

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1615t-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

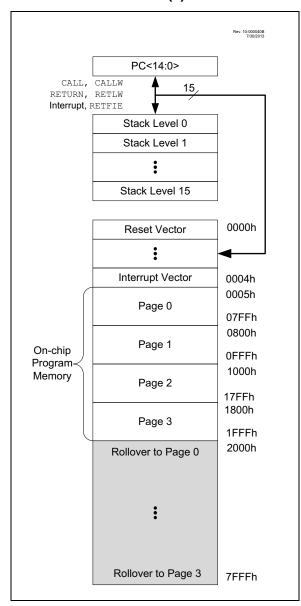
0/1	20-Pin PDIP, SOIC, SSOP	20-Pin UQFN	A/D	Reference	Comparator	Timers	ССР	CWG	ZCD	CLC	EUSART	SMT	Angular Timer	MSSP	MWG	High Current I/O	Interrupt	Bull-up	Basic
RA0	19	16	AN0	DAC10UT	C1IN+	_		_	_	_		—	_	—	_	—	IOC	Y	ICSPDAT
RA1	18	15	AN1	VREF+	C1IN0- C2IN0-	_		—	—	_		—	_	—	—	—	IOC	Y	ICSPCLK
RA2	17	14	AN2	-		T0CKI ⁽¹⁾		CWG1IN ⁽¹⁾	ZCD1IN	_	-	_		-	-	-	INT IOC	Y	—
RA3	4	1	_	—		T6IN ⁽¹⁾		—	_	_	_	SMTWIN2 ⁽¹⁾	_	—	_	_	IOC	Y	MCLR VPP
RA4	3	20	AN3	_		T1G ⁽¹⁾		_	_	_		SMTSIG1(1)	_	_	_	_	IOC	Y	CLKOUT
RA5	2	19	—	_		T1CKI ⁽¹⁾ T2IN ⁽¹⁾		—	_	CLCIN3 ⁽¹⁾	_	SMTWIN1 ⁽¹⁾	_	—	_	—	IOC	Y	CLKIN
RB4	13	10	AN10	—	_	_	_	_	_	_	_	_	_	SDI(1)	_	_	IOC	Y	—
RB5	12	9	AN11	_	-	_	_	—	_	_	RX ^(1,3)	_		_	_	—	IOC	Y	_
RB6	11	8	_	_	-	_	_	_	_	_	-	_	_	SCK ^(1,3)	_	-	IOC	Υ	—
RB7	10	7		_		—		—	_	—	CK ⁽¹⁾	—	_	—	_	—	IOC	Y	—
RC0	16	13	AN4	—	C2IN+	T5CKI ⁽¹⁾	—	_	_	_	_	_	—	_	_	_	IOC	Y	—
RC1	15	12	AN5	—	C1IN1- C2IN1-	T4IN ⁽¹⁾	_	—	-	CLCIN2 ⁽²⁾	_	SMTSIG2 ⁽¹⁾		—	-	-	IOC	Y	-
RC2	14	11	AN6	—	C1IN2- C2IN2-	_	_	—	-	-	_	—	—	—	-	—	IOC	Y	—
RC3	7	4	AN7	—	C1IN3- C2IN3-	T5G ⁽¹⁾	CCP2 ⁽¹⁾	—	_	CLCIN0 ⁽¹⁾	_	—	ATCC ⁽¹⁾	—	_	—	IOC	Y	-
RC4	6	3	_	_	_	T3G ⁽¹⁾	_	_	—	CLCIN1 ⁽¹⁾	_	_	_	_	—	HIC4	IOC	Y	—
RC5	5	2	_	—	_	T3CKI ⁽¹⁾	CCP1 ⁽¹⁾	—	_	—	_	—	ATIN ⁽¹⁾	—	_	HIC5	IOC	Y	_
RC6	8	5	AN8	_	_	_	_	_	_	_	—	_	_	SS ⁽¹⁾	_	_	IOC	Y	_
RC7	9	6	AN9	_		—		_	_	_		_		—	_	_	IOC	Y	_
Vdd	1	18	_	_	_	—		_	_	_	_	_		_	_	_	_	_	_
Vss	20	17	_	_		_		_	_	_		_		—	_	_		_	_
								vith the PPS in cted as a digit			e PPS out	tput selection re	gisters.						

TABLE 4: 20-PIN ALLOCATION TABLE (PIC16(L)F1619)

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers.

These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections. 3:

Name	Function	Input Type	Output Type	Description
RA0/AN0/C1IN+/DAC1OUT1/	RA0	TTL/ST	CMOS/OD	General purpose I/O.
ICSPDAT	AN0	AN	—	ADC Channel input.
	C1IN+	AN	_	Comparator positive input.
	DAC1OUT1	_	AN	Digital-to-Analog Converter output.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
RA1/AN1/VREF+/C1IN0-/C2IN0-/	RA1	TTL/ST	CMOS/OD	General purpose I/O.
ICSPCLK	AN1	AN	—	ADC Channel input.
	VREF+	AN	—	Voltage Reference input.
	C1IN0-	AN	—	Comparator negative input.
	C2IN0-	AN	CMOS/OD	Comparator negative input.
	ICSPCLK	ST	—	ICSP Programming Clock.
RA2/AN2/T0CKI ⁽¹⁾ /CWG1IN ⁽¹⁾	RA2	TTL/ST	CMOS/OD	General purpose I/O.
ZCD1IN/INT	AN2	AN	_	ADC Channel input.
	TOCKI	TTL/ST	—	Timer0 clock input.
	CWG1IN	TTL/ST	_	CWG complementary input.
	ZCD1IN	AN	_	Zero-Cross Detect input.
	INT	TTL/ST	—	External interrupt.
RA3/VPP/T6IN ⁽¹⁾ /SMTWIN2 ⁽¹⁾ /	RA3	TTL/ST	—	General purpose input with IOC and WPU.
MCLR	Vpp	HV	_	Programming voltage.
	T6IN	TTL/ST	—	Timer6 input.
	SMTWIN2	TTL/ST	—	SMT2 window input.
	MCLR	TTL/ST	—	Master Clear with internal pull-up.
RA4/AN3/T1G ⁽¹⁾ /SMTSIG1 ⁽¹⁾ /	RA4	TTL/ST	CMOS/OD	General purpose I/O.
CLKOUT	AN3	AN	_	ADC Channel input.
	T1G	TTL/ST	—	Timer1 Gate input.
	SMTSIG1	TTL/ST	—	SMT1 signal input.
	CLKOUT	_	CMOS	Fosc/4 output.
RA5/CLKIN/T1CKI ⁽¹⁾ /T2IN ⁽¹⁾ /	RA5	TTL/ST	CMOS/OD	General purpose I/O.
SMTWIN1 ⁽¹⁾	CLKIN	CMOS	—	External clock input (EC mode).
	T1CKI	TTL/ST	—	Timer1 clock input.
	T2IN	TTL/ST	—	Timer2 input.
	SMTWIN1	TTL/ST	—	SMT1 window input.
RC0/AN4/C2IN+/T5CKI ⁽¹⁾ /	RC0	TTL/ST	CMOS/OD	General purpose I/O.
SCK ⁽¹⁾	AN4	AN	—	ADC Channel input.
	C2IN+	AN	—	Comparator positive input.
	T5CKI	TTL/ST		Timer5 clock input.
	SCK	ST	CMOS	SPI clock.


TABLE 1-2: PIC16(L)F1615 PINOUT DESCRIPTION

Legend:AN= Analog input or outputCMOS= CMOS compatible input or outputOD=Open-DrainTTL= TTL compatible inputST=Schmitt Trigger input with CMOS levels I^2C^{TM} =Schmitt Trigger input with I^2C^{TM} HV= High VoltageXTAL=Crystallevels

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 13-1.

FIGURE 3-1: PROGRAM MEMORY MAP AND STACK FOR PIC16(L)F1615/9

3.2.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.2.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1:	RETLW INSTRUCTION
constants	
BRW	;Add Index in W to
	<pre>;program counter to</pre>
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CO	DDE
MOVLW D.	ATA_INDEX
call constant	ts
; THE CONSTR	ANT IS IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available, so the older table read method must be used.

3.2.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH operator will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2:	ACCESSING PROGRAM
	MEMORY VIA FSR

constants
DW DATAO ;First constant
DW DATA1 ;Second constant
DW DATA2
DW DATA3
my_function
; LOTS OF CODE
MOVLW DATA_INDEX
ADDLW LOW constants
MOVWF FSR1L
MOVLW HIGH constants;MSb sets
automatically
MOVWF FSR1H
BTFSC STATUS, C ;carry from ADDLW?
INCF FSR1h, f ;yes
MOVIW 0[FSR1]
;THE PROGRAM MEMORY IS IN W

TABLE 3-14: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Banks 30											
F0Ch to F0Eh	_	Unimplemented	l							_	—
F0Fh	CLCDATA	_	—	_	—	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT	0000	0000
F10h	CLC1CON	LC1EN	—	LC1OUT	LC1INTP	LC1INTN		LC1MODE<2:0>	•	0-x0 0000	0-x0 0000
F11h	CLC1POL	LC1POL	—		—	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	x xxxx	x xxxx
F12h	CLC1SEL0	_	_			LC1D1	S<5:0>			xx xxxx	xx xxxx
F13h	CLC1SEL1	_	_			LC1D2	S<5:0>			xx xxxx	xx xxxx
F14h	CLC1SEL2	—	_			LC1D3	S<5:0>			xx xxxx	xx xxxx
F15h	CLC1SEL3	_	_			LC1D4	S<5:0>			xx xxxx	xx xxxx
F16h	CLC1GLS0	LC1G1D4T	LC1G1D4N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	xxxx xxxx	xxxx xxxx
F17h	CLC1GLS1	LC1G2D4T	LC1G2D4N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	xxxx xxxx	xxxx xxxx
F18h	CLC1GLS2	LC1G3D4T	LC1G3D4N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	xxxx xxxx	xxxx xxxx
F19h	CLC1GLS3	LC1G4D4T	LC1G4D4N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	xxxx xxxx	xxxx xxxx
F1Ah	CLC2CON	LC2EN	_	LC2OUT	LC2INTP	LC2INTN		LC2MODE<2:0>	•	0-x0 0000	0-x0 0000
F1Bh	CLC2POL	LC2POL	—	_	—	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	x xxxx	x xxxx
F1Ch	CLC2SEL0	_	_			LC2D1	S<5:0>			xx xxxx	xx xxxx
F1Dh	CLC2SEL1	—	—			LC2D2	S<5:0>			xx xxxx	xx xxxx
F1Eh	CLC2SEL2	_	_			LC2D3	S<5:0>			xx xxxx	xx xxxx
F1Fh	CLC2SEL3	_	—		LC2D4S<5:0>						
F20h	CLC2GLS0	LC2G1D4T	LC2G1D4N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	xxxx xxxx	xxxx xxxx
F21h	CLC2GLS1	LC2G2D4T	LC2G2D4N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	xxxx xxxx	xxxx xxxx
F22h	CLC2GLS2	LC2G3D4T	LC2G3D4N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	xxxx xxxx	xxxx xxxx
F23h	CLC2GLS3	LC2G4D4T	LC2G4D4N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	xxxx xxxx	xxxx xxxx

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC16F1615/9 only.

2: Unimplemented, read as '1'.

3: PIC16(L)F1615 only.

4: PIC16(L)F1619 only.

5.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the FOSC<1:0> bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to the internal oscillator during run-time. See Section5.3 "Clock Switching"for more information.

In **INTOSC** mode, CLKIN is available for general purpose I/O. CLKOUT is available for general purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent oscillators and a dedicated Phase Lock Loop, HFPLL that can produce one of three internal system clock sources.

- The HFINTOSC (High-Frequency Internal Oscillator) is factory calibrated and operates at 16 MHz. The HFINTOSC source is generated from the 500 kHz MFINTOSC source and the dedicated Phase Lock Loop, HFPLL. The frequency of the HFINTOSC can be useradjusted via software using the OSCTUNE register (Register 5-3).
- 2. The **MFINTOSC** (Medium-Frequency Internal Oscillator) is factory calibrated and operates at 500 kHz. The frequency of the MFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 5-3).
- 3. The **LFINTOSC** (Low-Frequency Internal Oscillator) is uncalibrated and operates at 31 kHz.

5.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a factory calibrated 16 MHz internal clock source. The frequency of the HFINTOSC can be altered via software using the OSCTUNE register (Register 5-3).

The output of the HFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). One of multiple frequencies derived from the HFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See **Section5.2.2.8 "Internal Oscillator Clock Switch Timing**" for more information.

The HFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<1:0> = 00, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'.

A fast start-up oscillator allows internal circuits to power up and stabilize before switching to HFINTOSC.

The High-Frequency Internal Oscillator Ready bit (HFIOFR) of the OSCSTAT register indicates when the HFINTOSC is running.

The High-Frequency Internal Oscillator Status Locked bit (HFIOFL) of the OSCSTAT register indicates when the HFINTOSC is running within 2% of its final value.

The High-Frequency Internal Oscillator Stable bit (HFIOFS) of the OSCSTAT register indicates when the HFINTOSC is running within 0.5% of its final value.

5.2.2.2 MFINTOSC

The Medium-Frequency Internal Oscillator (MFINTOSC) is a factory calibrated 500 kHz internal clock source. The frequency of the MFINTOSC can be altered via software using the OSCTUNE register (Register 5-3).

The output of the MFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). One of nine frequencies derived from the MFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See **Section5.2.2.8 "Internal Oscillator Clock Switch Timing**" for more information.

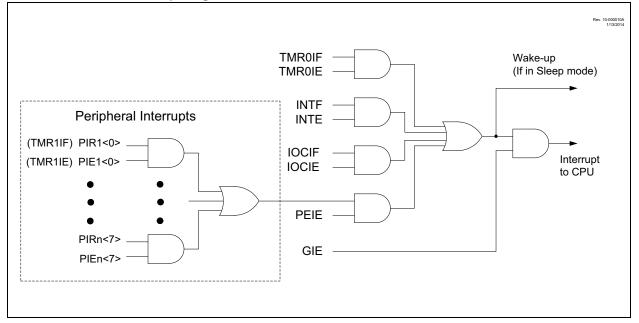
The MFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<1:0> = 00, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

The Medium-Frequency Internal Oscillator Ready bit (MFIOFR) of the OSCSTAT register indicates when the MFINTOSC is running.

7.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.


This chapter contains the following information for Interrupts:

- Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- · Automatic Context Saving

Many peripherals produce interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 7-1.

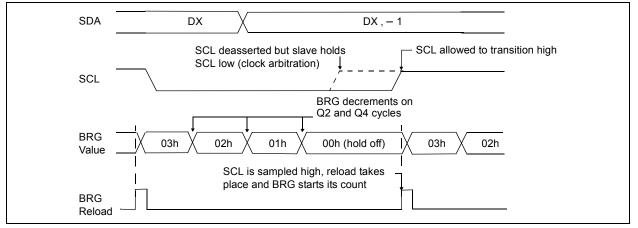
FIGURE 7-1: Interrupt Logic

R/W-0/	0 R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0						
SCANI	F CRCIF	SMT2PWAIF	SMT2PRAIF	SMT2IF	SMT1PWAIF	SMT1PRAIF	SMT1IF						
bit 7							bit						
Legend:													
R = Reada		W = Writable I	oit		mented bit, read								
u = Bit is u	0	x = Bit is unkn		-n/n = Value	at POR and BO	R/Value at all ot	her Resets						
'1' = Bit is	set	'0' = Bit is clea	ared										
bit 7	SCANIF: So	canner Interrupt	Flag bit										
		Interrupt is pending											
bit 6	CRCIF: CR	C Interrupt Flag	bit										
	1 = Interrup	t is pending t is not pending											
bit 5	•		Width Acquisiti	on Interrunt F	lag hit								
bito	1 = Interrup	: SMT2 Pulse Width Acquisition Interrupt Flag bit is pending											
		t is not pending											
bit 4	SMT2PRAI	SMT2PRAIF: SMT2 Period Acquisition Interrupt Flag bit											
		1 = Interrupt is pending											
	-	0 = Interrupt is not pending											
bit 3		SMT2 Match Interrupt Flag bit											
		1 = Interrupt is pending 0 = Interrupt is not pending											
bit 2	-	SMT1PWAIF: SMT1 Pulse Width Acquisition Interrupt Flag bit											
		1 = Interrupt is pending											
	0 = Interrup	t is not pending											
bit 1		F: SMT1 Period	Acquisition Int	errupt Flag bi	t								
	1 = Interrup												
hit O		t is not pending	unt Flog bit										
bit 0	1 = Interrup	AT1 Match Inter	upt Flag bit										
		t is not pending											
	·	1 0											
Note:	Interrupt flag bits												
	condition occurs, its corresponding												
	Enable bit, GIE												
	User software	should ens	ure the										
	appropriate interr		clear prior										
	to enabling an int	terrupt.											

REGISTER 7-10: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4

D DDO - 4-0	Outrast Olamal	1	PIC16(L)F161	9	PIC16(L)F1615		
RxyPPS<4:0>	Output Signal	PORTA	PORTB	PORTC	PORTA	PORTO	
llxxx	Reserved	•	•	٠	•	•	
10111	Reserved	•	•	•	•	•	
10110	Reserved	•	•	•	•	•	
10101	Reserved	•	•	•	•	•	
10100	Reserved	•	•	•	•	•	
10011	DT	•	•	•	•	•	
10010	TX/CK	•	•	•	•	•	
10001	SDO/SDA ⁽¹⁾	•	•	•	•	•	
10000	SCK/SCL ⁽¹⁾	•	•	•	•	•	
01111	PWM4_out	•	•	•	•	•	
01110	PWM3_out	•	•	•	•	•	
01101	CCP2_out	•	•	•	•	•	
01100	CCP1_out	•	•	•	•	•	
01011	CWG1OUTD ⁽¹⁾	•	•	•	•	•	
01010	CWG1OUTC ⁽¹⁾	•	•	•	•	•	
01001	CWG1OUTB ⁽¹⁾	•	•	٠	•	•	
01000	CWG1OUTA ⁽¹⁾	•	•	•	•	•	
00111	LC4_out	•	•	•	•	•	
00110	LC3_out	•	•	•	•	•	
00101	LC2_out	•	•	•	•	•	
00100	LC1_out	•	•	•	•	•	
00011	ZCD1_out	•	•	•	•	•	
00010	sync_C2OUT	•	•	•	•	•	
00001	sync_C1OUT	•	•	•	•	•	
00000	LATxy	•	•	•	•	•	

TABLE 13-2: AV	AILABLE PORTS FOR OUTPUT BY PERIPHERAL ⁽²⁾
----------------	---


Note 1: TRIS control is overridden by the peripheral as required.

2: Unsupported peripherals will output a '0'.

24.6.2 CLOCK ARBITRATION

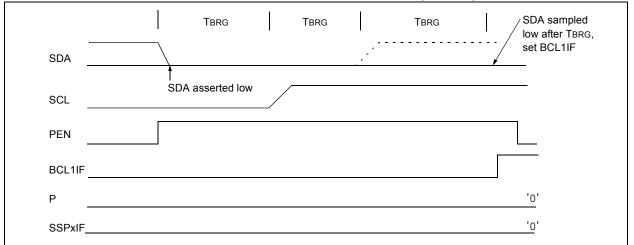
Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 24-25).

FIGURE 24-25: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

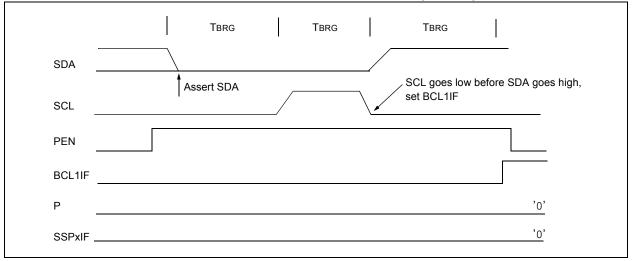
24.6.3 WCOL STATUS FLAG

If the user writes the SSPxBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPxBUF was attempted while the module was not idle.

Note:	Because queuing of events is not allowed, writing to the lower five bits of SSPxCON2										
	is disabled until the Start condition is complete.										


24.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:


- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out (Case 1).
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high (Case 2).

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPxADD and counts down to zero. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 24-38). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 24-39).

FIGURE 24-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 24-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
ACKTIM ⁽³⁾	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN				
bit 7							bit				
Legend:											
R = Readable		W = Writable		-	mented bit, read						
u = Bit is unch	0	x = Bit is unk		-n/n = Value	at POR and BO	R/Value at all c	other Resets				
'1' = Bit is set		'0' = Bit is cle	ared								
bit 7	ACKTIM: Act	knowledge Tim	e Status bit (l ²	² C mode only)	(3)						
					e, set on eighth	falling edge of	SCL clock				
	0 = Not an Ad	cknowledge se	quence, cleare	ed on 9 th rising	edge of SCL c	lock					
bit 6		ondition Interru	•	•	y)						
		terrupt on dete									
L:1 C	•	ection interrupts									
bit 5				•							
	 Enable interrupt on detection of Start or Restart conditions Start detection interrupts are disabled⁽²⁾ 										
bit 4		r Overwrite En									
	In SPI Slave	<u>mode:</u> (1)									
	1 = SSP1BUF updates every time that a new data byte is shifted in ignoring the BF bit										
	0 = If new byte is received with BF bit of the SSP1STAT register already set, SSPOV bit of th SSP1CON1 register is set, and the buffer is not updated										
		mode and SP			upualeu						
	This bit is	s ignored.		_							
	In $\frac{I = C Slave mode:}{1 = SSP1BUF}$ is updated and \overline{ACK} is generated for a received address/data byte, ignoring the										
		of the SSPOV			or a received ad	dress/data byte	e, ignoring ti				
		1BUF is only u			ır						
bit 3	SDAHT: SDA	Hold Time Se	lection bit (I ² C	mode only)							
		of 300 ns hold									
		of 100 ns hold									
bit 2				•	C Slave mode o	•					
		ng edge of SC the PIR2 regis			en the module is	s outputting a l	nigh state, th				
	1 = Enable sl	ave bus collisi	on interrupts								
		s collision inter	-								
bit 1		ess Hold Enabl	•	• /							
					ching received	address byte; (CKP bit of the				
		DN1 register wi holding is disal		nd the SCL WI	li de neid low.						
bit 0		Hold Enable bi		ode only)							
			•	• ·	ed data byte; sla	ave hardware c	lears the CK				
		SSP1CON1 r									
	0 = Data hold	ling is disabled									
Note 1: For	r daisy-chained	SPI operation:	allows the use	er to ignore all	but the last rece	eived byte. SSP	OV is still se				
wh	en a new byte is				ues to write the						
	P1BUF.										
2: Th	is bit has no effe	ect in Slave mo	odes that Start	and Stop cond	dition detection	is explicitly liste	ed as enable				

REGISTER 24-4: SSP1CON3: SSP CONTROL REGISTER 3

3: The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is set.

27.1.5 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 27-4.

EQUATION 27-4: PWM RESOLUTION

Resolution = $\frac{\log[4(PR2 + 1)]}{\log(2)}$ bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 27-1:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	0.31 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

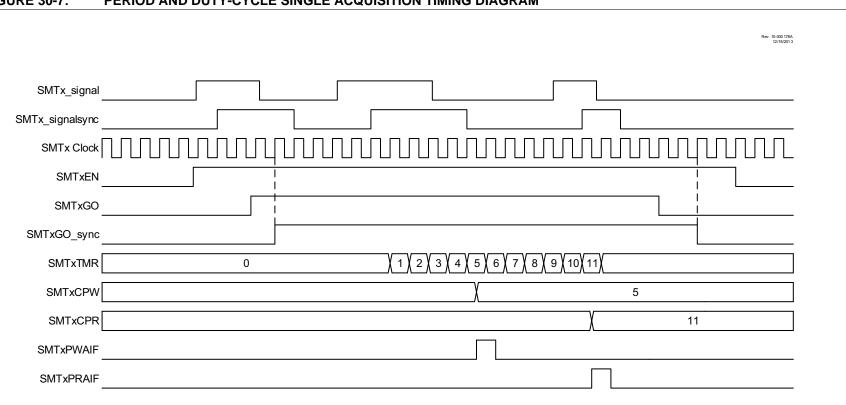
TABLE 27-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	0.31 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

27.1.6 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

27.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY


The PWM frequency is derived from the system clock frequency (Fosc). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to **Section 5.0 "Oscillator Module"** for additional details.

27.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWM registers to their Reset states.

30.6.2 GATED TIMER MODE

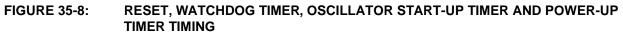
Gated Timer mode uses the SMTSIGx input to control whether or not the SMTxTMR will increment. Upon a falling edge of the external signal, the SMTxCPW register will update to the current value of the SMTxTMR. Example waveforms for both repeated and single acquisitions are provided in Figure 30-4 and Figure 30-5.

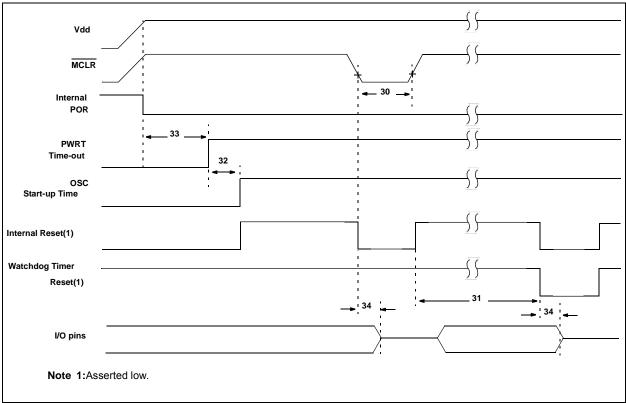
FIGURE 30-7: PERIOD AND DUTY-CYCLE SINGLE ACQUISITION TIMING DIAGRAM

REGISTER 30-4: SMTxCLK: SMT CLOCK SELECTION REGISTER

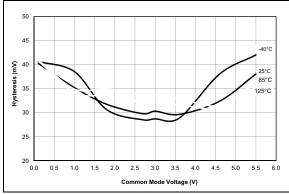
U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
_		—		_		CSEL<2:0>		
bit 7				·			bit 0	
Legend:								
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown		nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set '0' = Bit is cleared			ared	q = Value depends on condition				
bit 7-3	Unimplemen	Unimplemented: Read as '0'						
bit 2-0	CSEL<2:0>: SMT Clock Selection bits							
	111 = Reser	ved						
110 = AT1_perclk								
	101 = MFINT	TOSC						
	100 = MFINT	OSC/16						
	011 = LFINT	OSC						

010 = HFINTOSC 16 MHz

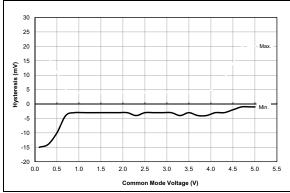

001 = Fosc/4

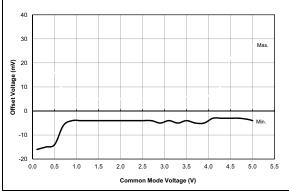

000 = Fosc

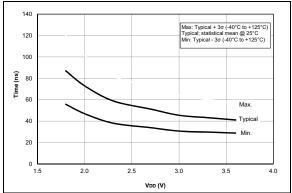
35.2 Standard Operating Conditions

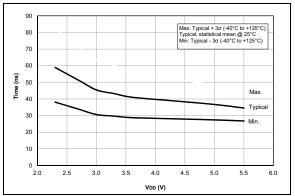

The standard operating conditions for any device are defined as: $V \text{DDMIN} \leq V \text{DD} \leq V \text{DDMAX}$ Operating Voltage: Operating Temperature: TA MIN \leq TA \leq TA MAX VDD — Operating Supply Voltage⁽¹⁾ PIC16LF1615/9 PIC16F1615/9 TA — Operating Ambient Temperature Range Industrial Temperature TA MIN.....--40°C **Extended Temperature** Ta MIN.....--40°C

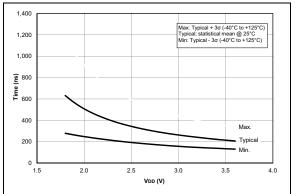
Note 1: See Parameter D001, DS Characteristics: Supply Voltage.




Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.


FIGURE 36-91: Comparator Hysteresis, NP Mode (CxSP = 1), VDD = 5.5V, Typical Measured Values, PIC16F1615/9 Only.


FIGURE 36-92: Comparator Offset, NP Mode (CxSP = 1), VDD = 5.0V, Typical Measured Values at 25°C, PIC16F1615/9 Only.


FIGURE 36-93: Comparator Offset, NP Mode (CxSP = 1), VDD = 5.5V, Typical Measured Values From -40°C to 125°C, PIC16F1615/9 Only.

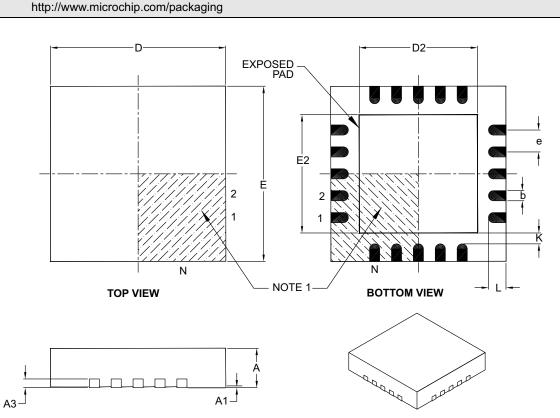

FIGURE 36-94: Comparator Response Time Over Voltage, NP Mode (CxSP = 1), Typical Measured Values, PIC16LF1615/9 Only.

FIGURE 36-95: Comparator Response Time Over Voltage, NP Mode (CxSP = 1), Typical Measured Values, PIC16F1615/9 Only.

FIGURE 36-96: Comparator Output Filter Delay Time Over Temp., NP Mode (CxSP = 1), Typical Measured Values, PIC16LF1615/9 Only.

For the most current package drawings, please see the Microchip Packaging Specification located at

20-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]

Units MILLIMETERS Dimension Limits MIN NOM MAX Number of Pins Ν 20 Pitch 0.50 BSC е **Overall Height** А 0.80 0.90 1.00 Standoff A1 0.00 0.02 0.05 Contact Thickness A3 0.20 REF Overall Width 4.00 BSC Е Exposed Pad Width E2 2.60 2.70 2.80 **Overall Length** D 4.00 BSC Exposed Pad Length D2 2.60 2.70 2.80 Contact Width 0.18 0.25 0.30 b Contact Length L 0.30 0.40 0.50 Contact-to-Exposed Pad Κ 0.20 _ _

Notes:

Note:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-126B