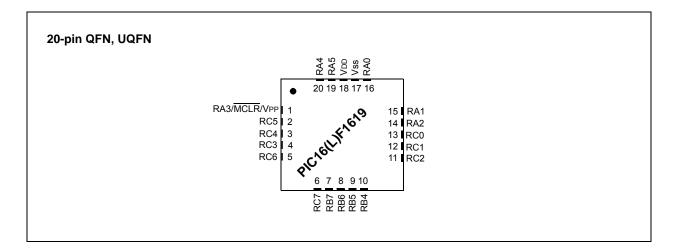
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1619-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.4 Two-Speed Clock Start-up Mode

Two-Speed Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device. This mode allows the application to wake-up from Sleep, perform a few instructions using the INTOSC internal oscillator block as the clock source and go back to Sleep without waiting for the external oscillator to become stable.

Two-Speed Start-up provides benefits when the oscillator module is configured for HS modes. The Oscillator Startup Timer (OST) is enabled for these modes and must count 1024 oscillations before the oscillator can be used as the system clock source.

If the oscillator module is configured for any mode other than HS mode, then Two-Speed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep.

If the OST count reaches 1024 before the device enters Sleep mode, the OSTS bit of the OSCSTAT register is set and program execution switches to the external oscillator. However, the system may never operate from the external oscillator if the time spent awake is very short.

Note: Executing a SLEEP instruction will abort the oscillator start-up time and will cause the OSTS bit of the OSCSTAT register to remain clear.

5.4.1 TWO-SPEED START-UP MODE CONFIGURATION

Two-Speed Start-up mode is configured by the following settings:

- IESO (of the Configuration Words) = 1; Internal/ External Switchover bit (Two-Speed Start-up mode enabled).
- SCS (of the OSCCON register) = 00.
- FOSC<2:0> bits in the Configuration Words configured for HS mode.

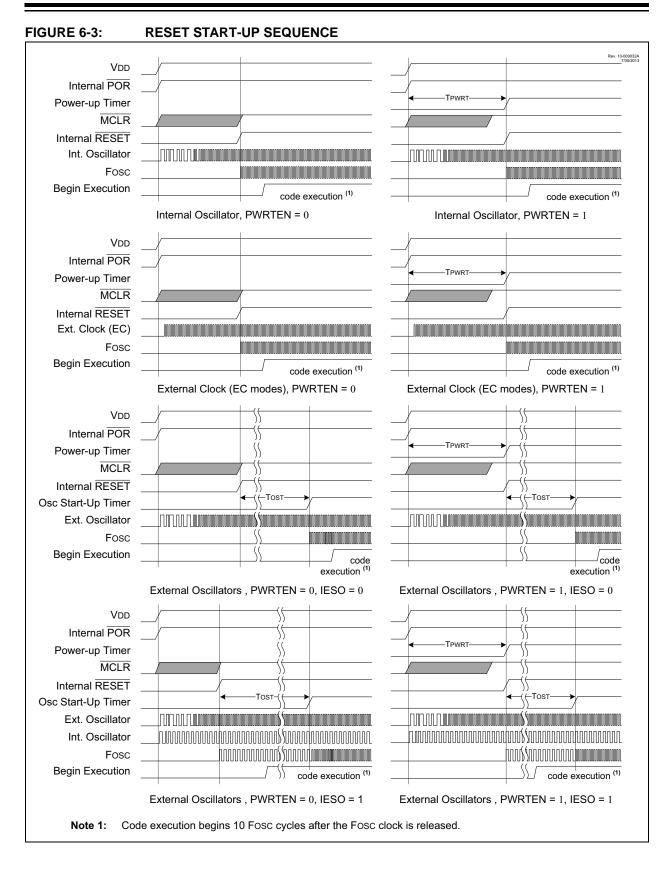
Two-Speed Start-up mode is entered after:

- Power-On Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- Wake-up from Sleep.

Note: When FSCM is enabled, Two-Speed Startup will automatically be enabled.

5.4.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- Instructions begin execution by the internal oscillator at the frequency set in the IRCF<3:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed out, wait for falling edge of the internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (HS mode).
- 7. System clock is switched to external clock source.


5.4.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCSTAT register will confirm if the CPU is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Words, or the internal oscillator. See Table 5-2.

Switch From	Switch To	Oscillator Delay		
	LFINTOSC	1 cycle of each clock source		
	HFINTOSC	2 μs (approx.)		
Any clock source	ECH, ECM, ECL, EXTRC	2 cycles		
	HS	1024 Clock Cycles (OST)		
	Secondary Oscillator	1024 Secondary Oscillator Cycles		

TABLE 5-2: OSCILLATOR SWITCHING DELAYS

PIC16(L)F1615/9

© 2014-2016 Microchip Technology Inc.

Legend:							
bit 7							bit 0
	—	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0
U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1

U = Unimplemented bit, read as '0'

-n/n = Value at POR and BOR/Value at all other Resets

REGISTER 12-5: WPUA: WEAK PULL-UP PORTA REGISTER

W = Writable bit

x = Bit is unknown

'1' = Bit is set	'0' = Bit is cleared
bit 7-6	Unimplemented: Read as '0'
bit 5-0	WPUA<5:0>: Weak Pull-up Register bits ⁽³⁾

bit 5-0	WPUA<5:0>: Weak Pull-up Register bits ⁽³⁾
	1 = Pull-up enabled
	0 = Pull-up disabled
	-

R = Readable bit

u = Bit is unchanged

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

- 2: The weak pull-up device is automatically disabled if the pin is configured as an output.
- **3:** For the WPUA3 bit, when MCLRE = 1, weak pull-up is internally enabled, but not reported here.

REGISTER 12-6: ODCONA: PORTA OPEN-DRAIN CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	ODA5	ODA4	—	ODA2	ODA1	ODA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-4	ODA<5:4>: PORTA Open-Drain Enable bits For RA<5:4> pins, respectively 1 = Port pin operates as open-drain drive (sink current only) 0 = Port pin operates as standard push-pull drive (source and sink current)
bit 3	Unimplemented: Read as '0'
bit 2-0	ODA<2:0>: PORTA Open-Drain Enable bits For RA<2:0> pins, respectively 1 = Port pin operates as open-drain drive (sink current only) 0 = Port pin operates as standard push-pull drive (source and sink current)

24.6 I²C Master Mode

Master mode is enabled by setting and clearing the appropriate SSPM bits in the SSPxCON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines.

The following events will cause the SSP Interrupt Flag bit, SSPxIF, to be set (SSP interrupt, if enabled):

- Start condition detected
- Stop condition detected
- · Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
 - Note 1:The MSSP module, when configured in I²C Master mode, does not allow queuing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur
 - 2: When in Master mode, Start/Stop detection is masked and an interrupt is generated when the SEN/PEN bit is cleared and the generation is complete.

24.6.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/\overline{W} bit. In this case, the R/\overline{W} bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCL. See **Section 24.7 "Baud Rate Generator"** for more detail.

		R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
		MSK	<7:0>				
bit 7						bit 0	
Legend:							
R = Readable bit	W = Writab	le bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged	Bit is unchanged x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all c	ther Resets	
'1' = Bit is set	'0' = Bit is c	leared					

REGISTER 24-5: SSP1MSK: SSP MASK REGISTER

	 1 = The received address bit n is compared to SSP1ADD<n> to detect I²C address match</n> 0 = The received address bit n is not used to detect I²C address match
bit 0	MSK<0>: Mask bit for I ² C Slave mode, 10-bit Address
	I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):
	1 = The received address bit 0 is compared to SSP1ADD<0> to detect I ² C address match
	0 = The received address bit 0 is not used to detect I ² C address match
	I ² C Slave mode, 7-bit address, the bit is ignored

REGISTER 24-6: SSP1ADD: MSSP ADDRESS AND BAUD RATE REGISTER (I²C MODE)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ADD<	<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bit	t	U = Unimpler	nented bit, read	1 as '0'	

R = Readable bit	VV = VVritable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

Master mode:

bit 7-0	ADD<7:0>: Baud Rate Clock Divider bits					
	SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc					

10-Bit Slave mode – Most Significant Address Byte:

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u>10-Bit Slave mode – Least Significant Address Byte:</u>

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

27.1.9 SETUP FOR PWM OPERATION USING PWMx PINS

The following steps should be taken when configuring the module for PWM operation using the PWMx pins:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- 2. Clear the PWMxCON register.
- 3. Load the PR2 register with the PWM period value.
- 4. Clear the PWMxDCH register and bits <7:6> of the PWMxDCL register.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register. See note below.
 - Configure the CKPS bits of the T2CON register with the Timer2 prescale value.
 - Enable Timer2 by setting the ON bit of the T2CON register.
- 6. Enable PWM output pin and wait until Timer2 overflows, TMR2IF bit of the PIR1 register is set. See note below.
- 7. Enable the PWMx pin output driver(s) by clearing the associated TRIS bit(s) and setting the PWMxOE bit of the PWMxCON register.
- 8. Configure the PWM module by loading the PWMxCON register with the appropriate values.
 - Note 1: In order to send a complete duty cycle and period on the first PWM output, the above steps must be followed in the order given. If it is not critical to start with a complete PWM signal, then move Step 8 to replace Step 4.
 - 2: For operation with other peripherals only, disable PWMx pin outputs.

28.1.4 STEERING MODES

In Steering modes, the data input can be steered to any or all of the four CWG output pins. In Synchronous Steering mode, changes to steering selection registers take effect on the next rising input.

In Non-Synchronous mode, steering takes effect on the next instruction cycle. Additional details are provided in **Section 28.9 "CWG Steering Mode"**.

28.2 Clock Source

The CWG module allows the following clock sources to be selected:

- Fosc (system clock)
- HFINTOSC (16 MHz only)

The clock sources are selected using the CS bit of the CWGxCLKCON register.

28.3 Selectable Input Sources

The CWG generates the output waveforms from the input sources in Table 28-1.

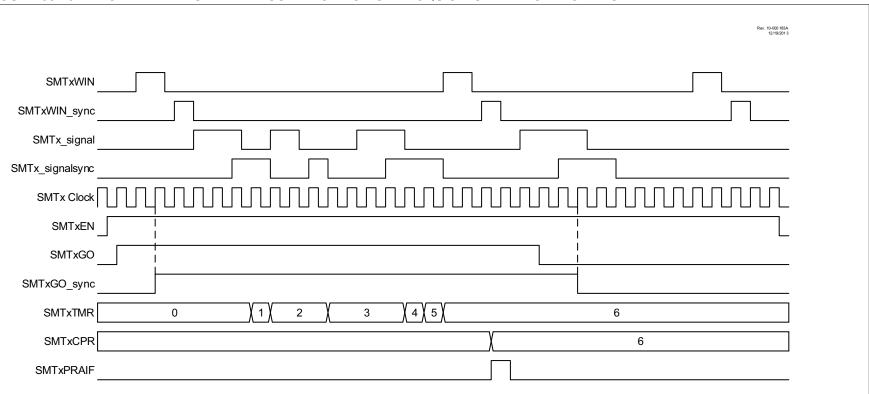
TABLE 28-1: SELECTABLE INPUT SOURCES

Source Peripheral	Signal Name
CWG pin	PPS selection
Comparator C1	C1_OUT_sync
Comparator C2	C2_OUT_sync
CCP1	CCP1_out
CCP2	CCP2_out
CLC1	LC1_out
CLC2	LC2_out
CLC3	LC3_out
CLC4	LC4_out
PWM3	PWM3_out
PWM4	PWM4_out

The input sources are selected using the CWGxISM register.

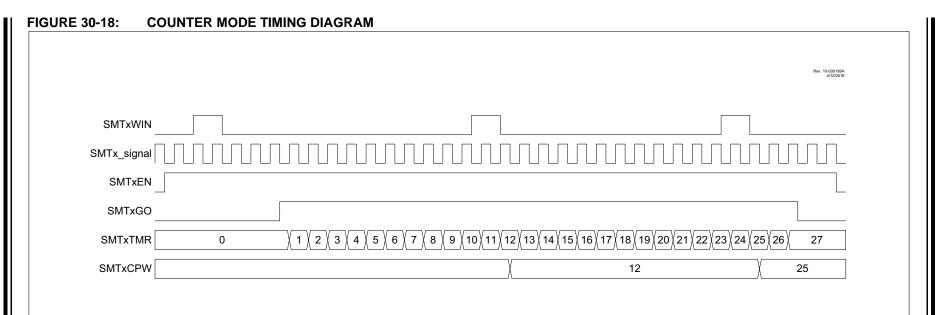
28.4 Output Control

28.4.1 OUTPUT ENABLES


Each CWG output pin has individual output enable control. Output enables are selected with the Gx1OEx <3:0> bits. When an output enable control is cleared, the module asserts no control over the pin. When an output enable is set, the override value or active PWM waveform is applied to the pin per the port priority selection. The output pin enables are dependent on the module enable bit, EN of the CWGxCON0 register. When EN is cleared, CWG output enables and CWG drive levels have no effect.

28.4.2 POLARITY CONTROL

The polarity of each CWG output can be selected independently. When the output polarity bit is set, the corresponding output is active-high. Clearing the output polarity bit configures the corresponding output as active-low. However, polarity does not affect the override levels. Output polarity is selected with the POLx bits of the CWGxCON1. Auto-shutdown and steering options are unaffected by polarity.


30.6.4 HIGH AND LOW MEASURE MODE

This mode measures the high and low pulse time of the SMTSIGx relative to the SMT clock. It begins incrementing the SMTxTMR on a rising edge on the SMTSIGx input, then updates the SMTxCPW register with the value and resets the SMTxTMR on a falling edge, starting to increment again. Upon observing another rising edge, it updates the SMTxCPR register with its current value and once again resets the SMTxTMR value and begins incrementing again. See Figure 30-8 and Figure 30-9.

FIGURE 30-13: GATED WINDOWED MEASURE MODE SINGLE ACQUISITION TIMING DIAGRAMS

PIC16(L)F1615/9

30.6.11 WINDOWED COUNTER MODE

This mode counts pulses on the SMTx_signal input, within a window dictated by the SMTxWIN input. It begins counting upon seeing a rising edge of the SMTxWIN input, updates the SMTxCPW register on a falling edge of the SMTxWIN input, and updates the SMTxCPR register on each rising edge of the SMTxWIN input beyond the first. See Figure 30-21 and Figure 30-22.

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1
			SMTxF	PR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkno	own	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clear	red				

REGISTER 30-18: SMTxPRL: SMT PERIOD REGISTER - LOW BYTE

bit 7-0 SMTxPR<7:0>: Significant bits of the SMT Timer Value for Period Match – Low Byte

REGISTER 30-19: SMTxPRH: SMT PERIOD REGISTER - HIGH BYTE

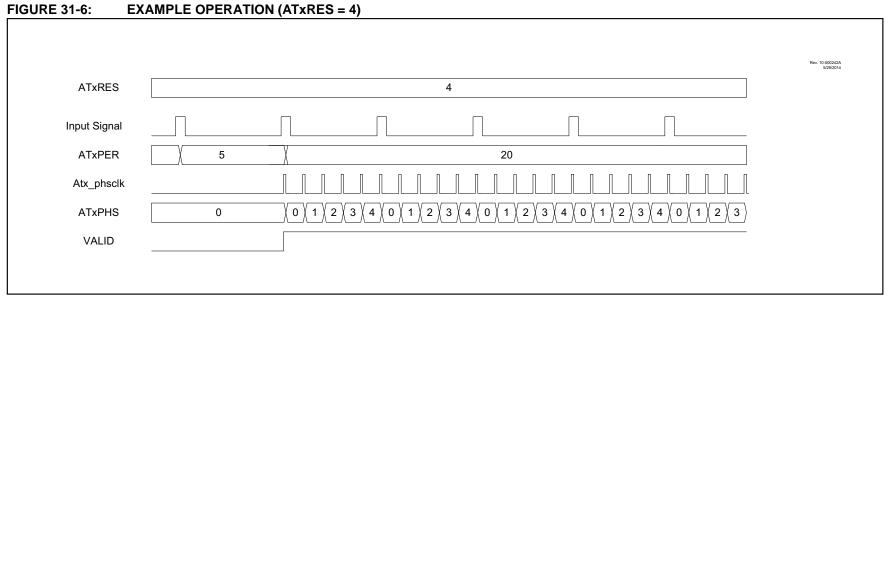
R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1		
SMTxPR<15:8>									
bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxPR<15:8>: Significant bits of the SMT Timer Value for Period Match – High Byte

REGISTER 30-20: SMTxPRU: SMT PERIOD REGISTER – UPPER BYTE

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1
			SMTxPF	?<23:16>			
bit 7							bit 0
Legend:							
R = Readable	hit	W = Writable bit	ł	= Inimpler	mented hit read	1 26 '0'	


R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxPR<23:16>: Significant bits of the SMT Timer Value for Period Match – Upper Byte

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
PIE4	SCANIE	CRCIE	SMT2PWAIE	SMT2PRAIE	SMT2IE	SMT1PWAIE	SMT1PRAIE	SMT1IE	109		
PIR4	SCANIF	CRCIF	SMT2PWAIF	SMT2PRAIF	SMT2IF	SMT1PWAIF	SMT1PRAIF	SMT1IF	114		
SMT1CON0	EN	_	STP	WPOL	SPOL	CPOL	SMT1P	S<1:0>	445		
SMT1CON1	SMT1GO	REPEAT	_	_		MODE	<3:0>		446		
SMT1CPRH				SMT1CP	R<15:8>				454		
SMT1CPRL		SMT1CPR<7:0>									
SMT1CPRU	SMT1CPR<23:16>										
SMT1CPWH	SMT1CPW<15:8>										
SMT1CPWL				SMT1CF	PW<7:0>				455		
SMT1CPWU				SMT1CP\	N<23:16>				455		
SMT1PRH		SMT1PR<15:8>									
SMT1PRL				SMT1P	R<7:0>				456		
SMT1PRU		SMT1PR<23:16>									
SMT1SIG	_	— — — SSEL<4:0>							451		
SMT1STAT	CPRUP	CPWUP	RST	_	_	TS	WS	AS	447		
SMT1TMRH	SMT1TMR<15:8>										
SMT1TMRL				SMT1TN	/IR<7:0>				453		
SMT1TMRU	SMT1TMR<23:16>								453		
SMT1WIN	_	—	_			WSEL<4:0>			449		
SMT2CLK	_	_	_	_	_		CSEL<2:0>		448		
SMT2CON0	EN	_	STP	WPOL	SPOL	CPOL	SMT2P	S<1:0>	445		
SMT2CON1	SMT2GO	REPEAT	_	_		MODE	<3:0>		446		
SMT2CPRH		•		SMT2CP	R<15:8>				454		
SMT2CPRL				SMT2CF	PR<7:0>				454		
SMT2CPRU				SMT2CPI	R<23:16>				454		
SMT2CPWH				SMT2CP	W<15:8>				455		
SMT2CPWL				SMT2CF	PW<7:0>				455		
SMT2CPWU				SMT2CP\	W<23:16>				455		
SMT2PRH				SMT2PF	R<15:8>				456		
SMT2PRL				SMT2P	R<7:0>				456		
SMT2PRU				SMT2PF	<23:16>				456		
SMT2SIG	_	_	_	_	_		SSEL<2:0>		451		
SMT2STAT	CPRUP	CPWUP	RST	_	_	TS	WS	AS	447		
SMT2TMRH				SMT2TM	R<15:8>				453		
SMT2TMRL				SMT2TN	/IR<7:0>				453		
SMT2TMRU				SMT2TM					453		
SMT2WIN	_	_	_			WSEL<4:0>			448		

TABLE 30-3: SUMMARY OF REGISTERS ASSOCIATED WITH SMTx

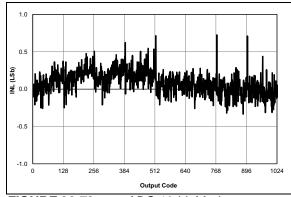
Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for SMTx module.

FIGURE 31-6:

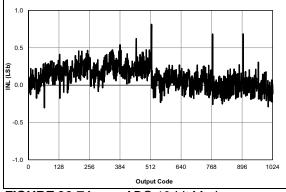
REGISTER 31-9:	ATxPERH: ANGULAR TIMER MEASURED PERIOD HIGH REGISTER	

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x		
POV				PER<14:8>					
bit 7	pit 7						bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	OR and BOR/Value at all other Resets			
'1' = Bit is set	t	'0' = Bit is clea	ared	q = Value depends on condition					
bit 7 POV: Period Counter Overflow bit 1 = Counter rolled over one or more times during measurement 0 = Value shown by ATxPER is valid									

bit 6-0 **PER<14:8>:** Most Significant bits of ATxPER. ATxPER is the measured period value from the period counter.


REGISTER 31-10: ATxPERL: ANGULAR TIMER MEASURED PERIOD LOW REGISTER

| R-x/x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| | | | PER∙ | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |


Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-0 **PER<7:0>:** Least Significant bits of ATxPER. ATxPER is the measured period value from the period counter.

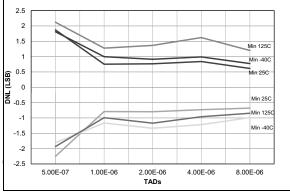

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 36-73: ADC 10-bit Mode, Single-Ended INL, VDD = 3.0V, TAD = 1μ S, 25° C.

FIGURE 36-74: ADC 10-bit Mode, Single-Ended INL, VDD = 3.0V, TAD = 4μ S, 25° C.

FIGURE 36-75: ADC 10-bit Mode, Single-Ended DNL, VDD = 3.0V, VREF = 3.0V.

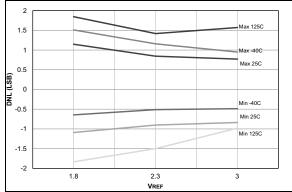
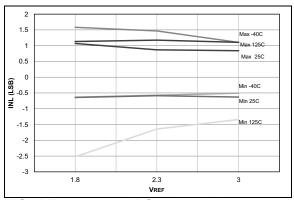




FIGURE 36-76: ADC 10-bit Mode, Single-Ended INL, VDD = 3.0V, VREF = 3.0V.

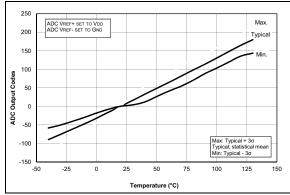


FIGURE 36-77: ADC 10-bit Mode, Single-Ended DNL, VDD = 3.0V, $TAD = 1 \mu S$.

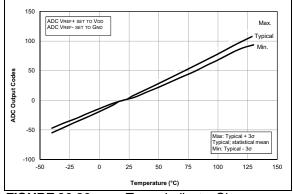
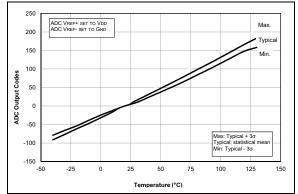
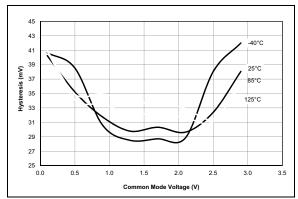
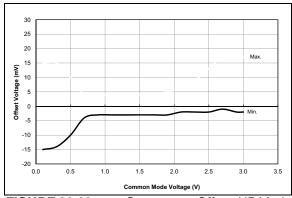


FIGURE 36-78: ADC 10-bit Mode, Single-Ended INL, VDD = 3.0V, TAD = 1μ S.


Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.


FIGURE 36-85: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 1.8V, PIC16LF1615/9 Only.


FIGURE 36-86: Temp. Indicator Slope Normalized to 20° C, Low Range, VDD = 3.0V, PIC16LF1615/9 Only.

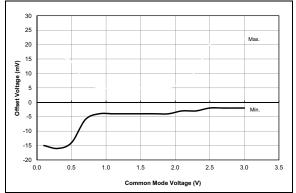
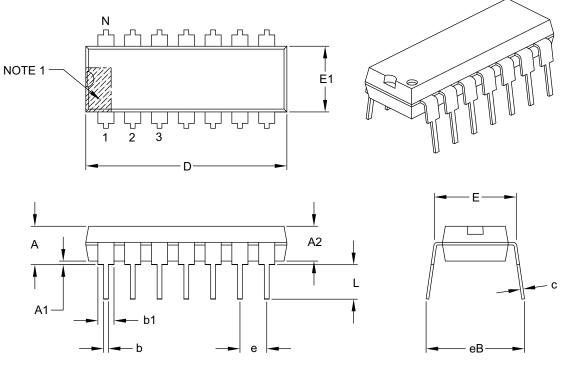

FIGURE 36-87: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 3.6V, PIC16LF1615/9 Only.

FIGURE 36-88: Comparator Hysteresis, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values.

FIGURE 36-89: Comparator Offset, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values at 25°C.


FIGURE 36-90: Comparator Offset, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values From -40°C to 125°C.

38.2 Package Details

The following sections give the technical details of the packages.

14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES			
Dimension Limits		MIN	NOM	MAX
Number of Pins	Ν		14	
Pitch	е	.100 BSC		
Top to Seating Plane	А	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	_
Shoulder to Shoulder Width	E	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.735	.750	.775
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width		.014	.018	.022
Overall Row Spacing §		-	-	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located with the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-005B