

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1619t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

						/					
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	11										
58Ch	PID1SELT				SET<	<7:0>				xxxx xxxx	xxxx xxxx
58Dh	PID1SETH				SET<	15:8>				xxxx xxxx	XXXX XXXX
58Eh	PID1INL				IN<	7:0>				0000 0000	0000 0000
58Fh	PID1INH				IN<1	5:8>				0000 0000	0000 0000
590h	PID1K1L				K1<	7:0>				xxxx xxxx	xxxx xxxx
591h	PID1K1H				K1<1	5:8>				xxxx xxxx	xxxx xxxx
592h	PID1K2L				K2<	7:0>				xxxx xxxx	XXXX XXXX
593h	PID1K2H				K2<1	5:8>				xxxx xxxx	xxxx xxxx
594h	PID1K3L				K3<	7:0>				xxxx xxxx	xxxx xxxx
595h	PID1K3H				K3<1	5:8>				xxxx xxxx	XXXX XXXX
596h	PID10UTLL				OUT	<7:0>				0000 0000	0000 0000
597h	PID10UTLH				OUT<	15:8>				0000 0000	0000 0000
598h	PID10UTHL				OUT<2	23:16>				0000 0000	0000 0000
599h	PID10UTHH				OUT<	31:24>				0000 0000	0000 0000
59Ah	PID10UTU	_	—	_	—		OUT<	<35:32>		0000	0000
59Bh	PID1Z1L		Z1<7:0>							0000 0000	0000 0000
59Ch	PID1Z1H		Z1<15:8>							0000 0000	0000 0000
59Dh	PID1Z1U	—	Z116						Z116	0	0
59Eh	—	Unimplemented	Jnimplemented							—	—
59Fh	—	Unimplemented	1							—	—

TABLE 3-14: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC16F1615/9 only.

2: Unimplemented, read as '1'.

3: PIC16(L)F1615 only.

4: PIC16(L)F1619 only.

3.6.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

FIGURE 3-9: TRADITIONAL DATA MEMORY MAP

4.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Words, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h, Configuration Word 2 at 8008h, and Configuration 3 at 8009h.

Note:	The DEBUG bit in Configuration Words is
	managed automatically by device
	development tools including debuggers
	and programmers. For normal device
	operation, this bit should be maintained as
	a '1'.

5.2.2.3 Internal Oscillator Frequency Adjustment

The 500 kHz internal oscillator is factory calibrated. This internal oscillator can be adjusted in software by writing to the OSCTUNE register (Register 5-3). Since the HFINTOSC and MFINTOSC clock sources are derived from the 500 kHz internal oscillator a change in the OSCTUNE register value will apply to both.

The default value of the OSCTUNE register is '0'. The value is a 6-bit two's complement number. A value of 1Fh will provide an adjustment to the maximum frequency. A value of 20h will provide an adjustment to the minimum frequency.

When the OSCTUNE register is modified, the oscillator frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), and peripherals, are *not* affected by the change in frequency.

5.2.2.4 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is an uncalibrated 31 kHz internal clock source.

The output of the LFINTOSC connects to a multiplexer (see Figure 5-1). Select 31 kHz, via software, using the IRCF<3:0> bits of the OSCCON register. See Section5.2.2.8 "Internal Oscillator Clock Switch Timing" for more information. The LFINTOSC is also the frequency for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The LFINTOSC is enabled by selecting 31 kHz (IRCF<3:0> bits of the OSCCON register = 000) as the system clock source (SCS bits of the OSCCON register = 1x), or when any of the following are enabled:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired LF frequency, and
- FOSC<1:0> = 00, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

Peripherals that use the LFINTOSC are:

- Power-up Timer (PWRT)
- Watchdog Timer (WDT)
- Fail-Safe Clock Monitor (FSCM)

The Low-Frequency Internal Oscillator Ready bit (LFIOFR) of the OSCSTAT register indicates when the LFINTOSC is running.

5.2.2.5 FRC

The FRC clock is an uncalibrated, nominal 600 kHz peripheral clock source.

The FRC is automatically turned on by the peripherals requesting the FRC clock.

The FRC clock will continue to run during Sleep.

5.2.2.6 Internal Oscillator Frequency Selection

The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register.

The postscaler outputs of the 16 MHz HFINTOSC, 500 kHz MFINTOSC, and 31 kHz LFINTOSC output connect to a multiplexer (see Figure 5-1). The Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register select the frequency output of the internal oscillators. One of the following frequencies can be selected via software:

- 16 MHz
- 8 MHz
- 4 MHz
- 2 MHz
- 1 MHz
- 500 kHz (default after Reset)
- 250 kHz
- 125 kHz
- 62.5 kHz
- 31.25 kHz
- 31 kHz (LFINTOSC)

Note: Following any Reset, the IRCF<3:0> bits of the OSCCON register are set to '0111' and the frequency selection is set to 500 kHz. The user can modify the IRCF bits to select a different frequency.

The IRCF<3:0> bits of the OSCCON register allow duplicate selections for some frequencies. These duplicate choices can offer system design trade-offs. Lower power consumption can be obtained when changing oscillator sources for a given frequency. Faster transition times can be obtained between frequency changes that use the same oscillator source.

		D/14/ 0/0	D/14/ 0/0	D // / 0/0	D/14/ 0/0	DAA(0/0	DAM 0/0	
0-0	0-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
_	—			TUN	<5:0>			
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	= Writable bit U = Unimplemented bit, read as '0'					
u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets	
'1' = Bit is set		'0' = Bit is cle	ared					
bit 7-6	Unimplemen	ted: Read as '	0'					
bit 5-0	TUN<5:0>: F	requency Tunii	ng bits					
	100000 = Mi	nimum frequen	cy					
	•	•	5					
	•							
	•							
	111111 =							
	000000 = Os	scillator module	is running at	the factory-calib	prated frequend	cy.		
	000001 =							
	•							
	•							
	•							
	011110 =							
	011111 = M a	aximum frequei	су					

REGISTER 5-3: OSCTUNE: OSCILLATOR TUNING REGISTER

TABLE 5-3: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF<3:0>				SCS	<1:0>	89
OSCSTAT	—	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	90
OSCTUNE	—				TUN≪	<5:0>			91

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 5-4: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8		_	FCMEN	IESO	CLKOUTEN	BORE	N<1:0>		60
CONFIGT	7:0	CP	MCLRE	PWRTE	_	_	F	OSC<2:0>	•	69

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

REGISTER 11-12: SCANLADRH: S	CAN LOW ADDRESS HIGH BYTE REGISTER
------------------------------	------------------------------------

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			LADR<1	15:8> (1, 2)			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 LADR<15:8>: Scan Start/Current Address bits^(1, 2) Most Significant bits of the current address to be fetched from, value increments on each fetch of memory.

- **Note 1:** Registers SCANLADRH/L form a 16-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).
 - 2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 11-13: SCANLADRL: SCAN LOW ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
LADR<7:0> ^(1, 2)							
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LADR<7:0>: Scan Start/Current Address bits^(1, 2)

Least Significant bits of the current address to be fetched from, value increments on each fetch of memory

- **Note 1:** Registers SCANLADRH/L form a 16-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).
 - 2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

12.3.7 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other functions are selected with the peripheral pin select logic. See **Section13.0** "**Peripheral Pin Select (PPS) Module**" for more information. Analog input functions, such as ADC inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELB register. Digital output functions continue to may continue to control the pin when it is in Analog mode.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
	_			_		ADRE	S<9:8>
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable	bit	U = Unimpler	mented bit. read	d as '0'	

REGISTER 17-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Reserved: Do not use.

bit 1-0 **ADRES<9:8>**: ADC Result Register bits Upper two bits of 10-bit conversion result

REGISTER 17-7: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ADRES | 6<7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADRES<7:0>: ADC Result Register bits Lower eight bits of 10-bit conversion result

19.10 Register Definitions: Comparator Control

R/W-0/0	R-0/0	U/U_0/0	R/W/-0/0	[]_0	R/W-1/1	R/W/-0/0	R/W-0/0
CXON	CxOUT		CxPOI		CxSP	CxHYS	CxSYNC
bit 7	0x001		OXI OL		0,01	0x1110	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	R/Value at all	other Resets
'1' = Bit is set	-	'0' = Bit is clea	ared				
bit 7	CxON: Comp	arator Enable	bit				
	1 = Comparat	tor is enabled					
	0 = Comparat	tor is disabled a	and consumes	no active pov	ver		
bit 6	CxOUT: Com	parator Output	bit				
	$\frac{\text{If CxPOL} = 1}{1000}$	(inverted polar	<u>ity):</u>				
	1 = CXVP < C						
	If $CxPOL = 0$	(non-inverted r	olaritv):				
	1 = CxVP > 0	CxVN					
	0 = CxVP < 0	CxVN					
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	CxPOL: Com	parator Output	Polarity Selec	t bit			
	1 = Comparat	tor output is inv	verted				
	0 = Comparat	tor output is no	tinverted				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	CxSP: Comp	arator Speed/P	ower Select bi	it 			
	 1 = Comparator operates in normal power, higher speed mode 0 = Comparator operates in Low-power, Low-speed mode 						
bit 1	CxHYS: Comparator Hysteresis Enable bit						
	 1 = Comparator hysteresis enabled 0 = Comparator hysteresis disabled 						
bit 0	CxSYNC: Comparator Output Synchronous Mode bit						
	 CxSYNC: Comparator Output Synchronous Mode bit 1 = Comparator output to Timer1 and I/O pin is synchronous to changes on Timer1 clock source. Output updated on the falling edge of Timer1 clock source. 0 = Comparator output to Timer1 and I/O pin is asynchronous 						clock source.

REGISTER 19-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	160
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	105
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	106
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	111
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Count								235*
TMR1L	Holding Regi	ster for the Le	east Significar	nt Byte of the	16-bit TMR1 (Count			235*
TMR3H	Holding Regi	Holding Register for the Most Significant Byte of the 16-bit TMR3 Count						235*	
TMR3L	Holding Register for the Least Significant Byte of the 16-bit TMR3 Count					235*			
TMR5H	Holding Register for the Most Significant Byte of the 16-bit TMR5 Count						235*		
TMR5L	Holding Register for the Least Significant Byte of the 16-bit TMR5 Count							235*	
TRISA	_	_	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	159
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	_	T1SYNC	_	TMR10N	239
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GS	S<1:0>	240
T3CON	TMR3C	:S<1:0>	T3CKP	S<1:0>	—	T3SYNC	—	TMR3ON	239
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/ DONE	T3GVAL	T3GS	S<1:0>	240
T5CON	TMR5C	:S<1:0>	T5CKP	S<1:0>	—	T5SYNC	—	TMR5ON	239
T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/ DONE	T5GVAL	T5GS	S<1:0>	240

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Timer1 module. * Page provides register information.

Note 1: Unimplemented, read as '1'.

23.6 Timer2 Operation During Sleep

When PSYNC = 1, Timer2 cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and T2PR registers will remain unchanged while processor is in Sleep mode.

When PSYNC = 0, Timer2 will operate in Sleep as long as the clock source selected is also still running. Selecting the LFINTOSC, MFINTOSC, or HFINTOSC oscillator as the timer clock source will keep the selected oscillator running during Sleep.

24.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select.

The SPI bus specifies four signal connections:

- Serial Clock (SCK)
- Serial Data Out (SDO)
- Serial Data In (SDI)
- Slave Select (SS)

Figure 24-1 shows the block diagram of the MSSP module when operating in SPI mode.

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 24-4 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 24-5 shows a typical connection between two processors configured as master and slave devices.

Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The master device transmits information out on its SDO output pin which is connected to, and received by, the slave's SDI input pin. The slave device transmits information out on its SDO output pin, which is connected to, and received by, the master's SDI input pin.

To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register.

During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its shift register (on

its SDO pin) and the slave device is reading this bit and saving it as the LSb of its shift register, that the slave device is also sending out the MSb from its shift register (on its SDO pin) and the master device is reading this bit and saving it as the LSb of its shift register.

After eight bits have been shifted out, the master and slave have exchanged register values.

If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data), depends on the application software. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data.
- Master sends useful data and slave sends useful data.
- Master sends dummy data and slave sends useful data.

Transmissions may involve any number of clock cycles. When there is no more data to be transmitted, the master stops sending the clock signal and it deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line must disregard the clock and transmission signals and must not transmit out any data of its own.

I²C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 0) **FIGURE 24-21:** Received data is read from SSPxBUF Receive Data 10 UA 11 2 3 4 5 6 7 8 6 7 8 10 1 2 clears UA and releases SCL Update of SSPxADD, Receive Data Set CKP with software releases SCL Cleared by software ACK A7 \ A6 \ A5 \ A4 \ A3 \ A2 \ A1 \ A0 9 UA 1 2 3 4 5 6 7 8 SSPxBUF can be read anytime before the next received byte Receive Second Address Byte Update to SSPxADD is not allowed until 9th falling edge of SCL Cleared by software ACK R/W = 0<u>s</u> 1 2 4 5 6 7 8 ACKTIM is set by hardware on 8th falling edge of SCL If when AHEN = 1; on the 8th falling edge of SCL of an address — byte, CKP is cleared 0 / A9 X A8 Set by hardware _____ on 9th falling edge Slave software clears ACKDT to <u>ACK</u> the received byte Receive First Address Byte ---Ч SSP_{xIF} **ACKTIM** ACKDT В A CKP SDA SCL

25.3 Register Definitions: EUSART Control

REGISTER 25-1: TX1STA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7	•	1		1			bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	CSRC: Clock Asynchronou Don't care Synchronous 1 = Master r 0 = Slave m	: Source Select <u>s mode</u> : <u>mode</u> : node (clock ge ode (clock fron	bit nerated interr n external sou	nally from BRG)		
bit 6	 TX9: 9-bit Transmit Enable bit 1 = Selects 9-bit transmission 0 = Selects 8-bit transmission 						
bit 5	TXEN: Transmit Enable bit ⁽¹⁾ 1 = Transmit enabled 0 = Transmit disabled						
bit 4	SYNC: EUSA 1 = Synchror 0 = Asynchror	ART Mode Sele nous mode onous mode	ct bit				
bit 3	SENDB: Sen Asynchronouu 1 = Send Syn 0 = Sync Bree Synchronous Don't care	d Break Chara <u>s mode</u> : nc Break on ne eak transmissio <u>mode</u> :	cter bit ext transmission n completed	on (cleared by l	hardware upon o	completion)	
bit 2	BRGH: High Baud Rate Select bit <u>Asynchronous mode</u> : 1 = High speed 0 = Low speed <u>Synchronous mode</u> : Unused in this mode						
bit 1	TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full						
bit 0	TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.						
Note 1: SR	EN/CREN over	rides TXEN in	Svnc mode.				

30.8 Register Definitions: SMT Control

Long bit name prefixes for the Signal Measurement Timer peripherals are shown in Table 30-2. Refer to Section 1.1 "Register and Bit Naming Conventions" for more information.

TABLE 30-2:

Peripheral	Bit Name Prefix
SMT1	SMT1
SMT2	SMT2

REGISTER 30-1: SMTxCON0: SMT CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
EN ⁽¹⁾	—	STP	WPOL	SPOL	CPOL	SMTxP	S<1:0>
bit 7							bit 0

Legend:						
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'			
u = Bit is unch	anged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set						
bit 7 EN: SMT Enable bit ⁽¹⁾ 1 = SMT is enabled 0 = SMT is disabled; internal states are reset, clock requests are disabled						
bit 6	Unimplemen	ted: Read as '0'				
bit 5 STP: SMT Counter Halt Enable bit When SMTxTMR = SMTxPR: 1 = Counter remains SMTxPR; period match interrupt occurs when clocked 0 = Counter resets to 24'h000000; period match interrupt occurs when clocked						
bit 4	it 4 WPOL: SMTxWIN Input Polarity Control bit 1 = SMTxWIN signal is active-low/falling edge enabled 0 = SMTxWIN signal is active-high/rising edge enabled					
bit 3	SPOL: SMTx 1 = SMTx_sig 0 = SMTx_sig	SIG Input Polarity Control bi nal is active-low/falling edge nal is active-high/rising edge	t e enabled e enabled			
bit 2	 2 CPOL: SMT Clock Input Polarity Control bit 1 = SMTxTMR increments on the falling edge of the selected clock signal 0 = SMTxTMR increments on the rising edge of the selected clock signal 					
bit 1-0	0 = SMTxTMR increments on the rising edge of the selected clock signal SMTxPS<1:0>: SMT Prescale Select bits 11 = Prescaler = 1:8 10 = Prescaler = 1:4 01 = Prescaler = 1:2 00 = Prescaler = 1:1					

Note 1: Setting EN to '0' does not affect the register contents.

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1
			SMTxF	PR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	red				

REGISTER 30-18: SMTxPRL: SMT PERIOD REGISTER - LOW BYTE

bit 7-0 SMTxPR<7:0>: Significant bits of the SMT Timer Value for Period Match – Low Byte

REGISTER 30-19: SMTxPRH: SMT PERIOD REGISTER - HIGH BYTE

| R/W-x/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | SMTxPF | R<15:8> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxPR<15:8>: Significant bits of the SMT Timer Value for Period Match – High Byte

REGISTER 30-20: SMTxPRU: SMT PERIOD REGISTER – UPPER BYTE

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1
			SMTxPF	R<23:16>			
bit 7							bit 0
Legend:							
P - Poodabla	hit	M = M/ritable bi	+	II – Unimplor	monted hit read	d ac '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxPR<23:16>: Significant bits of the SMT Timer Value for Period Match – Upper Byte

REGISTER 31-21: ATxCCONy: ANGULAR TIMER CAPTURE/COMPARE CONTROL 1 REGISTER

R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0			
CCyEN	—	—	CCPyPOL	CAPyP	—	—	CCyMODE			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is uncha	anged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is cle	ared	q = Value de	pends on conditi	ion				
bit 7	bit 7 CCyEN: Capture/Compare Enable bit 1 = Capture/Compare logic is enabled 0 = Capture/Compare logic is disabled									
bit 6-5	Unimplemented: Read as '0'									
bit 4	CCyPOL: Capture/Compare Output Polarity bit									
	In Capture mode (CCyMODE = 1): 1 = ATxCCOUT1 is active low when ATxCCy is updated 0 = ATxCCOUT1 is active high when ATxCCy is updated									
	<u>In Compare mode (CCyMODE = 0):</u> 1 = ATxCCOUT1 is active low when ATxPHS = ATxCCy 0 = ATxCCOUT1 is active high when ATxPHS = ATxCCy									
bit 3	CAPyP: Capture Input Polarity bit									
	 In Capture mode (CCyMODE = 1): 1 = At falling edge of the capture input (Selected by ATxCSELy) the value of the phase counter captured in ATxCC1 0 = At rising edge of the capture input (Selected by ATxCSELy) the value of the phase counter 									
	captured in ATxCC1									
	In Compare m	node (CCyMO	<u>DE = 0):</u>							
	This bit is igno	ored.								
bit 2-1	Unimplemented: Read as '0'									
bit 0	CCyMODE: Capture/Compare Mode Select bit 1 = Capture/compare logic is in Capture mode 0 = Capture/compare logic is in Compare mode									

Mnemonic, Operands		Description	Cyclos	14-Bit Opcode			Status	Notos	
		Description	Cycles	MSb			LSb	Affected	Notes
		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	_	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	_	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
INHERENT OPERATIONS									
CLRWDT	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	-	No Operation	1	00	0000	0000	0000		
OPTION	_	Load OPTION_REG register with W	1	00	0000	0110	0010		
RESET	-	Software device Reset	1	00	0000	0000	0001		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
C-COMPILER OPTIMIZED									
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm					kkkk		
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	lnmm	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	kkkk		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk			2

TABLE 34-3: ENHANCED MID-RANGE INSTRUCTION SET (CONTINUED)

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 36-103: Absolute Value of DAC DNL Error, VDD = 3.0V, VREF = VDD.

FIGURE 36-104: Absolute Value of DAC INL Error, VDD = 3.0V, VREF = VDD.

FIGURE 36-105: Absolute Value of DAC DNL Error, VDD = 5.0V, VREF = VDD, PIC16F1615/9 Only.

FIGURE 36-106: Absolute Value of DAC INL Error, VDD = 5.0V, VREF = VDD, PIC16F1615/9 Only.

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E		1.27 BSC		
Contact Pad Spacing	С		9.40		
Contact Pad Width (X20)	X			0.60	
Contact Pad Length (X20)	Y			1.95	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.45			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A