

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VQFN Exposed Pad
Supplier Device Package	16-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1615t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

U-0	R-0/q	U-0	R-0/q	R-0/q	R-q/q	R-0/q	R-0/q	
	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	
bit 7							bit 0	
-								
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				1 as '0'				
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is cle	ared	q = Condition	al			
bit 7	Unimplemen	ted: Read as '	0'					
bit 6	PLLR: 4x PLL 1 = 4x PLL is 0 = 4x PLL is	PLLR: 4x PLL Ready bit 1 = 4x PLL is ready 0 = 4x PLL is not ready						
bit 5	OSTS: Oscilla 1 = Running f 0 = Running f	ator Start-Up T rom the clock or rom an interna	imer Status bit defined by the I oscillator (FC	FOSC<2:0> bi 9SC<2:0> = 10	ts of the Config 0)	juration Words		
bit 4	HFIOFR: High 1 = HFINTOS 0 = HFINTOS	n-Frequency Ir SC is ready SC is not ready	nternal Oscillato	or Ready bit				
bit 3	HFIOFL: High 1 = HFINTOS 0 = HFINTOS	n-Frequency In SC is at least 2 SC is not 2% a	ternal Oscillato % accurate ccurate	or Locked bit				
bit 2	MFIOFR: Med 1 = MFINTOS 0 = MFINTOS	dium-Frequenc SC is ready SC is not ready	cy Internal Osc	illator Ready bi	it			
bit 1	LFIOFR: Low 1 = LFINTOS 0 = LFINTOS	LFIOFR: Low-Frequency Internal Oscillator Ready bit 1 = LFINTOSC is ready 0 = LFINTOSC is not ready						
bit 0	HFIOFS: High 1 = HFINTOS 0 = HFINTOS	n-Frequency In SC is stable SC is not stable	iternal Oscillato	or Stable bit				

REGISTER 5-2: OSCSTAT: OSCILLATOR STATUS REGISTER

R/W-0/0) R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TMR1GI	E ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF
bit 7		-					bit 0
Legend:							
R = Reada	ible bit	e bit W = Writable bit		U = Unimple	mented bit, reac	l as '0'	
u = Bit is u	nchanged	x = Bit is unki	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is	set	'0' = Bit is cle	ared				
hit 7		imarí Cata Inte	rount Flag hit				
	1 = Interrunt	is pending	inupl Flag bil				
	0 = Interrupt	is not pending					
bit 6	ADIF: ADC I	nterrupt Flag bi	t				
	1 = Interrupt 0 = Interrupt	is pending is not pending					
bit 5	RCIF: EUSA	RT Receive Int	errupt Flag bit	t			
	1 = Interrupt 0 = Interrupt	is pending is not pending					
bit 4	TXIF: EUSA	RT Transmit Int	errupt Flag bi	t			
	1 = Interrupt 0 = Interrupt	is pending is not pending					
bit 3	SSP1IF: Syr	hchronous Seria	I Port (MSSP) Interrupt Flag	bit		
	1 = Interrupt 0 = Interrupt	is pending is not pending					
bit 2	CCP1IF: CC	P1 Interrupt Fla	ig bit				
	0 = Interrupt	is not pending					
bit 1	TMR2IF: Tim	ner2 to PR2 Inte	errupt Flag bit				
	1 = Interrupt 0 = Interrupt	is pending is not pending					
bit 0	TMR1IF: Tim	ner1 Overflow Ir	nterrupt Flag b	oit			
	1 = Interrupt 0 = Interrupt	is pending	1 0				
Note:	Interrupt flag bits a condition occurs, i its corresponding Interrupt Enable I register. User soft appropriate interru	are set when an regardless of the enable bit or th bit, GIE of the tware should er upt flag bits are c	interrupt e state of le Global INTCON isure the lear prior				

REGISTER 7-7: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

to enabling an interrupt.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF	<3:0>		—	- SCS<1:0>		89
PCON	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	98
STATUS	—	—	—	TO	PD	Z	DC	С	26
WDTCON0	—	_		WDTPS<4:0> SEN			124		
WDTCON1	—	١	WDTPS<4:0> SEN WDTCS<2:0> — WINDOW<2:0>			124			
WDTPSL				PSCI	NT<7:0>				124
WDTPSH				PSCN	IT<15:8>				124
WDTTMR	_		WDTWV RWDT RWDER RWDER RWDER DOK DOK <t< td=""><td>124</td></t<>			124			

TABLE 9-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 9-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8			FCMEN	IESO	CLKOUTEN	BOREI	N<1:0>		60
CONFIGT	7:0 CP MCI		MCLRE	PWRTE		_	FOSC<2:0>			69
	13:8	_	_	١	VDTCCS<2:	0>	W	DTCWS<2:0	>	70
CONFIGS	7:0	_	WDT	E<1:0>		WE	OTCPS<4:0>			12

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

Peripheral	Conditions	Description
HFINTOSC	FOSC<2:0> = 010 and IRCF<3:0> = 000x	INTOSC is active and device is not in Sleep.
	BOREN<1:0> = 11	BOR always enabled.
BOR	BOREN<1:0> = 10 and BORFS = 1	BOR disabled in Sleep mode, BOR Fast Start enabled.
	BOREN<1:0> = 01 and BORFS = 1	BOR under software control, BOR Fast Start enabled.
LDO	All PIC16F1615/9 devices, when VREGPM = 1 and not in Sleep	The device runs off of the Low-Power Regulator when in Sleep mode.

 TABLE 15-1:
 PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)

22.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 22-1 displays the Timer1 enable selections.

TABLE 22-1: TIMER1 ENABLE SELECTIONS

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

22.2 Clock Source Selection

The TMR1CS<1:0> bits of the T1CON register are used to select the clock source for Timer1. Table 22-2 displays the clock source selections.

22.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, the TMR1H:TMR1L register pair will increment on multiples of Fosc as determined by the Timer1 prescaler.

When the Fosc internal clock source is selected, the Timer1 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1 value. To utilize the full resolution of Timer1, an asynchronous input signal must be used to gate the Timer1 clock input.

The following asynchronous sources may be used:

- Asynchronous event on the T1G pin to Timer1 gate
- C1 or C2 comparator input to Timer1 gate

22.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI. The external clock source can be synchronized to the microcontroller system clock or it can run asynchronously.

Note: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions:
 •Timer1 enabled after POR

- •Write to TMR1H or TMR1L
- Timer1 is disabled
- •Timer1 is disabled (TMR1ON = 0) when T1CKI is high then Timer1 is enabled (TMR1ON=1) when T1CKI is low.

TABLE 22-2: CLOCK SOURCE SELECTIONS

TMR1CS<1:0>	Clock Source
11	LFINTOSC
10	External Clocking on T1CKI Pin
01	System Clock (Fosc)
00	Instruction Clock (Fosc/4)

24.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 24-27) occurs when the RSEN bit of the SSPxCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSPxCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPxSTAT register will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - •SDA is sampled low when SCL goes from low-to-high.
 - •SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

FIGURE 24-27: REPEATED START CONDITION WAVEFORM

25.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 5.2.2.3 "Internal Oscillator Frequency Adjustment"** for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 25.4.1 "Auto-Baud Detect"**). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

26.5 Register Definitions: CCP Control

R/W-0/0	U/U-0/0	R-x	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
EN	_	OUT	FMT		MODE	=<3:0>	
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable	/ = Writable bit U = Unimplemented bit, read as '0' = Bit is unknown -n/n = Value at POR and BOR/Value at all other Rese				
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value a	at POR and BC	R/Value at all o	other Reset
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	EN: CCPx Mo 1 = CCPx is 0 = CCPx is	odule Enable b enabled disabled	bit				
bit 6	Unimplemen	ted: Read as	'0'				
bit 5	OUT: CCPx C	Dutput Data bit	(read-only)				
bit 4	FMT: CCPW <u>If MODE = PV</u> 1 = Left-align 0 = Right-align	(Pulse-Width) <u>NM Mode</u> ned format, CC aned format, C	Alignment bit PRxH <7> is t CPRxL<0> is t	he MSb of the F the LSb of the F	PWM duty cycle PWM duty cycle	e	
bit 3-0	MODE<3:0>: 11xx = PWM	CCPx Mode S 1 mode	Selection bit				
	1011 = Com 1010 = Com 1001 = Com 1000 = Com	pare mode: Pu pare mode: Pu pare mode: cle pare mode: se	ulse output, cle ulse output (0 - ear output on c t output on cor	ar TMR1 1 - 0) compare match mpare match			
	0111 = Capt 0110 = Capt 0101 = Capt 0100 = Capt	ure mode: eve ure mode: eve ure mode: eve ure mode: eve	ery 16th rising e ery 4th rising eo ery rising edge ery falling edge	edge dge			
	0011 = Capt 0010 = Com 0001 = Com 0000 = Capt	ure mode: eve pare mode: to pare mode: To ure/Compare/I	ery rising or fall ggle output on ggle output an PWM off (reset	ing edge match d clear TMR1 o s CCPx module	n match e) (reserved for	r backwards co	mpatibility)

REGISTER 26-1: CCPxCON: CCPx CONTROL REGISTER

27.1.9 SETUP FOR PWM OPERATION USING PWMx PINS

The following steps should be taken when configuring the module for PWM operation using the PWMx pins:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- 2. Clear the PWMxCON register.
- 3. Load the PR2 register with the PWM period value.
- 4. Clear the PWMxDCH register and bits <7:6> of the PWMxDCL register.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register. See note below.
 - Configure the CKPS bits of the T2CON register with the Timer2 prescale value.
 - Enable Timer2 by setting the ON bit of the T2CON register.
- 6. Enable PWM output pin and wait until Timer2 overflows, TMR2IF bit of the PIR1 register is set. See note below.
- 7. Enable the PWMx pin output driver(s) by clearing the associated TRIS bit(s) and setting the PWMxOE bit of the PWMxCON register.
- 8. Configure the PWM module by loading the PWMxCON register with the appropriate values.
 - Note 1: In order to send a complete duty cycle and period on the first PWM output, the above steps must be followed in the order given. If it is not critical to start with a complete PWM signal, then move Step 8 to replace Step 4.
 - 2: For operation with other peripherals only, disable PWMx pin outputs.

SIMPLIFIED CWG BLOCK DIAGRAM (HALF-BRIDGE MODE)

REGISTER 28-8: CWGxCLKCON: CWGx CLOCK SELECTION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	—	—	—	—	—	—	CS
bit 7 bi							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

'0'
'(

bit 0

bit 3-0

CS: CWGx Clock Selection bit

1 = HFINTOSC 16 MHz is selected

0 = Fosc is selected

REGISTER 28-9: CWGxISM: CWGx INPUT SELECTION REGISTER

U-0	U-0	U-0	U-0	R/W-0/0 R/W-0/0		R/W-0/0	R/W-0/0	
—	—	—	—	IS<3:0>				
bit 7				bit 0				

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-4 Unimplemented: Read as '0'

IS<3:0>: CWGx Input Selection bits

1111 = Reserved. No channel connected.

- •
- •
- 1011 = Reserved. No channel connected.
- 1010 = PWM4_out
- 1001 = PWM3_out
- 1000 = LC4_out
- 0111 = LC3_out
- 0110 = LC2_out
- 0101 = LC1_out
- 0100 = CCP2_out
- 0011 = CCP1_out
- 0010 = C2_OUT_sync
- 0001 = C1_OUT_sync
- 0000 = CWGxIN pin

TIME OF FLIGHT MODE SINGLE ACQUISITION TIMING DIAGRAM

FIGURE 31-6:

TABLE 35-6: THERMAL CHARACTERISTICS

Param. No.	Sym.	Characteristic	Тур.	Units	Conditions	
TH01	θJA	Thermal Resistance Junction to Ambient	62.2	°C/W	20-pin DIP package	
			77.7	°C/W	20-pin SOIC package	
			87.3	°C/W	20-pin SSOP package	
			43	°C/W	20-pin QFN 4X4mm package	
TH02	θJC	Thermal Resistance Junction to Case	27.5	°C/W	20-pin DIP package	
			23.1	°C/W	20-pin SOIC package	
			31.1	°C/W	20-pin SSOP package	
			5.3	°C/W	20-pin QFN 4X4mm package	
TH03	TJMAX	Maximum Junction Temperature	150	°C		
TH04	PD	Power Dissipation	_	W	PD = PINTERNAL + PI/O	
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾	
TH06	Pi/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$	
TH07	Pder	Derated Power		W	Pder = PDmax (Tj - Ta)/θja ⁽²⁾	

Standard Operating Conditions (unless otherwise stated)

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature; TJ = Junction Temperature

36.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

Unless otherwise noted, all graphs apply to both the L and LF devices.

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum", "Max.", "Minimum" or "Min." represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 36-31: IPD, Fixed Voltage Reference (FVR), PIC16LF1615/9 Only.

FIGURE 36-32: IPD, Fixed Voltage Reference (FVR), PIC16F1615/9 Only.

(BOR), BORV = 1, PIC16LF1615/9 Only.

FIGURE 36-34: IPD, Brown-Out Reset (BOR), BORV = 1, PIC16F1615/9 Only.

FIGURE 36-35: IPD, LP Brown-Out Reset (LPBOR = 0), PIC16LF1615/9 Only.

FIGURE 36-36: IPD, LP Brown-Out Reset (LPBOR = 0), PIC16F1615/9 Only.

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	S		
Dimension Lin	nits	MIN NOM		MAX	
Number of Pins	N	14			
Pitch	е	1.27 BSC			
Overall Height	A	-	-	1.75	
Molded Package Thickness	A2	1.25	-	-	
Standoff §	A1	0.10	-	0.25	
Overall Width	E		6.00 BSC		
Molded Package Width	E1	3.90 BSC			
Overall Length	D	8.65 BSC			
Chamfer (Optional)	h	0.25	-	0.50	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.04 REF			
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	с	0.10	-	0.25	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- Reference Dimension, usually without tolerance, for information pu
 Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065C Sheet 2 of 2