

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1615-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.3 Register Definitions: BOR Control

REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	R/W-0/u	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN	BORFS	—	—	—	—	—	BORRDY
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	<pre>SBOREN: Software Brown-Out Reset Enable bit If BOREN <1:0> in Configuration Words = 01: 1 = BOR Enabled 0 = BOR Disabled If BOREN <1:0> in Configuration Words ≠ 01: POREN <1:0> in Configuration Words ≠ 01:</pre>
	SBOREN is read/write, but has no effect on the BOR
bit 6	BORFS: Brown-Out Reset Fast Start bit ⁽¹⁾
	If BOREN <1:0> = 10 (Disabled in Sleep) or BOREN<1:0> = 01 (Under software control):
	1 = Band gap is forced on always (covers sleep/wake-up/operating cases)
	0 = Band gap operates normally, and may turn off
	<u>If BOREN<1:0> = 11 (Always on) or BOREN<1:0> = 00 (Always off)</u>
	BORFS is Read/Write, but has no effect.
bit 5-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-Out Reset Circuit Ready Status bit
	1 = The Brown-out Reset circuit is active
	0 = The Brown-out Reset circuit is inactive

Note 1: BOREN<1:0> bits are located in Configuration Words.

PIC16(L)F1615/9

© 2014-2016 Microchip Technology Inc.

12.6 Register Definitions: PORTC

REGISTER 12-17: PORTC: PORTC REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RC7 ⁽¹⁾	RC6 ⁽¹⁾	RC5	RC4	RC3	RC2	RC1	RC0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0	RC<7:0>: PORTC I/O Value bits ^(1, 2)
	1 = Port pin is <u>></u> Vін
	0 = Port pin is <u><</u> VIL

Note 1: RC<7:6> on PIC16(L)F1619 only.

2: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

REGISTER 12-18: TRISC: PORTC TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0	TRISC<7:0>: PORTC Tri-State Control bits ⁽¹⁾
	1 = PORTC pin configured as an input (tri-stated)
	0 = PORTC pin configured as an output

Note 1: TRISC<7:6> on PIC16(L)F1619 only.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUC7 ⁽¹⁾	WPUC6 ⁽¹⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
bit 7				· · · · ·		•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					

REGISTER 12-21: WPUC: WEAK PULL-UP PORTC REGISTER^{(2),(3)}

'0' = Bit is cleared

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits⁽¹⁾

- 1 = Pull-up enabled
- 0 = Pull-up disabled

Note 1: WPUC<7:6> on PIC16(L)F1619 only.

'1' = Bit is set

- 2: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
- 3: The weak pull-up device is automatically disabled if the pin is configured as an output.

REGISTER 12-22: ODCONC: PORTC OPEN-DRAIN CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ODC7 ⁽¹⁾	ODC6 ⁽¹⁾	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ODC<7:0>:** PORTC Open-Drain Enable bits⁽¹⁾

For RC<7:0> pins, respectively

- 1 = Port pin operates as open-drain drive (sink current only)
- 0 = Port pin operates as standard push-pull drive (source and sink current)

Note 1: ODC<7:6> on PIC16(L)F1619 only.

13.3 Bidirectional Pins

PPS selections for peripherals with bidirectional signals on a single pin must be made so that the PPS input and PPS output select the same pin. Peripherals that have bidirectional signals include:

- EUSART (synchronous operation)
- MSSP (I²C)

Note: The I²C default input pins are I²C and SMBus compatible and are the only pins on the device with this compatibility.

13.4 PPS Lock

The PPS includes a mode in which all input and output selections can be locked to prevent inadvertent changes. PPS selections are locked by setting the PPSLOCKED bit of the PPSLOCK register. Setting and clearing this bit requires a special sequence as an extra precaution against inadvertent changes. Examples of setting and clearing the PPSLOCKED bit are shown in Example 13-1.

EXAMPLE 13-1: PPS LOCK/UNLOCK SEQUENCE

;	suspend interrupts
	bcf INTCON,GIE
;	BANKSEL PPSLOCK ; set bank
;	required sequence, next 5 instructions
	movlw 0x55
	movwf PPSLOCK
	movlw 0xAA
	movwf PPSLOCK
;	Set PPSLOCKED bit to disable writes or
;	Clear PPSLOCKED bit to enable writes
	bsf PPSLOCK, PPSLOCKED
;	restore interrupts
	bsf INTCON,GIE

13.5 PPS Permanent Lock

The PPS can be permanently locked by setting the PPS1WAY Configuration bit. When this bit is set, the PPSLOCKED bit can only be cleared and set one time after a device Reset. This allows for clearing the PPSLOCKED bit so that the input and output selections can be made during initialization. When the PPSLOCKED bit is set after all selections have been made, it will remain set and cannot be cleared until after the next device Reset event.

13.6 Operation During Sleep

PPS input and output selections are unaffected by Sleep.

13.7 Effects of a Reset

A device Power-On-Reset (POR) clears all PPS input and output selections to their default values. All other Resets leave the selections unchanged. Default input selections are shown in Table 13-1.

17.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- · Interrupt control
- · Result formatting

17.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section12.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined							
	as a digital input may cause the input							
	buffer to conduct excess current.							

17.1.2 CHANNEL SELECTION

There are up to 15 channel selections available:

- AN<11:0> pins (PIC16(L)F1619 only)
- AN<7:0> pins (PIC16(L)F1615 only)
- Temperature Indicator
- DAC1_output
- FVR_buffer1

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay (TACQ) is required before starting the next conversion. Refer to **Section17.2.6 "ADC Conversion Procedure"** for more information.

17.1.3 ADC VOLTAGE REFERENCE

The ADC module uses a positive and a negative voltage reference. The positive reference is labeled ref+ and the negative reference is labeled ref-.

The positive voltage reference (ref+) is selected by the ADPREF bits in the ADCON1 register. The positive voltage reference source can be:

- VREF+ pin
- VDD
- FVR_buffer1

The negative voltage reference (ref-) source is:

Vss

17.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (internal RC oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 17-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the ADC conversion requirements in **Section35.0** "**Electrical Specifications**" for more information. Table 17-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

R/W-0/0) R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0
	Т	RIGSEL<4:0>(1)			—	—
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'	
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and B	OR/Value at all	other Resets
'1' = Bit is	set	'0' = Bit is cle	ared				
bit 7-3	TRIGSEL<4:	:0>: Auto-Conv	ersion Trigger	Selection bits ⁽¹	1)		
	11111 = Re	served					
	•						
	•						
	10101 = Res	served					
	10100 = AI1	I_Cmp3					
	10011 = AT1	cmp1					
	10001 = CLO	C4OUT					
	10000 = CL(C3OUT					
	01111 = CLO	2001 21001					
	01110 = CLC 01101 = TM	R5 overflow					
	01100 = TM	R3 overflow					
	01011 = SM	T2_match					
	01010 =SM T	Γ1_match					
	01001 = TM	R6_postscaled					
	01000 = IM	R4_postscaled					
	$00111 = C2_{00110} = C1_{00110}$	OUT_sync					
	$00110 = CT_{00101}$	R2 postscaled					
	00100 = T1	overflow ⁽²⁾					
	00011 = T0	overflow ⁽²⁾					
	00010 = CC	P2_out					
	00001 = CC	P1_out					
	00000 = No	auto-conversio	n trigger selec	ted			
bit 2-0	Unimplemer	nted: Read as '	0'				
Note 1:	This is a rising ed	ge sensitive inp	out for all sour	ces.			
2:	Signal also sets it	s corresponding	g interrupt flag] .			

REGISTER 17-3: ADCON2: ADC CONTROL REGISTER 2

20.9 Register Definitions: ZCD Control

R/W-q/q	U-0	R-x/x	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0		
ZCDxEN	_	ZCDxOUT	ZCDxPOL	_	—	ZCDxINTP	ZCDxINTN		
bit 7		l.	ı				bit 0		
Legend:									
R = Readable I	oit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared	q = value dep	pends on config	uration bits			
bit 7	ZCDxEN: Zer	o-Cross Detec	tion Enable bi	t					
	 1 = Zero-cross detect is enabled. ZCD pin is forced to output to source and sink current. 0 = Zero-cross detect is disabled. ZCD pin operates according to PPS and TRIS controls. 								
bit 6	Unimplemented: Read as '0'								
bit 5	ZCDxOUT: Ze	ero-Cross Dete	ction Logic Le	evel bit					
	ZCDxPOL bit	<u>= 0</u> :							
	1 = ZCD pin i	is sinking curre	ent						
	0 = 2CD pin i	s sourcing cur	rent						
	1 = ZCD pin i	<u> </u>	rent						
	0 = ZCD pin i	is sinking curre	ent						
bit 4	ZCDxPOL: Ze	ero-Cross Dete	ection Logic O	utput Polarity b	pit				
	$1 = ZCD \log i$	c output is inve	rted						
hit 2 0			niverteu						
		ieu: Reau as	U iti ya Eslava katu		:4				
DIT		ero-Cross Pos	Itive Edge Inte	errupt Enable t	DIC				
	1 = 2CDIF bit 0 = ZCDIF bit	t is unaffected	by low-to-high	ZCDx_output	transition				
bit 0	ZCDxINTN: Z	ero-Cross Neg	ative Edge In	terrupt Enable	bit				
	1 = ZCDIF bit 0 = ZCDIF bit	t is set on high t is unaffected	-to-low ZCDx_ by high-to-low	_output transiti v ZCDx_output	on transition				

REGISTER 20-1: ZCDxCON: ZERO CROSS DETECTION CONTROL REGISTER

TABLE 20-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE ZCD MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PIE3	—	-	CWGIE	ZCDIE	CLC4IE	CLC3IE	CLC2IE	CLC1IE	108
PIR3	—	—	CWGIF	ZCDIF	CLC4IF	CLC3IF	CLC2IF	CLC1IF	113
ZCD1CON	ZCD1EN	_	ZCD10UT	ZCD1POL			ZCD1INTP	ZCD1INTN	227

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the ZCD module.

TABLE 20-2:SUMMARY OF CONFIGURATION WORD WITH THE ZCD MODULE

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG2	13:8	—	—	LVP	DEBUG	LPBOR	BORV	STVREN	PLLEN	71
	7:0	ZCD	_	_	_	_	PPS1WAY	WRT	<1:0>	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the ZCD module.

22.6 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- · PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

22.7 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

FIGURE 22-2: TIMER1 INCREMENTING EDGE

Timer1 oscillator will continue to operate in Sleep regardless of the T1SYNC bit setting.

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
—	—		LCxD4S<5:0>						
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkr	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared						

REGISTER 29-6: CLCxSEL3: MULTIPLEXER DATA 3 SELECT REGISTERS

bit 7-6Unimplemented: Read as '0'bit 5-0LCxD4S<5:0>: Input Data 4 Selection Control bits
See Table 29-1 for signal names associated with inputs.

FIGURE 30-12: GATED WINDOWED MEASURE MODE REPEAT ACQUISITION TIMING DIAGRAM

PIC16(L)F1615/9

U-0	R/W-0/0	U-0	R/W-0/0	U-0	R/W-0/0	R-0/0	R-0/0			
—	PHP	—	PRP	—	MPP	ACCS	VALID			
bit 7							bit 0			
r										
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
u = Bit is uncl	hanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condit	ion				
bit 7 Unimplemented: Read as '0'										
bit 6	PHP: Phase	Clock Output P	olarity bit							
	1 = Phase cl	ock output is ad	ctive-low							
	0 = Phase cl	ock output is ac	ctive-high							
bit 5	Unimplemen	ted: Read as '	0'							
bit 4	PRP: Period	Clock Output P	olarity bit							
	1 = Period cl	ock output is a	ctive-low							
h # 0		tock output is a	ouve-mgn							
DIL 3	Unimplemen	itea: Read as 1								
bit 2	MPP: Missing	g Pulse Output	Polarity bit							
	$\perp = 100 \text{ sing } \mu$ 0 = Missing r	oulse output is a	active-low							
bit 1	ACCS: Accel	eration Sign bit								
	1 = The value	e currently in A	TxPER is les:	s than the prev	ious value					
	0 = The valu	e currently in A	TxPER is gre	ater than or eq	ual to the previo	ous value				
bit 0	VALID: Valid	Measurement I	oit							
	1 = Sufficien	1 = Sufficient input cycles have occurred to make ATxPER and ATxPHS valid.								
	0 = The valu	es in ATxPER a	and ATxPHS	are not valid; n	ot enough input	cycles have o	ccurred			

REGISTER 31-2: ATxCON1: ANGULAR TIMER CONTROL 1 REGISTER

REGISTER 32-14: PIDxOUTHL: PID OUTPUT HIGH LOW REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
OUT<23:16>											
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set '0' = Bit is cleared q = Value depends on condition						ion					

bit 7-0 **OUT<23:16>** of OUT. OUT is the output value of the PID after completing the designated calculation on the specified inputs.

REGISTER 32-15: PIDxOUTLH: PID OUTPUT LOW HIGH REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
	OUT<15:8>										
bit 7	bit 7 bit 0										

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-0 **OUT<15:8>:** Bits <15:8> of OUT. OUT is the output value of the PID after completing the designated calculation on the specified inputs.

REGISTER 32-16: PIDxOUTLL: PID OUTPUT LOW LOW REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | OUT | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-0 **OUT<7:0>:** Bits <7:0> of OUT. OUT is the output value of the PID after completing the designated calculation on the specified inputs.

Γ.

TABLE 35-2: SUPPLY CURRENT (IDD)^(1,2)

PIC16LF1615/9		Standard Operating Conditions (unless otherwise stated)						
PIC16F1	615/9							
Param. Device		Min	Tunt	Мох	Unito	Conditions		
No.	Characteristics	IVIIII.	турт	Wax.	Units	Vdd	Note	
D013		—	30	90	μΑ	1.8	Fosc = 1 MHz,	
		-	55	110	μA	3.0	External Clock (ECM), Medium-Power mode	
D013		_	65	120	μA	2.3	Fosc = 1 MHz,	
		— 85	150	μA	3.0	External Clock (ECM),		
		—	115	200	μA	5.0	Medium-Power mode	
D014		_	115	260	μA	1.8	Fosc = 4 MHz,	
		—	210	380	μA	3.0	External Clock (ECM), Medium-Power mode	
D014		_	180	310	μA	2.3 Fosc = 4 MHz,	Fosc = 4 MHz,	
		_	240	410	μA	3.0	External Clock (ECM),	
		_	295	520	μA	5.0		

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 36-55: Brown-Out Reset Voltage, Low Trip Point (BORV = 1), PIC16LF1615/9 Only.

FIGURE 36-56: Brown-Out Reset Hysteresis, Low Trip Point (BORV = 1), PIC16LF1615/9 Only.

FIGURE 36-57: Brown-Out Reset Voltage, Low Trip Point (BORV = 1), PIC16F1615/9 Only.

FIGURE 36-58: Brown-Out Reset Hysteresis, Low Trip Point (BORV = 1), PIC16F1615/9 Only.

FIGURE 36-59: Brown-Out Reset Voltage, High Trip Point (BORV = 0).

FIGURE 36-60: Brown-Out Reset Hysteresis, High Trip Point (BORV = 0).

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 36-107: ZCD Pin Voltage, Typical Measured Values.

FIGURE 36-108: ZCD Response Time over Voltage Typical Measured Values.

FIGURE 36-109: ZCD Pin Current over ZCD Pin Voltage, Typical Measured Values from -40°C to 125°C.

FIGURE 36-110: ZCD Pin Response Timer over Current, Typical Measured Values from -40°C to 125°C.

37.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

37.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradeable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

37.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

37.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

37.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X20)	X			0.60
Contact Pad Length (X20)	Y			1.95
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.45		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A

16-Lead Plastic Quad Flat, No Lead Package (ML) - 4x4x0.9mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			2.50
Optional Center Pad Length	T2			2.50
Contact Pad Spacing	C1		4.00	
Contact Pad Spacing	C2		4.00	
Contact Pad Width (X28)	X1			0.35
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.30		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2127A