	2.1	2.5	6.5	ns
4c	Clock ¹ fall to Output Enable Valid	2.38	2.69	7.04	2.3	2.6	6.8	ns
4d	Clock ¹ fall to Output Enable Invalid	2.17	2.59	6.73	2.1	2.5	6.5	ns
5a	Clock ¹ rise to Enable Bytes Valid	1.91	2.52	5.54	1.9	2.5	5.5	ns
5b	Clock ¹ rise to Enable Bytes Invalid	1.81	2.42	5.24	1.8	2.4	5.2	ns
5c	Clock ¹ fall to Enable Bytes Valid	1.97	2.59	5.69	1.9	2.5	5.5	ns
5d	Clock ¹ fall to Enable Bytes Invalid	1.76	2.48	5.38	1.7	2.4	5.2	ns
6a	Clock ¹ fall to Load Burst Address Valid	2.07	2.79	6.73	2.0	2.7	6.5	ns
6b	Clock ¹ fall to Load Burst Address Invalid	1.97	2.79	6.83	1.9	2.7	6.6	ns
6c	Clock ¹ rise to Load Burst Address Invalid	1.91	2.62	6.45	1.9	2.6	6.4	ns
7a	Clock ¹ rise to Burst Clock rise	1.61	2.62	5.64	1.6	2.6	5.6	ns
7b	Clock ¹ rise to Burst Clock fall	1.61	2.62	5.84	1.6	2.6	5.8	ns
7c	Clock ¹ fall to Burst Clock rise	1.55	2.48	5.59	1.5	2.4	5.4	ns
7d	Clock ¹ fall to Burst Clock fall	1.55	2.59	5.80	1.5	2.5	5.6	ns
8a	Read Data setup time	5.54	_	-	5.5	_	-	ns
8b	Read Data hold time	0	_	-	0	_	-	ns
9a	Clock ¹ rise to Write Data Valid	1.81	2.72	6.85	1.8	2.7	6.8	ns
9b	Clock ¹ fall to Write Data Invalid	1.45	2.48	5.69	1.4	2.4	5.5	ns
9c	Clock ¹ rise to Write Data Invalid	1.63	_	-	1.62	_	-	ns
10a	DTACK setup time	2.52	-	—	2.5	_	—	ns

Table 12. EIM Bus Timing Parameter Table (Continued)

¹ Clock refers to the system clock signal, HCLK, generated from the System DPLL

4.4.1 **DTACK** Signal Description

The DTACK signal is the external input data acknowledge signal. When using the external DTACK signal as a data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is not terminated by the external DTACK signal after 1022 HCLK counts have elapsed. Only the CS5 group supports DTACK signal function when the external DTACK signal is used for data acknowledgement.

4.4.2 DTACK Signal Timing

Figure 6 through Figure 9 show the access cycle timing used by chip-select 5. The signal values and units of measure for this figure are found in the associated tables.

Functional Description and Application Information

Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register

4.4.4 Non-TFT Panel Timing

Figure 33. Non-TFT Panel Timing

Table 17.	Non	TFT	Panel	Timing	Diagram
-----------	-----	-----	-------	--------	---------

Symbol	Parameter	Allowed Register Minimum Value ^{1, 2}	Actual Value	Unit
T1	HSYN to VSYN delay ³	0	HWAIT2+2	Tpix ⁴
T2	HSYN pulse width	0	HWIDTH+1	Tpix
Т3	VSYN to SCLK	-	$0 \leq T3 \leq Ts^5$	-
T4	SCLK to HSYN	0	HWAIT1+1	Тріх

¹ Maximum frequency of LCDC_CLK is 48 MHz, which is controlled by Peripheral Clock Divider Register.

² Maximum frequency of SCLK is HCLK / 5, otherwise LD output will be wrong.

³ VSYN, HSYN and SCLK can be programmed as active high or active low. In the above timing diagram, all these 3 signals are active high.

⁴ Tpix is the pixel clock period which equals LCDC_CLK period * (PCD + 1).

⁵ Ts is the shift clock period. Ts = Tpix * (panel data bus width).

4.5 SPI Timing Diagrams

To use the internal transmit (TX) and receive (RX) data FIFOs when the SPI 1 module is configured as a master, two control signals are used for data transfer rate control: the \overline{SS} signal (output) and the \overline{SPI}_RDY signal (input). The SPI1 Sample Period Control Register (PERIODREG1) and the SPI2 Sample Period Control Register (PERIODREG2) can also be programmed to a fixed data transfer rate for either SPI 1 or SPI 2. When the SPI 1 module is configured as a slave, the user can configure the SPI1 Control Register (CONTROLREG1) to match the external SPI master's timing. In this configuration, \overline{SS} becomes an input signal, and is used to latch data into or load data out to the internal data shift registers, as well as to increment the data FIFO. Figure 34 through Figure 38 show the timing relationship of the master SPI using different triggering mechanisms.

Figure 38. Slave SPI Timing Diagram FIFO Advanced by SS Rising Edge

The stop transmission command may occur when the card is in different states. Figure 47 shows the different scenarios on the bus.

4.8 Memory Stick Host Controller

The Memory Stick protocol requires three interface signal line connections for data transfers: MS_BS, MS_SDIO, and MS_SCLKO. Communication is always initiated by the MSHC and operates the bus in either four-state or two-state access mode.

The MS_BS signal classifies data on the SDIO into one of four states (BS0, BS1, BS2, or BS3) according to its attribute and transfer direction. BS0 is the INT transfer state, and during this state no packet transmissions occur. During the BS1, BS2, and BS3 states, packet communications are executed. The BS1, BS2, and BS3 states are regarded as one packet length and one communication transfer is always completed within one packet length (in four-state access mode).

The Memory Stick usually operates in four state access mode and in BS1, BS2, and BS3 bus states. When an error occurs during packet communication, the mode is shifted to two-state access mode, and the BS0 and BS1 bus states are automatically repeated to avoid a bus collision on the SDIO.

Functional Description and Application Information

Figure 53. SDRAM Write Cycle Timing Diagram

Ref No	Parameter	1.8 ±	0.1 V	3.0 ±	Unit	
nei No.	r al ameter	Minimum	Maximum	Minimum	Maximum	Onit
1	SDRAM clock high-level width	2.67	-	4	-	ns
2	SDRAM clock low-level width	6	_	4	_	ns
3	SDRAM clock cycle time	11.4	_	10	-	ns
4	Address setup time	3.42	_	3	_	ns
5	Address hold time	2.28	-	2	-	ns
6	Precharge cycle period ¹	t _{RP} ²	-	t _{RP2}	-	ns
7	Active to read/write command delay	t _{RCD2}	-	t _{RCD2}	-	ns
8	Data setup time	4.0	-	2	-	ns
9	Data hold time	2.28	_	2	_	ns

Table 28. SDRAM Write Timing Parameter Table

¹ Precharge cycle timing is included in the write timing diagram.

² t_{RP} and t_{RCD} = SDRAM clock cycle time. These settings can be found in the *MC9328MXL reference manual*.

Ref No	Parameter	1.8 ±	0.1 V	3.0 ±	Unit		
nei No.	Farameter	Minimum	<i>l</i> inimum Maximum Mir		Maximum	Jiii	
1	Hold time (repeated) START condition	182	-	160	-	ns	
2	Data hold time	0	171	0	150	ns	
3	Data setup time	11.4	-	10	-	ns	
4	HIGH period of the SCL clock	80	-	120	-	ns	
5	LOW period of the SCL clock	480	-	320	-	ns	
6	Setup time for STOP condition	182.4	-	160	-	ns	

Table 32. I²C Bus Timing Parameter Table

4.13 Synchronous Serial Interface

The transmit and receive sections of the SSI can be synchronous or asynchronous. In synchronous mode, the transmitter and the receiver use a common clock and frame synchronization signal. In asynchronous mode, the transmitter and receiver each have their own clock and frame synchronization signals. Continuous or gated clock mode can be selected. In continuous mode, the clock runs continuously. In gated clock mode, the clock functions only during transmission. The internal and external clock timing diagrams are shown in Figure 60 through Figure 62.

Normal or network mode can also be selected. In normal mode, the SSI functions with one data word of I/O per frame. In network mode, a frame can contain between 2 and 32 data words. Network mode is typically used in star or ring-time division multiplex networks with other processors or codecs, allowing interface to time division multiplexed networks without additional logic. Use of the gated clock is not allowed in network mode. These distinctions result in the basic operating modes that allow the SSI to communicate with a wide variety of devices.

Figure 59. SSI Transmitter Internal Clock Timing Diagram

Functional Description and Application Information

Figure 60. SSI Receiver Internal Clock Timing Diagram

Note: SRXD Input in Synchronous mode only

Figure 61. SSI Transmitter External Clock Timing Diagram

Ref No.	Parameter	Min	Max	Unit	
1	csi_vsync to csi_pixclk	180	_	ns	
2	csi_d setup time	1	_	ns	
3	csi_d hold time	1	_	ns	
4	csi_pixclk high time	10.42	_	ns	
5	csi_pixclk low time	10.42	_	ns	
6	csi_pixclk frequency	0	48	MHz	

Table 36. Non-Gated	Clock Mode	Parameters
---------------------	------------	-------------------

The limitation on pixel clock rise time / fall time are not specified. It should be calculated from the hold time and setup time, according to:

max rise time allowed = (positive duty cycle - hold time) max fall time allowed = (negative duty cycle - setup time)

In most of case, duty cycle is 50 / 50, therefore:

max rise time = (period / 2 - hold time) max fall time = (period / 2 - setup time)

For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns.

positive duty cycle = 10 / 2 = 5ns => max rise time allowed = 5 - 1 = 4ns negative duty cycle = 10 / 2 = 5ns => max fall time allowed = 5 - 1 = 4ns

Falling-edge latch data

max fall time allowed = (negative duty cycle - hold time)

max rise time allowed = (positive duty cycle - setup time)

84

5 Pin-Out and Package Information

Table 37 illustrates the package pin assignments for the 256-pin MAPBGA package. For a complete listing of signals, see the Signal Multiplexing Table 3 on page 9.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
Α	NVSS	SD_DAT3	SD_CLK	NVSS	USBD_ AFE	NVDD4	NVSS	UART1_ RTS	UART1_ RXD	NVDD3	N.C.	N.C.	QVDD4	N.C.	N.C.	N.C.	А
в	A24	SD_DAT1	SD_CMD	PB16	USBD_ ROE	USBD_VP	SSI_ RXCLK	SSI_ TXCLK	SPI1_ SCLK	N.C.	N.C.	N.C.	QVSS	N.C.	N.C.	N.C.	в
с	A23	D31	SD_DAT0	PB15	USBD_ RCV	UART2_ CTS	UART2_ RXD	SSI_ RXFS	UART1_ TXD	N.C.	N.C.	N.C.	N.C.	N.C.	N.C.	N.C.	с
D	A22	D30	D29	PB14	USBD_ SUSPND	USBD_ VPO	USBD_ VMO	SSI_ RXDAT	SPI1_ SPI_RDY	N.C.	N.C.	N.C.	N.C.	N.C.	N.C.	N.C.	D
E	A20	A21	D28	D26	SD_DAT2	USBD_VM	UART2_ RTS	SSI_ TXDAT	SPI1_SS	N.C.	N.C.	N.C.	N.C.	N.C.	N.C.	N.C.	E
F	A18	D27	D25	A19	A16	PB18	UART2_ TXD	SSI_ TXFS	SPI1_ MISO	N.C.	N.C.	REV	N.C.	N.C.	LSCLK	SPL_SPR	F
G	A15	A17	D24	D23	D21	PB17	PB19	UART1_ CTS	SPI1_ MOSI	N.C.	CLS	CONTRAST	ACD/OE	LP/ HSYNC	FLM/ VSYNC	LD1	G
н	A13	D22	A14	D20	NVDD1	NVDD1	NVSS	QVSS	QVDD1	PS	LD0	LD2	LD4	LD5	LD9	LD3	н
J	A12	A11	D18	D19	NVDD1	NVDD1	NVSS	NVDD1	NVSS	NVSS	LD6	LD7	LD8	LD11	QVDD3	QVSS	J
к	A10	D16	A9	D17	NVDD1	NVSS	NVSS	NVDD1	NVDD2	NVDD2	LD10	LD12	LD13	LD14	TMR2OUT	LD15	к
L	A8	A7	D13	D15	D14	NVDD1	NVSS	CAS	тск	TIN	PWMO	CSI_MCLK	CSI_D0	CSI_D1	CSI_D2	CSI_D3	L
м	A5	D12	D11	A6	SDCLK	NVSS	RW	MA10	RAS	RESET_IN	BIG_ ENDIAN	CSI_D4	CSI_ HSYNC	CSI_VSYNC	CSI_D6	CSI_D5	м
N	A4	EB1	D10	D7	A0	D4	PA17	D1	DQM1	RESET_SF [†]	RESET_ OUT	BOOT2	CSI_ PIXCLK	CSI_D7	TMS	TDI	N
Ρ	A3	D9	EB0	CS3	D6	ECB	D2	D3	DQM3	SDCKE1	BOOT3	BOOT0	TRST	I2C_SCL	I2C_SDA	XTAL32K	Р
R	EB2	EB3	A1	CS4	D8	D5	LBA	BCLK ²	D0	DQM0	SDCKE0	POR	BOOT1	TDO	QVDD2	EXTAL32K	R
т	NVSS	A2	ŌĒ	CS5	CS2	CS1	CS0	MA11	DQM2	SDWE	CLKO	AVDD1	TRISTATE	EXTAL16M	XTAL16M	QVSS	т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

Table 37. i.MXL 256 MAPBGA Pin Assignments

¹ This signal is not used and should be floated in an actual application.

² burst clock

5.2 MAPBGA 225 Package Dimensions

Figure 68 illustrates the 225 MAPBGA 13 mm × 13 mm package.

Case Outline 1304B