

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Details	
Product Status	Active
Core Processor	ARM920T
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	150MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	Νο
Display & Interface Controllers	LCD
Ethernet	-
SATA	-
USB	USB 1.x (1)
Voltage - I/O	1.8V, 3.0V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	225-LFBGA
Supplier Device Package	225-MAPBGA (13x13)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9328mxlvp15

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

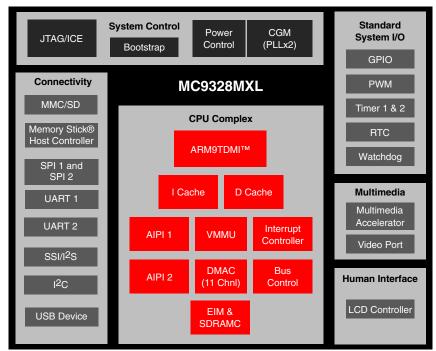


Figure 1. i.MXL Functional Block Diagram

1.1 Features

To support a wide variety of applications, the processor offers a robust array of features, including the following:

- ARM920TTM Microprocessor Core
- AHB to IP Bus Interfaces (AIPIs)
- External Interface Module (EIM)
- SDRAM Controller (SDRAMC)
- DPLL Clock and Power Control Module
- Two Universal Asynchronous Receiver/Transmitters (UART 1 and UART 2)
- Serial Peripheral Interface (SPI)
- Two General-Purpose 32-bit Counters/Timers
- Watchdog Timer
- Real-Time Clock/Sampling Timer (RTC)
- LCD Controller (LCDC)
- Pulse-Width Modulation (PWM) Module
- Universal Serial Bus (USB) Device
- Multimedia Card and Secure Digital (MMC/SD) Host Controller Module
- Memory Stick[®] Host Controller (MSHC)
- Direct Memory Access Controller (DMAC)
- Synchronous Serial Interface and an Inter-IC Sound (SSI/I²S) Module
- Inter-IC (I²C) Bus Module

Table 2. i.MXL Signal Descriptions (Continued)

Signal Name	Function/Notes
	Bootstrap
BOOT [3:0]	System Boot Mode Select—The operational system boot mode of the i.MXL processor upon system reset is determined by the settings of these pins.
	SDRAM Controller
SDBA [4:0]	SDRAM non-interleave mode bank address multiplexed with address signals A [15:11]. These signals are logically equivalent to core address p_addr [25:21] in SDRAM cycles.
SDIBA [3:0]	SDRAM interleave addressing mode bank address multiplexed with address signals A [19:16]. These signals are logically equivalent to core address p_addr [12:9] in SDRAM cycles.
MA [11:10]	SDRAM address signals
MA [9:0]	SDRAM address signals which are multiplexed with address signals A [10:1]. MA [9:0] are selected on SDRAM cycles.
DQM [3:0]	SDRAM data enable
CSD0	SDRAM Chip-select signal which is multiplexed with the $\overline{CS2}$ signal. These two signals are selectable by programming the system control register.
CSD1	SDRAM Chip-select signal which is multiplexed with $\overline{CS3}$ signal. These two signals are selectable by programming the system control register. By default, $\overline{CSD1}$ is selected, so it can be used as boot chip-select by properly configuring BOOT [3:0] input pins.
RAS	SDRAM Row Address Select signal
CAS	SDRAM Column Address Select signal
SDWE	SDRAM Write Enable signal
SDCKE0	SDRAM Clock Enable 0
SDCKE1	SDRAM Clock Enable 1
SDCLK	SDRAM Clock
RESET_SF	Not Used
	Clocks and Resets
EXTAL16M	Crystal input (4 MHz to 16 MHz), or a 16 MHz oscillator input when the internal oscillator circuit is shut down.
XTAL16M	Crystal output
EXTAL32K	32 kHz crystal input
XTAL32K	32 kHz crystal output
CLKO	Clock Out signal selected from internal clock signals.
RESET_IN	Master Reset—External active low Schmitt trigger input signal. When this signal goes active, all modules (except the reset module and the clock control module) are reset.
RESET_OUT	Reset Out—Internal active low output signal from the Watchdog Timer module and is asserted from the following sources: Power-on reset, External reset (RESET_IN), and Watchdog time-out.
POR	Power On Reset—Internal active high Schmitt trigger input signal. The POR signal is normally generated by an external RC circuit designed to detect a power-up event.

	225	256	Pi	imary		Altern	ate	GP	10				
I/O Supply Voltage	BGA Ball	BGA Ball	Signal	Dir	Pull- Up	Signal	Dir	Mux	Pull -Up	AIN	BIN	AOUT	Default
NVDD2	H13	N13	CSI_PIXC LK	I				PA14	69K				PA14
NVDD2	G14	M13	CSI_HSY NC	I				PA13	69K				PA13
NVDD2	H12	M14	CSI_VSY NC	I				PA12	69K				PA12
NVDD2	G13	N14	CSI_D7	Ι				PA11	69K				PA11
NVDD2	J10	M15	CSI_D6	Ι				PA10	69K				PA10
NVDD2	G15	M16	CSI_D5	Ι				PA9	69K				PA9
NVDD2	F15	M12	CSI_D4	Ι				PA8	69K				PA8
NVDD2	G12	L16	CSI_D3	Ι				PA7	69K				PA7
NVDD2	F14	L15	CSI_D2	Ι				PA6	69K				PA6
NVDD2	H11	L14	CSI_D1	Ι				PA5	69K				PA5
NVDD2	E14	L13	CSI_D0	Ι				PA4	69K				PA4
NVDD2	E15	L12	CSI_MCL K	0				PA3	69K				PA3
NVDD2	G11	L11	PWMO	0				PA2	69K				PA2
NVDD2	E13	L10	TIN	ļ				PA1	69K			SPI2_ RXD_0	PA1
NVDD2	D14	K15	TMR2OUT	0				PD31	69K		SPI2_ TXD		PD31
NVDD2	F13	K16	LD15	0				PD30	69K				PD30
NVDD2	F12	K14	LD14	0				PD29	69K				PD29
NVDD2	D15	K13	LD13	0				PD28	69K				PD28
NVDD2	C14	K12	LD12	0				PD27	69K				PD27
NVDD2	D13	J14	LD11	0				PD26	69K				PD26
NVDD2	E12	K11	LD10	0				PD25	69K				PD25
NVDD2	C13	H15	LD9	0				PD24	69K				PD24
NVDD2	C12	J13	LD8	0				PD23	69K				PD23
NVDD2	B15	J12	LD7	0				PD22	69K				PD22
NVDD2	B14	J11	LD6	0				PD21	69K				PD21
NVDD2	A15	H14	LD5	0				PD20	69K				PD20
NVDD2	A14	H13	LD4	0			1	PD19	69K		1		PD19
NVDD2	B13	H16	LD3	0				PD18	69K				PD18
NVDD2	A13	H12	LD2	0			1	PD17	69K		1		PD17
NVDD2	D12	G16	LD1	0			1	PD16	69K		1		PD16
NVDD2	B12	H11	LD0	0				PD15	69K				PD15
NVDD2	C11	G15	FLM/VSY NC	0				PD14	69K				PD14

Table 3. MC9328MXLMC9328MXS Signal Multiplexing Scheme (Continued)

Ref	Parameter	1.8 ±	0.1 V	3.0 ±	0.3 V	Unit
No.	Falanetei	Min	Max	Min	Max	Onic
1	Width of input POWER_ON_RESET	note ¹	_	note ¹	_	_
2	Width of internal POWER_ON_RESET (CLK32 at 32 kHz)	300	300	300	300	ms
3	7K to 32K-cycle stretcher for SDRAM reset	7	7	7	7	Cycles of CLK32
4	14K to 32K-cycle stretcher for internal system reset HRESERT and output reset at pin RESET_OUT	14	14	14	14	Cycles of CLK32
5	Width of external hard-reset RESET_IN	4	-	4	_	Cycles of CLK32
6	4K to 32K-cycle qualifier	4	4	4	4	Cycles of CLK32

¹ POR width is dependent on the 32 or 32.768 kHz crystal oscillator start-up time. Design margin should allow for crystal tolerance, i.MX chip variations, temperature impact, and supply voltage influence. Through the process of supplying crystals for use with CMOS oscillators, crystal manufacturers have developed a working knowledge of start-up time of their crystals. Typically, start-up times range from 400 ms to 1.2 seconds for this type of crystal.

If an external stable clock source (already running) is used instead of a crystal, the width of POR should be ignored in calculating timing for the start-up process.

4.4 External Interface Module

The External Interface Module (EIM) handles the interface to devices external to the i.MXL processor, including the generation of chip-selects for external peripherals and memory. The timing diagram for the EIM is shown in Figure 5, and Table 12 defines the parameters of signals.

Table 15. WAIT Write Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz (Continued)

Number	Characteristic	3.0 ± 0.3 V				
Number		Minimum	Maximum	— Unit		
7	Wait asserted to RW negated	T+2.66	2T+7.96	ns		
8	Data hold timing after RW negated	2T+0.03	-	ns		
9	Data ready after CS5 is asserted	_	Т	ns		
10	EB negated after CS5 is negated	0.5T	0.5T+0.5	ns		
11	Wait becomes low after CS5 asserted	0	1019T	ns		
12	Wait pulse width	1T	1020T	ns		

Note:

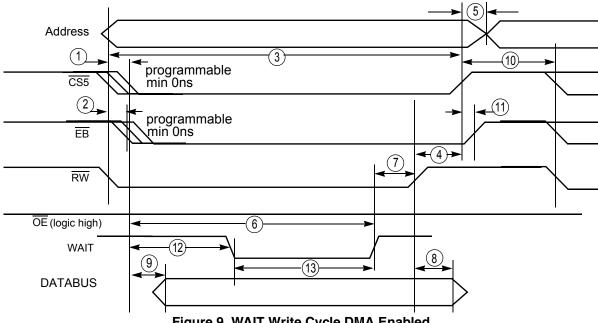
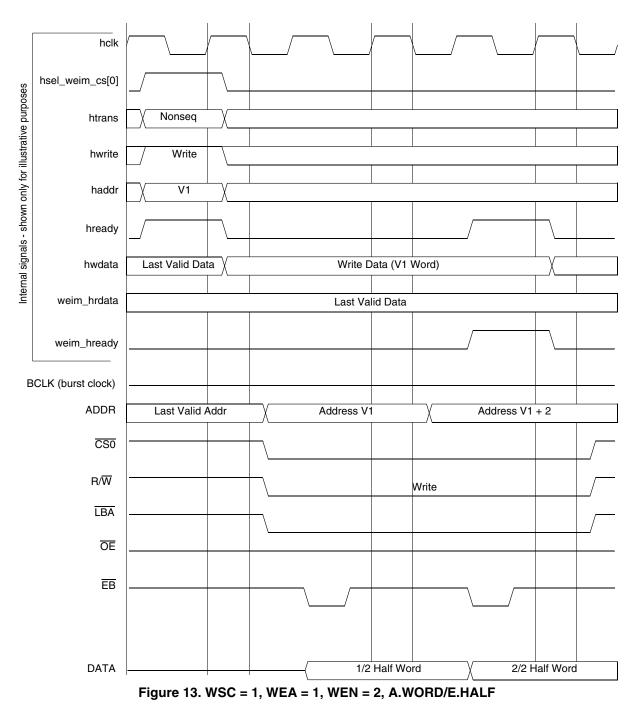
1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)

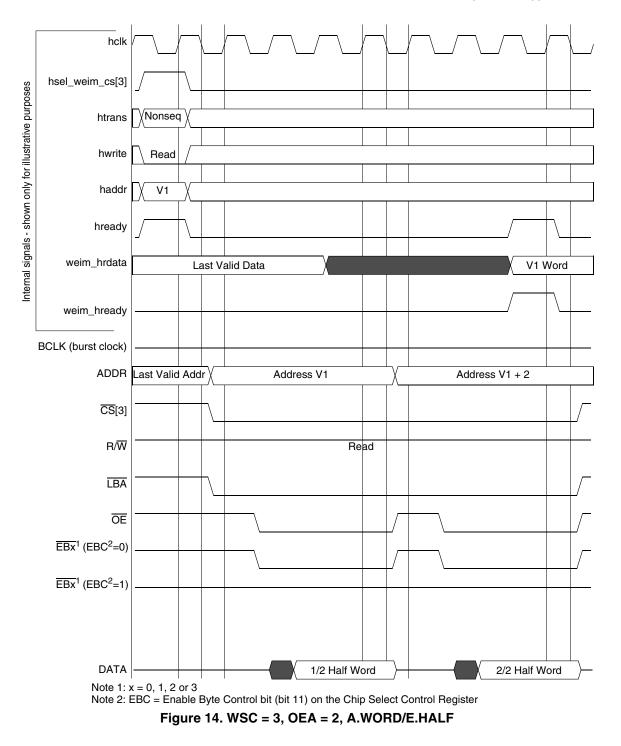
2. CS5 assertion can be controlled by CSA bits. EB assertion can also be programmable by WEA bits in CS5L register.

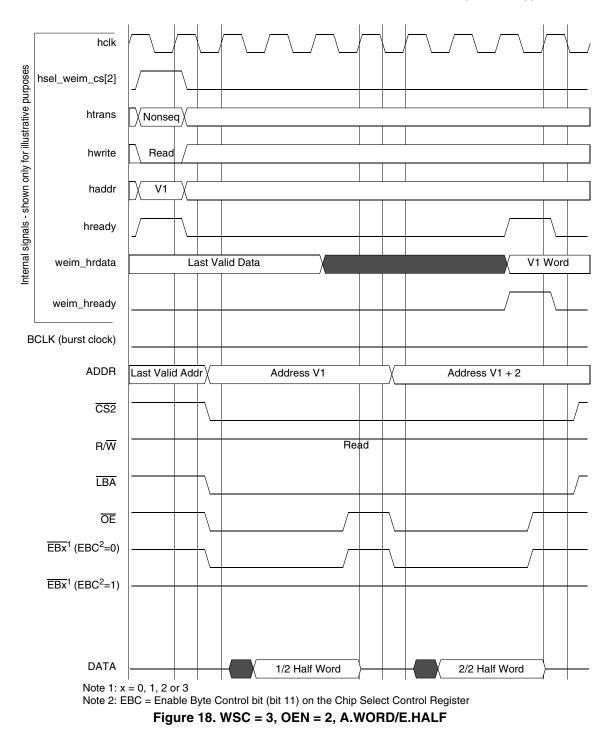
3. Address becomes valid and \overline{RW} asserts at the start of write access cycle.

4. The external wait input requirement is eliminated when $\overline{CS5}$ is programmed to use internal wait state.

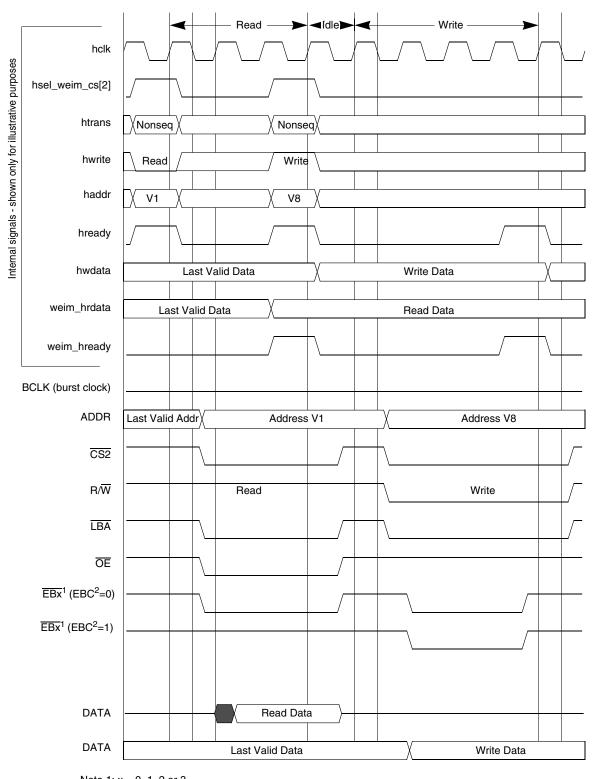
WAIT Write Cycle DMA Enabled 4.4.2.4

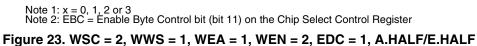



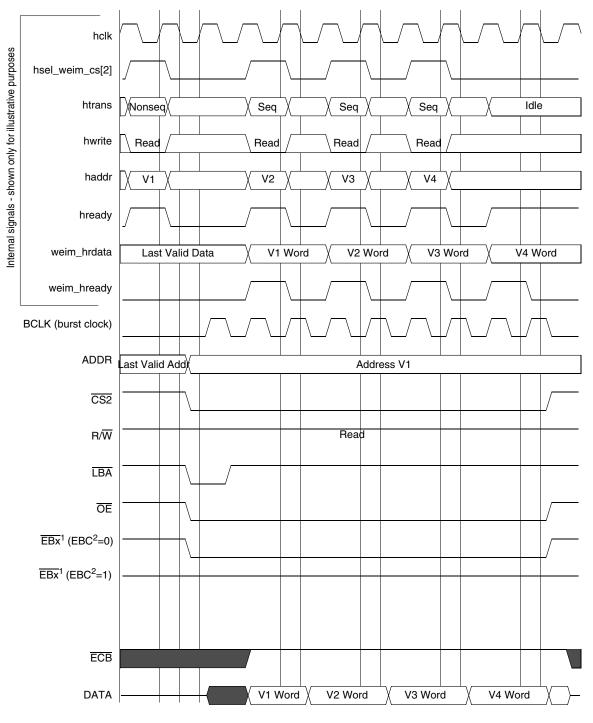

Figure 9. WAIT Write Cycle DMA Enabled

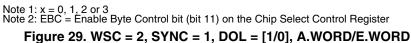


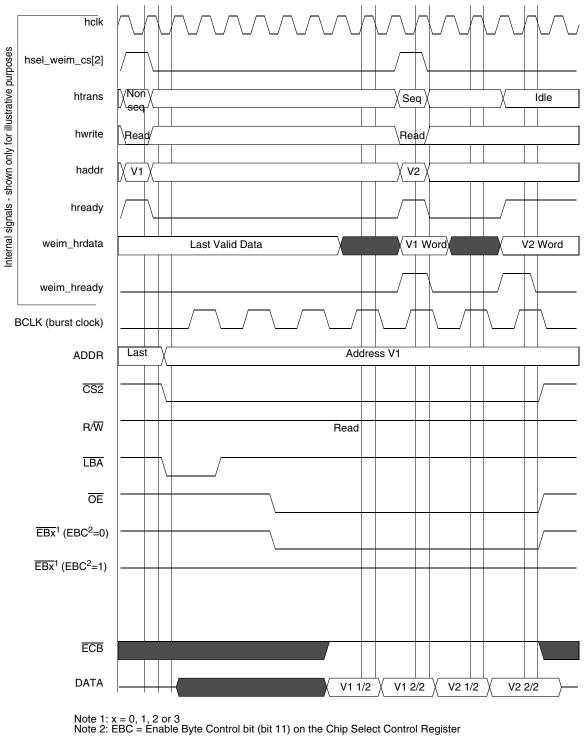
Functional Description and Application Information

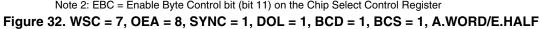


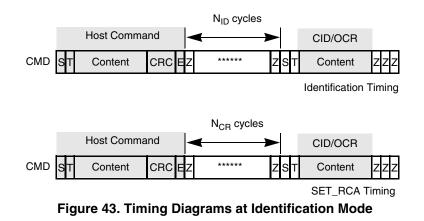



Functional Description and Application Information



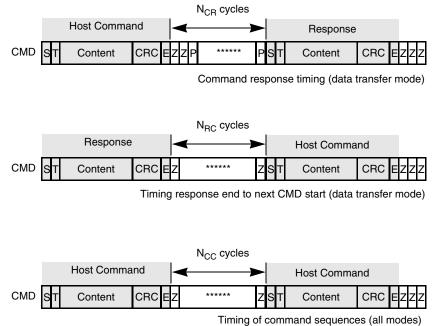
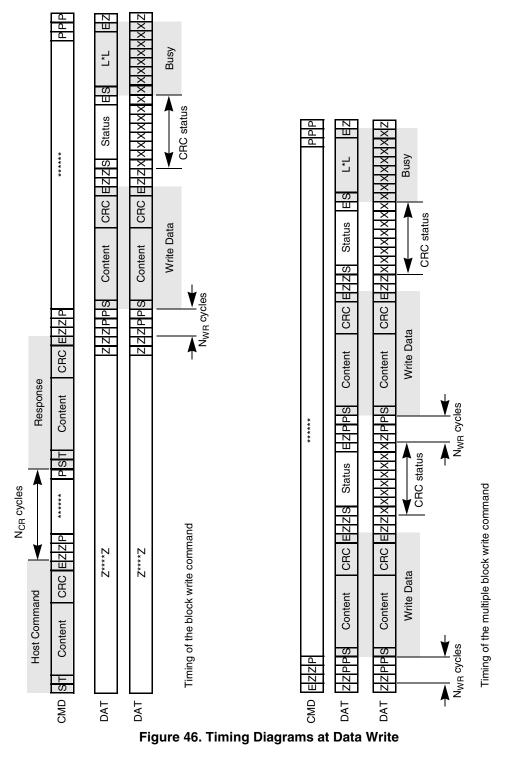

Functional Description and Application Information

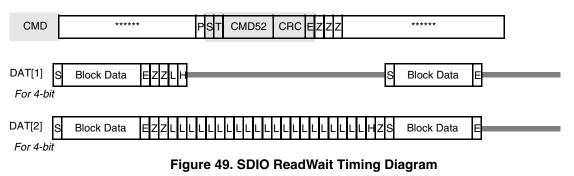



Functional Description and Application Information

Functional Description and Application Information

After a card receives its RCA, it switches to data transfer mode. As shown on the first diagram in Figure 44, SD_CMD lines in this mode are driven with push-pull drivers. The command is followed by a period of two Z bits (allowing time for direction switching on the bus) and then by P bits pushed up by the responding card. The other two diagrams show the separating periods N_{RC} and N_{CC} .


Figure 45 shows basic read operation timing. In a read operation, the sequence starts with a single block read command (which specifies the start address in the argument field). The response is sent on the SD_CMD lines as usual. Data transmission from the card starts after the access time delay N_{AC} , beginning from the last bit of the read command. If the system is in multiple block read mode, the card sends a continuous flow of data blocks with distance N_{AC} until the card sees a stop transmission command. The data stops two clock cycles after the end bit of the stop command.

The stop transmission command may occur when the card is in different states. Figure 47 shows the different scenarios on the bus.

4.8 Memory Stick Host Controller

The Memory Stick protocol requires three interface signal line connections for data transfers: MS_BS, MS_SDIO, and MS_SCLKO. Communication is always initiated by the MSHC and operates the bus in either four-state or two-state access mode.

The MS_BS signal classifies data on the SDIO into one of four states (BS0, BS1, BS2, or BS3) according to its attribute and transfer direction. BS0 is the INT transfer state, and during this state no packet transmissions occur. During the BS1, BS2, and BS3 states, packet communications are executed. The BS1, BS2, and BS3 states are regarded as one packet length and one communication transfer is always completed within one packet length (in four-state access mode).

The Memory Stick usually operates in four state access mode and in BS1, BS2, and BS3 bus states. When an error occurs during packet communication, the mode is shifted to two-state access mode, and the BS0 and BS1 bus states are automatically repeated to avoid a bus collision on the SDIO.

Functional Description and Application Information

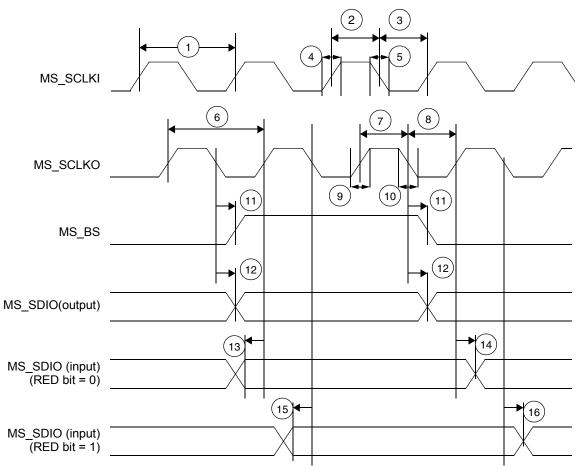


Figure 50. MSHC Signal Timing Diagram

Ref	Parameter	3.0 ±	Unit	
No.	Falameter	Minimum	Maximum	Onit
1	MS_SCLKI frequency	-	25	MHz
2	MS_SCLKI high pulse width	20	_	ns
3	MS_SCLKI low pulse width	20	_	ns
4	MS_SCLKI rise time	_	3	ns
5	MS_SCLKI fall time	-	3	ns
6	MS_SCLKO frequency ¹	-	25	MHz
7	MS_SCLKO high pulse width ¹	20	-	ns
8	MS_SCLKO low pulse width ¹	15	-	ns
9	MS_SCLKO rise time ¹	-	5	ns
10	MS_SCLKO fall time ¹	_	5	ns
11	MS_BS delay time ¹	_	3	ns

Table 25	. MSHC	Signal	Timing	Parameter	Table
----------	--------	--------	--------	-----------	-------

Functional Description and Application Information

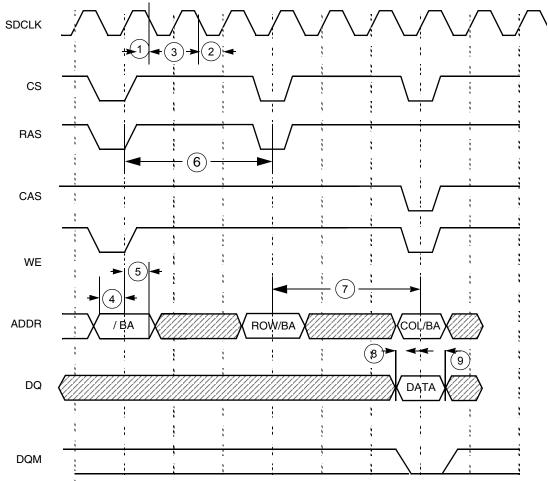


Figure 53. SDRAM Write Cycle Timing Diagram

Ref No.	Parameter	1.8 ±	0.1 V	3.0 ±	Unit	
nei NO.	Falanelei	Minimum	Maximum	Minimum	Maximum	Unit
1	SDRAM clock high-level width	2.67	-	4	_	ns
2	SDRAM clock low-level width	6	-	4	-	ns
3	SDRAM clock cycle time	11.4	-	10	_	ns
4	Address setup time	3.42	-	3	-	ns
5	Address hold time	2.28	-	2	-	ns
6	Precharge cycle period ¹	t _{RP} ²	-	t _{RP2}	-	ns
7	Active to read/write command delay	t _{RCD2}	-	t _{RCD2}	-	ns
8	Data setup time	4.0	-	2	-	ns
9	Data hold time	2.28	-	2	-	ns

Table 28. SDRAM Write Timing Parameter Table

¹ Precharge cycle timing is included in the write timing diagram.

² t_{RP} and t_{RCD} = SDRAM clock cycle time. These settings can be found in the *MC9328MXL reference manual*.

Ref No.	Parameter	1.8 ±	0.1 V	3.0 ±	Unit	
ner No.	Falameter	Minimum	Maximum	Minimum	Maximum	Unit
1	Hold time (repeated) START condition	182	_	160	-	ns
2	Data hold time	0	171	0	150	ns
3	Data setup time	11.4	_	10	-	ns
4	HIGH period of the SCL clock	80	_	120	-	ns
5	LOW period of the SCL clock	480	_	320	-	ns
6	Setup time for STOP condition	182.4	_	160	_	ns

Table 32. I²C Bus Timing Parameter Table

4.13 Synchronous Serial Interface

The transmit and receive sections of the SSI can be synchronous or asynchronous. In synchronous mode, the transmitter and the receiver use a common clock and frame synchronization signal. In asynchronous mode, the transmitter and receiver each have their own clock and frame synchronization signals. Continuous or gated clock mode can be selected. In continuous mode, the clock runs continuously. In gated clock mode, the clock functions only during transmission. The internal and external clock timing diagrams are shown in Figure 60 through Figure 62.

Normal or network mode can also be selected. In normal mode, the SSI functions with one data word of I/O per frame. In network mode, a frame can contain between 2 and 32 data words. Network mode is typically used in star or ring-time division multiplex networks with other processors or codecs, allowing interface to time division multiplexed networks without additional logic. Use of the gated clock is not allowed in network mode. These distinctions result in the basic operating modes that allow the SSI to communicate with a wide variety of devices.

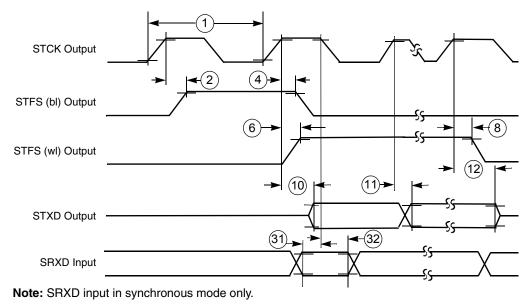


Figure 59. SSI Transmitter Internal Clock Timing Diagram

The limitation on pixel clock rise time / fall time are not specified. It should be calculated from the hold time and setup time, according to:

Rising-edge latch data

max rise time allowed = (positive duty cycle - hold time) max fall time allowed = (negative duty cycle - setup time)

In most of case, duty cycle is 50 / 50, therefore

max rise time = (period / 2 - hold time) max fall time = (period / 2 - setup time)

For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns.

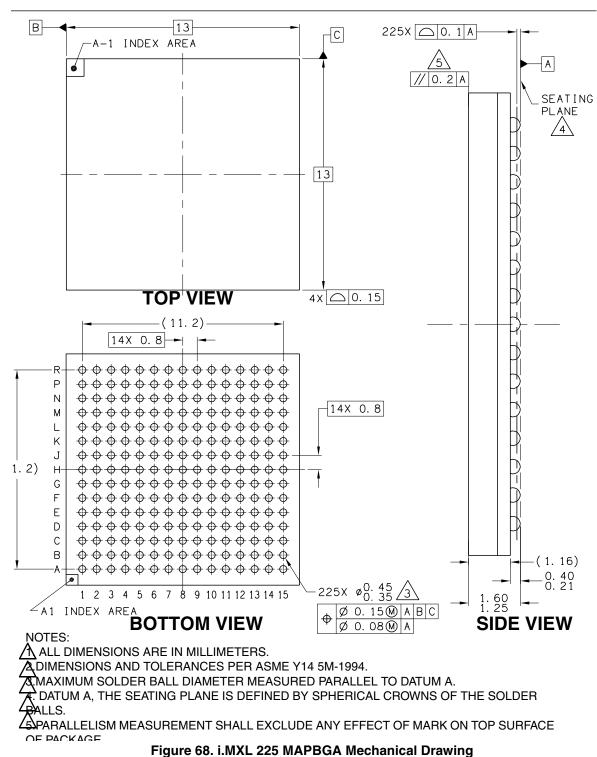
positive duty cycle = 10 / 2 = 5ns => max rise time allowed = 5 - 1 = 4ns negative duty cycle = 10 / 2 = 5ns => max fall time allowed = 5 - 1 = 4ns

Falling-edge latch data

max fall time allowed = (negative duty cycle - hold time) max rise time allowed = (positive duty cycle - setup time)

4.14.2 Non-Gated Clock Mode

Figure 65 shows the timing diagram when the CMOS sensor output data is configured for negative edge and the CSI is programmed to received data on the positive edge. Figure 66 shows the timing diagram when the CMOS sensor output data is configured for positive edge and the CSI is programmed to received data in negative edge. The parameters for the timing diagrams are listed in Table 36.



CSI Latches Data on Pixel Clock Rising Edge

5.2 MAPBGA 225 Package Dimensions

Figure 68 illustrates the 225 MAPBGA 13 mm × 13 mm package.

Case Outline 1304B

Product Documentation

6 **Product Documentation**

6.1 Revision History

Table 39 provides revision history for this release. This history includes technical content revisions only and not stylistic or grammatical changes.

Location	Revision
Table 2 on page 4 Signal Names and Descriptions	 Added the DMA_REQ signal to table. Corrected signal name from USBD_OE to USBD_ROE
Table 3 on page 9 Signal Multiplex Table i.MXL	 Added Signal Multiplex table from Reference Manual with the following changes: Changed I/O Supply Voltage,PB31–20, from NVDD3 to NVDD4 Added 225 BGA column. Removed 69K pull-up resistor from EB1, EB2, and added to D9
Table 10 on page 21	Changed first and second parameters descriptions: From: Reference Clock freq range, To: DPLL input clock freq range From: Double clock freq range, To: DPLL output freq range
Table 3 on page 9	Added Signal Multiplex table.

Table 39. i.MXL Data Sheet Revision History Rev. 8

6.2 Reference Documents

The following documents are required for a complete description of the MC9328MXL and are necessary to design properly with the device. Especially for those not familiar with the ARM920T processor or previous i.MX processor products, the following documents are helpful when used in conjunction with this document.

ARM Architecture Reference Manual (ARM Ltd., order number ARM DDI 0100)

ARM9DT1 Data Sheet Manual (ARM Ltd., order number ARM DDI 0029)

ARM Technical Reference Manual (ARM Ltd., order number ARM DDI 0151C)

EMT9 Technical Reference Manual (ARM Ltd., order number DDI O157E)

MC9328MXL Product Brief (order number MC9328MXLP)

MC9328MXL Reference Manual (order number MC9328MXLRM)

The Freescale manuals are available on the Freescale Semiconductors Web site at http://www.freescale.com/imx. These documents may be downloaded directly from the Freescale Web site, or printed versions may be ordered. The ARM Ltd. documentation is available from http://www.arm.com.