

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

ĿXFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1615t-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)	
IADLE 3-14.	SPECIAL FUNCTION REGISTER SUMMART (CONTINUED)	

TADLE	: 3-14: SPE		ION REGIST	ER SUIVIIVIA							
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 3											
18Ch	ANSELA	—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	1 -111	1 -111
18Dh	ANSELB ⁽⁴⁾	—	—	ANSB5	ANSB4	—	—	—	—	11	11
18Eh	ANSELC	ANSC7 ⁽⁴⁾	ANSC6 ⁽⁴⁾	—	—	ANSC3	ANSC2	ANSC1	ANSC0	11 1111	11 1111
18Fh	—	Unimplemented	1							_	—
190h	—	Unimplemented	1							_	—
191h	PMADRL	Flash Program	Memory Address	Register Low B	Byte					0000 0000	0000 0000
192h	PMADRH	(2)	Flash Program	Memory Address	s Register High I	3yte				1000 0000	1000 0000
193h	PMDATL	Flash Program	Memory Read D	ata Register Lov	v Byte					xxxx xxxx	uuuu uuuu
194h	PMDATH	—	—	Flash Program	Memory Read D	ata Register Hig	h Byte			xx xxxx	uu uuuu
195h	PMCON1	(2)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	1000 x000	1000 q000
196h	PMCON2	Flash Program	Memory Control	Register 2						0000 0000	0000 0000
197h	VREGCON ⁽¹⁾	—	—	—	—	—	—	VREGPM	Reserved	01	01
198h	—	Unimplemented	1							—	—
199h	RC1REG	EUSART Recei	ve Data Register							0000 0000	0000 0000
19Ah	TX1REG	EUSART Trans	mit Data Registe	r						0000 0000	0000 0000
19Bh	SP1BRGL	Baud Rate Gen	erator Data Regi	ster Low						0000 0000	0000 0000
19Ch	SP1BRGH	Baud Rate Gen	erator Data Regi	ster High						0000 0000	0000 0000
19Dh	RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19Eh	TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
19Fh	BAUD1CON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	01-0 0-00	01-0 0-00

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC16F1615/9 only.

2: Unimplemented, read as '1'.

3: PIC16(L)F1615 only.

4: PIC16(L)F1619 only.

TABLE 3-14:	SPECIAL FUNCTION REGISTER SUMMARY	(CONTINUED)

						,	5%.0	Dir d	D 14 A	Value on	Value on all
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR, BOR	other Resets
Bank	17										
88Ch	AT1CLK	—	—	—	—		—	—	CS0	0	0
88Dh	AT1SIG	—	— — — — — SSEL<2:0>							000	000
88Eh	AT1CSEL1	—	CP1S<2:0>								000
88Fh	AT1CC1L CC1<7:0>									0000 0000	0000 0000
890h	AT1CC1H	CC1<9:8>					000	000			
891h	AT1CCON1	CC1EN	—	—	CC1POL	CAP1P	—	—	CC1MODE	00 00	00 00
892h	AT1CSEL2	—	CP2S<2:0>							000	000
893h	AT1CC2L				CC2	<7:0>				0000 0000	0000 0000
894h	AT1CC2H	—	—	—	—		—	CC2·	<9:8>	000	000
895h	AT1CCON2	CC2EN	—	—	CC2POL	CAP2P	—	—	CC2MODE	00 00	00 00
896h	AT1CSEL3	—	—	—	—			CP3S<2:0>		000	000
897h	AT1CC1L				CC3	<7:0>				0000 0000	0000 0000
898h	AT1CC1H	—	—	—	—	_	—	CC3	<9:8>	000	000
899h	AT1CCON1	CC3EN	—	—	CC3POL	CAP3P	—	—	CC3MODE	00 00	00 00
89Ah											
to 89Fh	—	Unimplemented	1							—	—
Bank	18-26										

Bank	18-26	
x0Ch/	_	Unimplemented
x8Ch		
—		
x1Fh/		
x9Fh		

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC16F1615/9 only.

2: Unimplemented, read as '1'.

3: PIC16(L)F1615 only.

4: PIC16(L)F1619 only.

Addr	Name	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							Value on POR, BOR	Value on all other Resets
Bank	27 (Continued)										
DA5h	SMT2CPWH				SMT2CP	W<15:8>				XXXX XXXX	XXXX XXXX
DA6h	SMT2CPWU				SMT2CP	N<23:16>				XXXX XXXX	XXXX XXXX
DA7h	SMT2PRL				SMT2P	PR<7:0>				xxxx xxxx	XXXX XXXX
DA8h	SMT2PRH				SMT2PI	R<15:8>				XXXX XXXX	XXXX XXXX
DA9h	SMT2PRU				SMT2PF	R<23:16>				XXXX XXXX	XXXX XXXX
DAAh	SMT2CON0	EN	—	STP	WPOL	SPOL	CPOL	SMT2F	'S<1:0>	0-00 0000	0-00 0000
DABh	SMT2CON1	SMT2GO	REPEAT	—	—		MODE	=<3:0>		00 0000	00 0000
DACh	SMT2STAT	CPRUP	CPWUP	RST	—	—	TS	WS	AS	000000	000000
DADh	SMT2CLK	_	—	_	_	—		CSEL<2:0>		000	000

SSEL<4:0>

WSEL<4:0>

TABLE 3-14: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

_

Note 1: PIC16F1615/9 only.

SMT2SIG

SMT2WIN

DAEh

DAFh

2: Unimplemented, read as '1'.

_

PIC16(L)F1615 only. 3:

4: PIC16(L)F1619 only.

---0 0000

---0 0000

---0 0000

---0 0000

REGISTER 4-1: CONFIG1: CONFIGURATION WORD 1 (CONTINUED)

- bit 2-0 FOSC<2:0>: Oscillator Selection bits
 - 111 = ECH: External clock, High-Power mode: on CLKIN pin
 - 110 =ECM: External clock, Medium-Power mode: on CLKIN pin
 - 101 =ECL: External clock, Low-Power mode: on CLKIN pin
 - 100 =INTOSC oscillator: I/O function on CLKIN pin
 - 011 =Reserved
 - 010 =HS: HS oscillator, high-speed crystal/resonator connected between OSC1 and OSC2 pins
 - 001 =Reserved
 - 000 =Reserved
- Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.
 - 2: Once enabled, code-protect can only be disabled by bulk erasing the device.

REGISTER 4-3: CONFIG3: CONFIGURATION WORD 3

		R/P-0	R/P-0	R/P-1	R/P-1	R/P-1	R/P-1
			WDTCCS<2:0>	>	, v	WDTCWS<2:0	>
		bit 13					bit 8
U-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
_		E<1:0>			WDTCPS<4:0		
bit 7	-		•				bit 0

Leaend:	
Leyenu.	

bit 6-5

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '1'
'0' = Bit is cleared	'1' = Bit is set	-n = Value when blank or after Bulk Erase

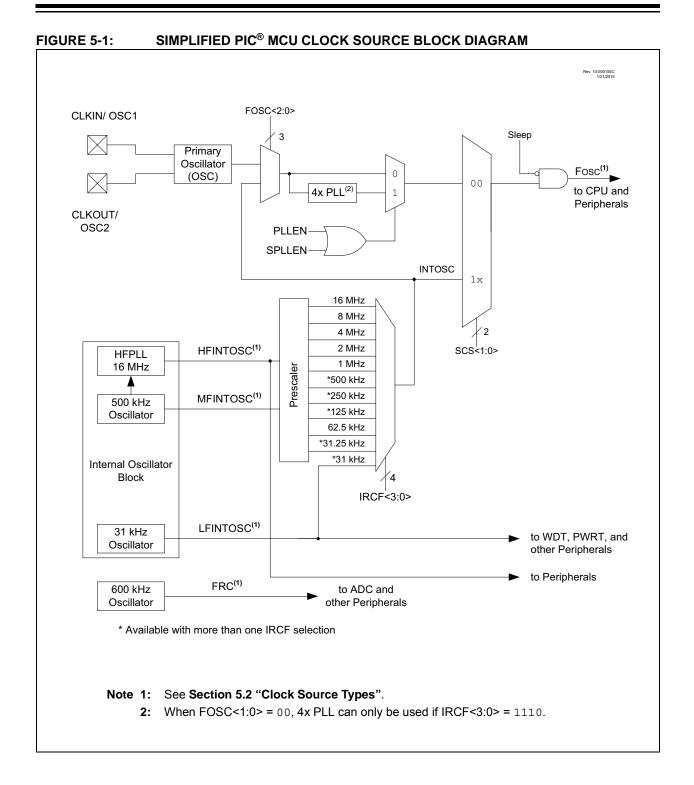
WDTCCS<2:0>: WDT Configuration Clock Select bits bit 13-11

- 111 =Software Control; WDT clock selected by CS<2:0> 110 =Reserved
- 010 =Reserved
- 001 =WDT reference clock is MFINTOSC, 31.25 kHz (default value)
- 000 =WDT reference clock is LFINTOSC, 31.00 kHz output

WDTCWS<2:0>: WDT Configuration Window Select bits. bit 10-8

WDTCWS		WINDOW at P	OR	Software	Keyed	
<2:0>	Value	Window delay Percent of time	Window opening Percent of time	control of WINDOW?	access required?	
111	111	n/a	100	Yes	No	Default fuse = 111
110	111	n/a	100			
101	101	25	75			
100	100	37.5	62.5			
011	011	50	50	No	Yes	
010	010	62.5	37.5			
001	001	75	25			
000	000	87.5	12.5 ⁽¹⁾			

bit 7 Unimplemented: Read as '1'


WDTE<1:0>: Watchdog Timer Enable bits

11 =WDT enabled in all modes, the SEN bit in the WDTCON0 register is ignored

10 =WDT enabled while running and disabled in Sleep

01 =WDT controlled by the SEN bit in the WDTCON0 register

00 = WDT disabled

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0					
—	—	CWGIF	ZCDIF	CLC4IF	CLC3IF	CLC2IF	CLC1IF					
bit 7							bit (
Legend:												
R = Read	able bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'						
u = Bit is	unchanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets					
'1' = Bit is	s set	'0' = Bit is cle	ared									
bit 7-6	Unimplem	ented: Read as '	0'									
bit 5	CWGIF: CV	VG Interrupt Flag	g bit									
		ot is pending ot is not pending										
bit 4	ZCDIF: ZC	ZCDIF : ZCD Interrupt Flag bit										
		1 = Interrupt is pending										
	0 = Interrup	0 = Interrupt is not pending										
bit 3		CLC4IF: Configurable Logic Block 4 Interrupt Flag bit										
		1 = Interrupt is pending										
h:4 0		 0 = Interrupt is not pending CLC3IF: Configurable Logic Block 3 Interrupt Flag bit 										
bit 2		• •	BIOCK 3 Intern	upt Flag bit								
		1 = Interrupt is pending 0 = Interrupt is not pending										
bit 1		onfigurable Logic	Block 2 Interr	rupt Flag bit								
		ot is pending		1 3								
	0 = Interrup	0 = Interrupt is not pending										
bit 0	CLC1IF: Co	CLC1IF: Configurable Logic Block 1 Interrupt Flag bit										
		1 = Interrupt is pending										
	0 = Interrup	ot is not pending										
Note:		are set when ar										
		, regardless of th										
		g enable bit or th of the INTCON										
	User software		•									
		rupt flag bits are o	clear prior									
	to onobling on in	to mark the t										

REGISTER 7-9: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3

to enabling an interrupt.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
WPUC7 ⁽¹⁾	WPUC6 ⁽¹⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0		
bit 7			•			•	bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value at POR and BOR/Value at all other Resets					

REGISTER 12-21: WPUC: WEAK PULL-UP PORTC REGISTER^{(2),(3)}

'0' = Bit is cleared

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits⁽¹⁾

- 1 = Pull-up enabled
- 0 = Pull-up disabled

Note 1: WPUC<7:6> on PIC16(L)F1619 only.

'1' = Bit is set

- 2: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
- 3: The weak pull-up device is automatically disabled if the pin is configured as an output.

REGISTER 12-22: ODCONC: PORTC OPEN-DRAIN CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ODC7 ⁽¹⁾	ODC6 ⁽¹⁾	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ODC<7:0>:** PORTC Open-Drain Enable bits⁽¹⁾

For RC<7:0> pins, respectively

- 1 = Port pin operates as open-drain drive (sink current only)
- 0 = Port pin operates as standard push-pull drive (source and sink current)

Note 1: ODC<7:6> on PIC16(L)F1619 only.

The pull-up and pull-down resistor values are significantly affected by small variations of VCPINV. Measuring VCPINV can be difficult, especially when the waveform is relative to VDD. However, by combining Equations 20-2 and 20-3, the resistor value can be determined from the time difference between the ZCDx_output high and low periods. Note that the time difference, ΔT , is 4*TOFFSET. The equation for determining the pull-up and pull-down resistor values from the high and low ZCDx_output periods is shown in Equation 20-4. The ZCDx_output signal can be directly observed on the ZCDxOUT pin by setting the ZCDxOE bit.

EQUATION 20-4:

$$R = RSERIES\left(\frac{V_{BIAS}}{V_{PEAK}\left(\sin\left(\pi Freq\frac{(\Delta T)}{2}\right)\right)} - 1\right)$$

R is pull-up or pull-down resistor.

 $\mathsf{VBIAS}\xspace$ is $\mathsf{VPULLUP}\xspace$ when R is pull-up or $\mathsf{VDD}\xspace$ when R is pull-down.

 ΔT is the ZCDxOUT high and low period difference.

20.6 Handling VPEAK variations

If the peak amplitude of the external voltage is expected to vary, the series resistor must be selected to keep the ZCD current source and sink below the design maximum range of $\pm 600 \ \mu$ A and above a reasonable minimum range. A general rule of thumb is that the maximum peak voltage can be no more than six times the minimum peak voltage. To ensure that the maximum current does not exceed $\pm 600 \ \mu$ A and the minimum is at least $\pm 100 \ \mu$ A, compute the series resistance as shown in Equation 20-5. The compensating pull-up for this series resistance can be determined with Equation 20-3 because the pull-up value is independent from the peak voltage.

EQUATION 20-5: SERIES R FOR V RANGE

$$RSERIES = \frac{VMAXPEAK + VMINPEAK}{7 \times 10^{-4}}$$

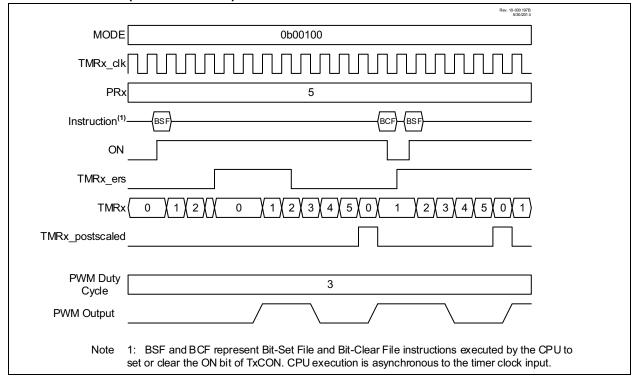
20.7 Operation During Sleep

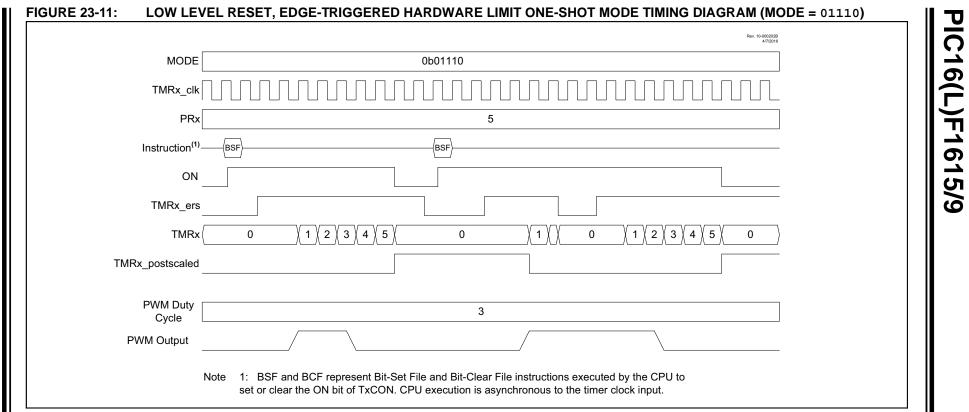
The ZCD current sources and interrupts are unaffected by Sleep.

20.8 Effects of a Reset

The ZCD circuit can be configured to default to the active or inactive state on Power-On-Reset (POR). When the ZCD Configuration bit is cleared, the ZCD circuit will be active at POR. When the ZCD Configuration bit is set, the ZCDxEN bit of the ZCDxCON register must be set to enable the ZCD module.

IGURE 22-5:	TIMERT GATE SINGLE-PULSE MODE
TMR1GE	
T1GPOL	
T1GSPM	
T1GG <u>O/</u> DONE	Cleared by hardware on falling edge of T1GVAL Counting enabled on
T1G_in	rising edge of T1G
T1CKI	
T1GVAL	
Timer1	N N + 1 N + 2
TMR1GIF	Cleared by software Cleared software on falling edge of T1GVAL


23.5.3 EDGE-TRIGGERED HARDWARE LIMIT MODE


In Hardware Limit mode the timer can be reset by the TMRx_ers external signal before the timer reaches the period count. Three types of Resets are possible:

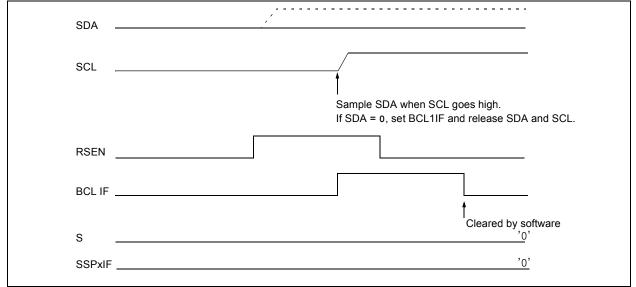
- Reset on rising or falling edge
- (MODE<4:0>= 00011)
- Reset on rising edge (MODE<4:0> = 00100)
- Reset on falling edge (MODE<4:0> = 00101)

When the timer is used in conjunction with the CCP in PWM mode then an early Reset shortens the period and restarts the PWM pulse after a two-clock delay. Refer to Figure 23-6.

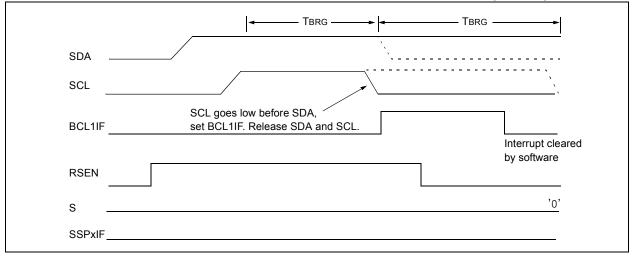
FIGURE 23-6: EDGE-TRIGGERED HARDWARE LIMIT MODE TIMING DIAGRAM (MODE = 00100)

24.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

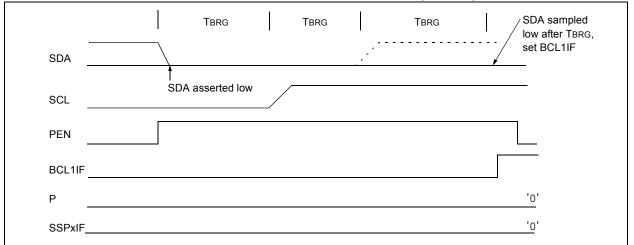

- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 24-36). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

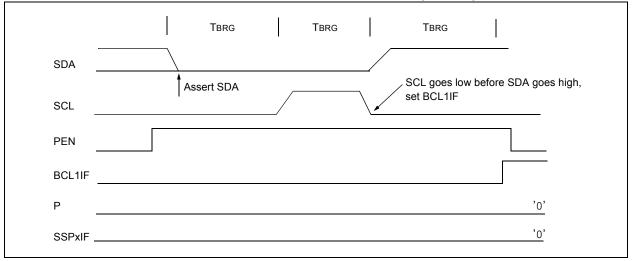

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 24-37.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 24-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)


24.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:


- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out (Case 1).
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high (Case 2).

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPxADD and counts down to zero. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 24-38). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 24-39).

FIGURE 24-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 24-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

25.4.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXxSTA register. The Break character transmission is then initiated by a write to the TXxREG. The value of data written to TXxREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXxSTA register indicates when the transmit operation is active or idle, just as it does during normal transmission. See Figure 25-9 for the timing of the Break character sequence.

25.4.4.1 Break and Sync Transmit Sequence

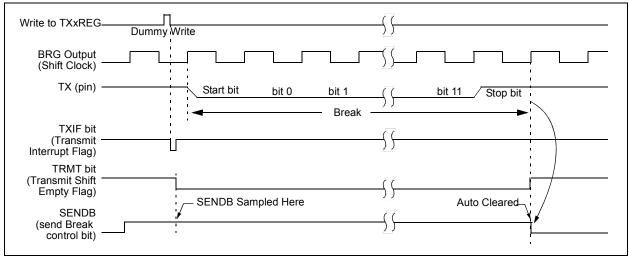
The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXxREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXxREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

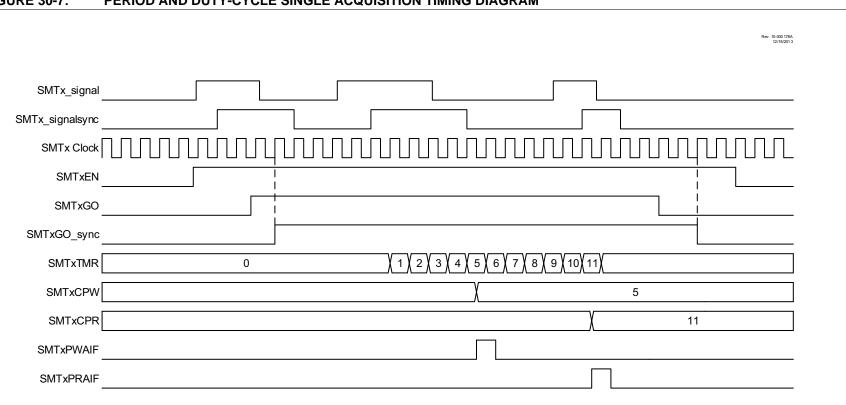
When the TXxREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXxREG.

25.4.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.


The first method to detect a Break character uses the FERR bit of the RCxSTA register and the received data as indicated by RCxREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when;


- RCIF bit is set
- FERR bit is set
- RCxREG = 00h

The second method uses the Auto-Wake-up feature described in **Section 25.4.3 "Auto-Wake-up on Break"**. By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDxCON register before placing the EUSART in Sleep mode.

FIGURE 25-9: SEND BREAK CHARACTER SEQUENCE

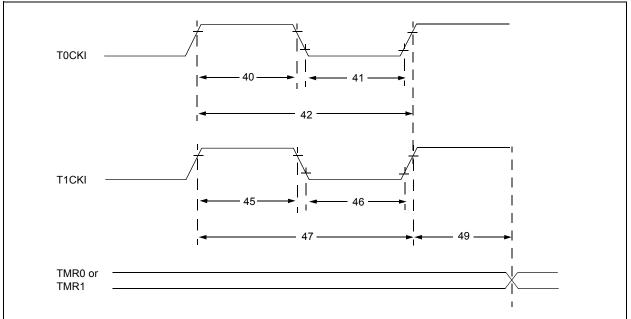
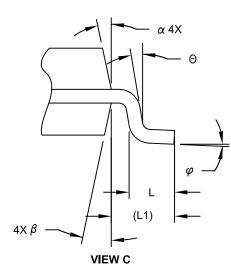


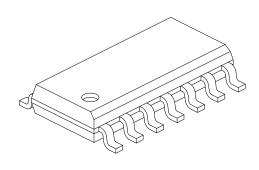
FIGURE 30-7: PERIOD AND DUTY-CYCLE SINGLE ACQUISITION TIMING DIAGRAM

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
_	_	_			WSEL<4:0>				
bit 7							bit (
Legend:									
R = Readable bit W = Writable bit				•	mented bit, read				
u = Bit is u	•	x = Bit is ur			at POR and BO		other Resets		
'1' = Bit is s	set	'0' = Bit is c	leared	q = Value de	pends on condi	tion			
bit 7-5	Unimplom	ented: Read as	• 'o'						
				_					
bit 4-0	11111 = Re		ow Selection bits	5					
	•								
	•								
	•								
	11000 = Reserved								
	10111 = MFINTOSC/16 10110 = AT1 perclk								
	10110 = L F								
		10100 = PWM4_out							
		10011 = PWM3_out							
		10010 = SMT2_match							
	10001 = Reserved 10000 = TMR0 overflow								
	01111 = TMR5_overflow								
		/R3_overflow							
		/IR1_overflow							
	01100 = LC								
	$01011 = LC3_out$ 01010 = LC2 out								
	01010 - LC 01001 = LC								
		/R6_postscale	ed						
	00111 = TMR4_postscaled								
		/IR2_postscale	ed						
	00101 = ZC								
	00100 = CO 00011 = CO								
	00011 = CC 00010 = C2								
	00001 = C								
	00000 = SN								

REGISTER 30-5: SMT1WIN: SMT1 WINDOW INPUT SELECT REGISTER

TABLE 35-12:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
--------------	---

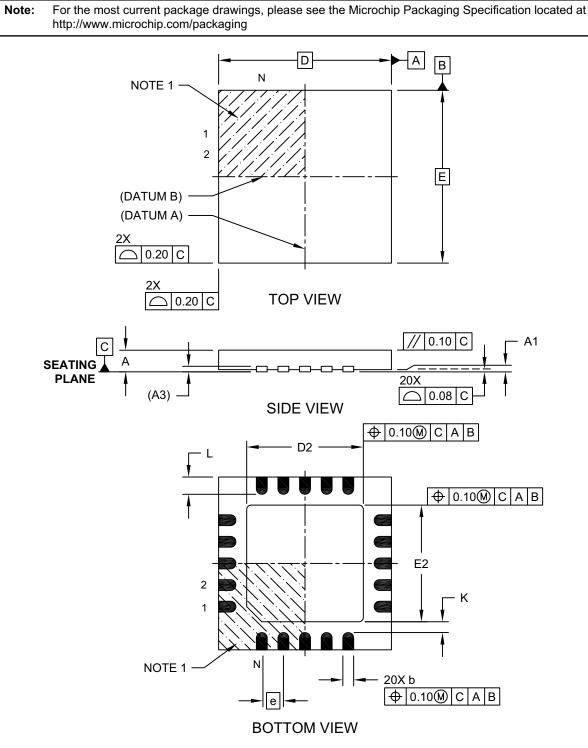

Param. No.	Sym.	Characteristic			Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High Pulse Width No Prescaler With Prescaler		No Prescaler	0.5 TCY + 20			ns	
				With Prescaler	10			ns	
41*	T⊤0L	T0CKI Low Pulse Width No Prescaler		0.5 TCY + 20	_		ns		
				With Prescaler	10	_		ns	
42*	TT0P	T0CKI Period	I Period		Greater of: 20 or <u>Tcy + 40</u> N	_	_	ns	N = prescale value
45*	T⊤1H	T1CKI High Time	Synchronous, No Prescaler		0.5 TCY + 20			ns	
			Synchronous, with Prescaler		15			ns	
			Asynchronous	;	30			ns	
46*	TT1L	T1CKI Low Time	Synchronous,	No Prescaler	0.5 TCY + 20	_	_	ns	
			Synchronous, with Prescaler		15	_	_	ns	
			Asynchronous	;	30			ns	
47*	TT1P	T⊤1P T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value
			Asynchronous	;	60	_	—	ns	
49*	TCKEZTMR1	Delay from External Clock Edge to Timer Increment		2 Tosc	_	7 Tosc	—	Timers in Sync mode	


These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


	Units	MILLIMETERS				
Dimension Lin	nits	MIN	NOM	MAX		
Number of Pins	N	14				
Pitch	е					
Overall Height	A	-	-	1.75		
Molded Package Thickness	A2	1.25	-	-		
Standoff §	A1	0.10	-	0.25		
Overall Width	E		6.00 BSC			
Molded Package Width	E1	3.90 BSC				
Overall Length	D	8.65 BSC				
Chamfer (Optional)	h	0.25	-	0.50		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.04 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	с	0.10	-	0.25		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- Reference Dimension, usually without tolerance, for information pu
 Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065C Sheet 2 of 2

20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

Microchip Technology Drawing C04-255A Sheet 1 of 2