

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1619-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

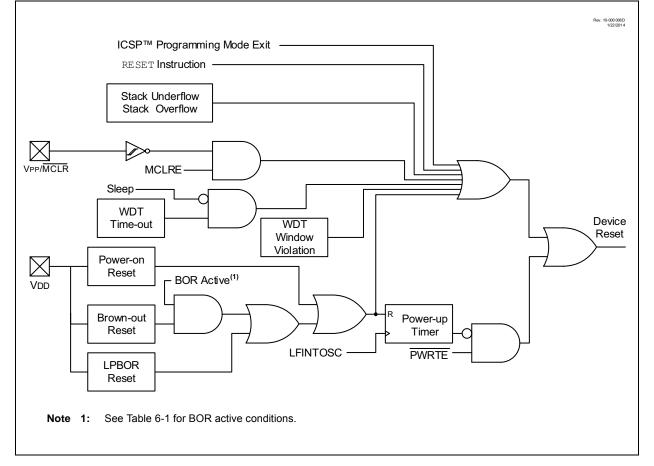
TABLE 3-11:PIC16(L)F1615/9 MEMORYMAP, BANK 30

	•	
		Bank 30
	F0Ch	
	F0Dh	
	F0Eh	
	F0Fh	CLCDATA
	F10h	CLC1CON
	F11h	CLC1POL
	F12h	CLC1SEL0
	F13h	CLC1SEL1
	F14h	CLC1SEL2
	F15h	CLC1SEL3
	F16h	CLC1GLS0
	F17h	CLC1GLS1
	F1711 F18h	CLC1GLS2
		CLC1GLS3
	F19h	CLC2CON
	F1Ah	
	F1Bh	CLC2POL
	F1Ch	CLC2SEL0
	F1Dh	CLC2SEL1
	F1Eh	CLC2SEL2
	F1Fh	CLC2SEL3
	F20h	CLC2GLS0
	F21h	CLC2GLS1
	F22h	CLC2GLS2
	F23h	CLC2GLS3
	F24h	CLC3CON
	F25h	CLC3POL
	F26h	CLC3SEL0
	F27h	CLC3SEL1
	F28h	CLC3SEL2 CLC3SEL3
	F29h F2Ah	CLC3GLS0
	F2An F2Bh	CLC3GLS0
	F2Ch	CLC3GLS1
	F2Dh	CLC3GLS3
	F2Eh	CLC4CON
	F2Fh	CLC4POL
	F30h	CLC4SEL0
	F31h	CLC4SEL1
	F32h	CLC4SEL2
	F33h	CLC4SEL3
	F34h	CLC4GLS0
	F35h	CLC4GLS1
	F36h	CLC4GLS2
	F37h	CLC4GLS3
	F38h	
		—
	F6Fh	
Legend:		Unimplemented data memory locations, ad as '0'.
1		

TABLE 3-12: PIC16(L)F1615/9 MEMORY MAP, BANK 31

	Bank 31					
F8Ch						
	Unimplemented Read as '0'					
FE3h						
FE4h	STATUS_SHAD					
FE5h	WREG_SHAD					
FE6h	BSR_SHAD					
FE7h	PCLATH_SHAD					
FE8h	FSR0L_SHAD					
FE9h	FSR0H_SHAD					
FEAh	FSR1L_SHAD					
FEBh						
FECh						
FEDh	STKPTR					
FEEh	TOSL					
FEFh	TOSH					
Logondu	- Unimplemented data ma	monulopotiono				
Legend:	= Unimplemented data me ead as '0'.	mory locations,				

6.0 RESETS


There are multiple ways to reset this device:

- Power-On Reset (POR)
- Brown-Out Reset (BOR)
- Low-Power Brown-Out Reset (LPBOR)
- MCLR Reset
- WDT Reset
- RESET instruction
- Stack Overflow
- · Stack Underflow
- Programming mode exit

To allow VDD to stabilize, an optional power-up timer can be enabled to extend the Reset time after a BOR or POR event.

A simplified block diagram of the On-chip Reset Circuit is shown in Figure 6-1.

6.13 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-On Reset (POR)
- Brown-Out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)

The PCON register bits are shown in Register 6-2.

6.14 Register Definitions: Power Control

REGISTER 6-2: PCON: POWER CONTROL REGISTER

R/W/HS-0/q	R/W/HS-0/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR
bit 7	•	•					bit 0

Legend:		
HC = Bit is cleared by hard	dware	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	STKOVF : Stack Overflow Flag bit 1 = A Stack Overflow occurred 0 = A Stack Overflow has not occurred or cleared by firmware
bit 6	STKUNF: Stack Underflow Flag bit 1 = A Stack Underflow occurred 0 = A Stack Underflow has not occurred or cleared by firmware
bit 5	 WDTWV: WDT Window Violation Flag bit 1 = A WDT Window Violation Reset has not occurred or set by firmware 0 = A WDT Window Violation Reset has occurred (a CLRWDT instruction was executed either without arming the window or outside the window (cleared by hardware)
bit 4	RWDT : Watchdog Timer Reset Flag bit 1 = A Watchdog Timer Reset has not occurred or set by firmware 0 = A Watchdog Timer Reset has occurred (cleared by hardware)
bit 3	RMCLR : MCLR Reset Flag bit 1 = A MCLR Reset has not occurred or set by firmware 0 = A MCLR Reset has occurred (cleared by hardware)
bit 2	RI: RESET Instruction Flag bit 1 = A RESET instruction has not been executed or set by firmware 0 = A RESET instruction has been executed (cleared by hardware)
bit 1	POR: Power-On Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-Out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs)

9.1 Independent Clock Source

The WDT can derive its time base from either the 31 kHz LFINTOSC or 31.25 kHz MFINTOSC internal oscillators, depending on the value of either the WDTCCS<2:0> configuration bits or the WDTCS<2:0> bits of WDTCON1. Time intervals in this chapter are based on a minimum nominal interval of 1 ms. See **Section35.0 "Electrical Specifications**" for LFINTOSC and MFINTOSC tolerances.

9.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Words. See Table 9-1.

9.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Words are set to '11', the WDT is always on.

WDT protection is active during Sleep.

9.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Words are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

9.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Words are set to '01', the WDT is controlled by the SEN bit of the WDTCON0 register.

WDT protection is unchanged by Sleep. See Table 9-1 for more details.

WDTE<1:0>	SEN	Device Mode	WDT Mode
11	Х	Х	Active
10		Awake	Active
10	Х	Sleep	Disabled
0.1	1	х	Active
01	0	х	Disabled
00	Х	х	Disabled

TABLE 9-1:	WDT OPERATING MODES

9.3 Time-Out Period

The WDTPS bits of the WDTCON0 register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

9.4 Watchdog Window

The Watchdog Timer has an optional Windowed mode that is controlled by the WDTCWS<2:0> Configuration bits and WINDOW<2:0> bits of the WDTCON1 register. In the Windowed mode, the CLRWDT instruction must occur within the allowed window of the WDT period. Any CLRWDT instruction that occurs outside of this window will trigger a window violation and will cause a WDT Reset, similar to a WDT time out. See Figure 9-2 for an example.

The window size is controlled by the WDTCWS<2:0> Configuration bits, or the WINDOW<2:0> bits of WDTCON1, if WDTCWS<2:0> = 111.

In the event of a <u>window</u> violation, a Reset will be generated and the WDTWV bit of the PCON register will be cleared. This bit is set by a POR or can be set in firmware.

9.5 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- Valid CLRWDT instruction is executed
- · Device enters Sleep
- · Device wakes up from Sleep
- · WDT is disabled
- · Oscillator Start-up Timer (OST) is running
- Any write to the WDTCON0 or WDTCON1 registers

9.5.1 CLRWDT CONSIDERATIONS (WINDOWED MODE)

When in Windowed mode, the WDT must be armed before a CLRWDT instruction will clear the timer. This is performed by reading the WDTCON0 register. Executing a CLRWDT instruction without performing such an arming action will trigger a window violation.

See Table 9-2 for more information.

9.6 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting. When the device exits Sleep, the WDT is cleared again.

The WDT remains clear until the OST, if enabled, completes. See **Section5.0** "**Oscillator Module**" for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The \overline{TO} and \overline{PD} bits in the STATUS register are changed to indicate the event. The \overline{RWDT} bit in the PCON register can also be used. See **Section3.0** "Memory **Organization**" for more information.

REGISTER 9-3: WDTPSL: WDT PRESCALE SELECT LOW BYTE REGISTER (READ ONLY)

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
			PSCN	Γ<7:0> ⁽¹⁾			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	ented bit, read as	ʻ0'	
u = Bit is unchange	d	x = Bit is unknown		-n/n = Value at	POR and BOR/V	alue at all other F	Resets

bit 7-0 **PSCNT<7:0>:** Prescale Select Low Byte bits⁽¹⁾

'0' = Bit is cleared

'1' = Bit is set

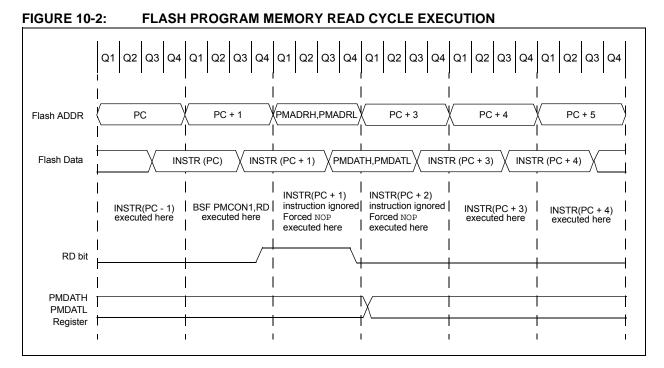
Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

REGISTER 9-4: WDTPSH: WDT PRESCALE SELECT HIGH BYTE REGISTER (READ ONLY)

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
			PSCNT	<15:8> ⁽¹⁾			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	ented bit, read as	ʻ0'	
u = Bit is unchange	ed	x = Bit is unknown		-n/n = Value at	POR and BOR/V	alue at all other Re	sets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 PSCNT<15:8>: Prescale Select High Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.


REGISTER 9-5: WDTTMR: WDT TIMER REGISTER (READ ONLY)

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
WDTTMR<3:0>					STATE	PSCNT<	17:16> (1)
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 WDTTMR<4:0>: Watchdog Timer Value

- bit 2 STATE: WDT Armed Status bit 1 = WDT is armed 0 = WDT is not armed
- bit 1-0 **PSCNT<17:16>**: Prescale Select Upper Byte bits⁽¹⁾
- **Note 1:** The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

EXAMPLE 10-1: FLASH PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
   PROG_ADDR_HI: PROG_ADDR_LO
   data will be returned in the variables;
   PROG_DATA_HI, PROG_DATA_LO
   BANKSEL PMADRL
                             ; Select Bank for PMCON registers
            PROG_ADDR_LO
   MOVLW
                             ;
   MOVWF
            PMADRL
                             ; Store LSB of address
            PROG_ADDR_HI
   MOVLW
                              ;
   MOVWF
            PMADRH
                              ; Store MSB of address
   BCF
            PMCON1,CFGS
                             ; Do not select Configuration Space
   BSF
            PMCON1,RD
                              ; Initiate read
   NOP
                              ; Ignored (Figure 10-2)
   NOP
                              ; Ignored (Figure 10-2)
   MOVF
            PMDATL,W
                              ; Get LSB of word
   MOVWF
            PROG_DATA_LO
                             ; Store in user location
                             ; Get MSB of word
            PMDATH,W
   MOVF
   MOVWF
            PROG_DATA_HI
                             ; Store in user location
```

15.3 Register Definitions: FVR Control

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN ⁽¹⁾	FVRRDY ⁽²⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAFV	′R<1:0> ⁽¹⁾	ADFVR	<1:0> ⁽¹⁾
bit 7			1				bit
Legend:							
R = Readable		W = Writable	bit	•	mented bit, read		
u = Bit is unch	nanged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Value de	pends on condit	ion	
bit 7	1 = Fixed Vo	d Voltage Refe Itage Referenc Itage Referenc	e is enabled	bit ⁽¹⁾			
bit 6	1 = Fixed Vo	ed Voltage Re Itage Referenc Itage Referenc	e output is rea	dy for use	enabled		
bit 5	1 = Tempera	erature Indicate ture Indicator i ture Indicator i	s enabled)			
bit 4	1 = VOUT = V	perature Indica /DD - 4VT (Higł /DD - 2VT (Low	n Range)	lection bit ⁽³⁾			
bit 3-2	11 = Compara 10 = Compara 01 = Compara	ator FVR Buffe	er Gain is 4x, v er Gain is 2x, v er Gain is 1x, v	vith output Vcc vith output Vcc	bits ⁽¹⁾ DAFVR = 4x VFVR DAFVR = 2x VFVR DAFVR = 1x VFVR	₍ (4)	
bit 1-0	11 = ADC FV 10 = ADC FV 01 = ADC FV	: ADC FVR Bu 'R Buffer Gain 'R Buffer Gain 'R Buffer Gain 'R Buffer is off	is 4x, with out is 2x, with out	out VADFVR = 2 out VADFVR = 2	2x V _{FVR} (4)		
	minimize curren the Buffer Gain			R is disabled, t	he FVR buffers	should be turne	ed off by clea
				louiooo			

REGISTER 15-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

- 2: FVRRDY is always '1' for the PIC16LF1615/9 devices.
- 3: See Section16.0 "Temperature Indicator Module" for additional information.
- 4: Fixed Voltage Reference output cannot exceed VDD.

TABLE 15-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFVF	R<1:0>	194

Legend: Shaded cells are unused by the Fixed Voltage Reference module.

When one device is transmitting a logical one, or letting the line float, and a second device is transmitting a logical zero, or holding the line low, the first device can detect that the line is not a logical one. This detection, when used on the SCL line, is called clock stretching. Clock stretching gives slave devices a mechanism to control the flow of data. When this detection is used on the SDA line, it is called arbitration. Arbitration ensures that there is only one master device communicating at any single time.

24.3.1 CLOCK STRETCHING

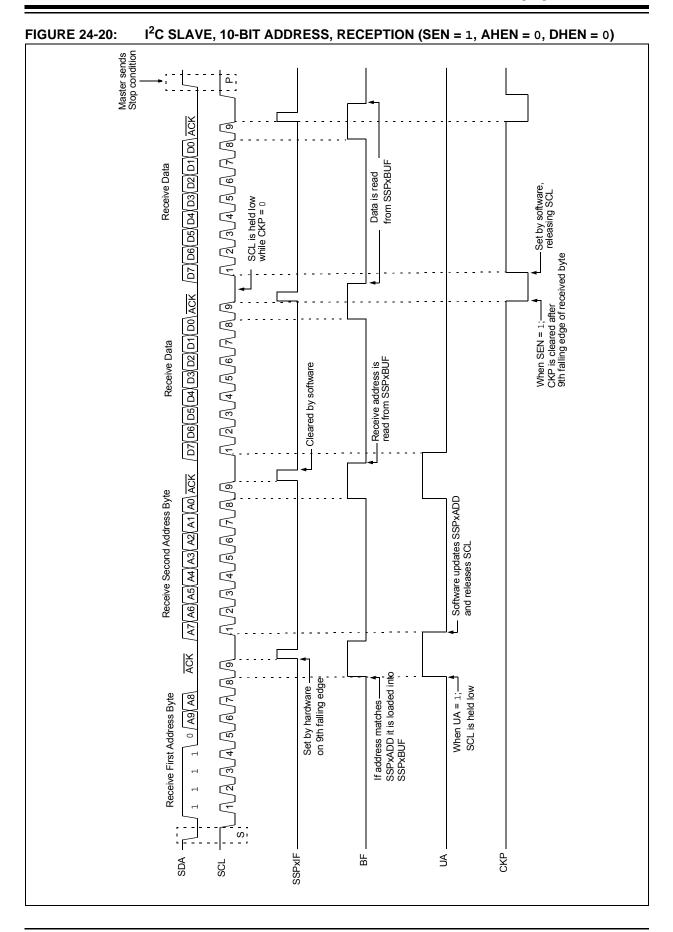
When a slave device has not completed processing data, it can delay the transfer of more data through the process of clock stretching. An addressed slave device may hold the SCL clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The master that is communicating with the slave will attempt to raise the SCL line in order to transfer the next bit, but will detect that the clock line has not yet been released. Because the SCL connection is opendrain, the slave has the ability to hold that line low until it is ready to continue communicating.

Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data.

24.3.2 ARBITRATION

Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDA data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels do not match, loses arbitration, and must stop transmitting on the SDA line.


For example, if one transmitter holds the SDA line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDA line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDA line. If this transmitter is also a master device, it also must stop driving the SCL line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDA line continues with its original transmission. It can do so without any complications, because so far, the transmission appears exactly as expected with no other transmitter disturbing the message.

Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.

If two master devices are sending a message to two different slave devices at the address stage, the master sending the lower slave address always wins arbitration. When two master devices send messages to the same slave address, and addresses can sometimes refer to multiple slaves, the arbitration process must continue into the data stage.

Arbitration usually occurs very rarely, but it is a necessary process for proper multi-master support.

24.6.6 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPxBUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted. SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high. When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKSTAT bit on the rising edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPxIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPxBUF, leaving SCL low and SDA unchanged (Figure 24-28).

After the write to the SSPxBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will release the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSPxCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSPxIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPxBUF takes place, holding SCL low and allowing SDA to float.

24.6.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSPxSTAT register is set when the CPU writes to SSPxBUF and is cleared when all eight bits are shifted out.

24.6.6.2 WCOL Status Flag

If the user writes the SSPxBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

WCOL must be cleared by software before the next transmission.

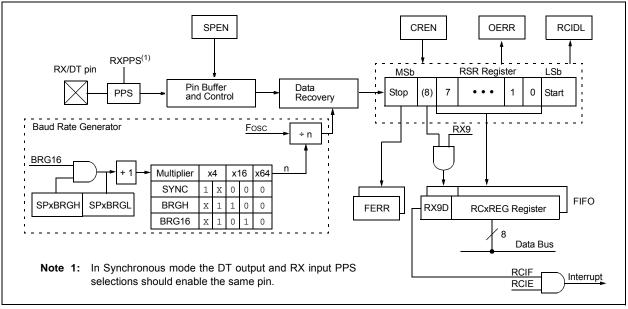
24.6.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPxCON2 register is cleared when the slave has sent an Acknowledge ($\overline{ACK} = 0$) and is set when the slave does not Acknowledge ($\overline{ACK} = 1$). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

24.6.6.4 Typical Transmit Sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. The MSSP module will wait the required start time before any other operation takes place.
- 5. The user loads the SSPxBUF with the slave address to transmit.
- 6. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- 7. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 8. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 9. The user loads the SSPxBUF with eight bits of data.
- 10. Data is shifted out the SDA pin until all eight bits are transmitted.
- 11. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 12. Steps 8-11 are repeated for all transmitted data bytes.
- 13. The user generates a Stop or Restart condition by setting the PEN or RSEN bits of the SSPxCON2 register. Interrupt is generated once the Stop/Restart condition is complete.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:	
ANSELA	_	_	_	ANSA4	_	ANSA2	ANSA1	ANSA0	160	
ANSELB ⁽¹⁾	_	_	ANSB5	ANSB4	_	_	_	—	167	
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	_		ANSC3	ANSC2	ANSC1	ANSC0	174	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	105	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	106	
PIE2	OSFIE	C2IE	C1IE		BCL1IE	TMR6IE	TMR4IE	CCP2IE	107	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	111	
PIR2	OSFIF	C2IF	C1IF	_	BCL1IF	TMR6IF	TMR4IF	CCP2IF	112	
RxyPPS	_	_		RxyPPS<4:0>						
SSPCLKPPS	—	_	_		SS	PCLKPPS<4	:0>		182, 180	
SSPDATPPS	—	_	—		SS	PDATPPS<4	:0>		182, 180	
SSPSSPPS	_	_			S	SPSSPPS<4:)>		182, 180	
SSP1ADD				ADD	<7:0>				318	
SSP1BUF	Synchronous	s Serial Port F	Receive Buffe	r/Transmit Re	egister				270*	
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPN	<3:0>		315	
SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	316	
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	317	
SSP1MSK	MSK<7:0>							318		
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	314	
TRISA	—	—	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	159	
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—	166	
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	173	


Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the MSSP module in I^2C mode.

* Page provides register information.

Note 1: PIC16(L)F1619 only.

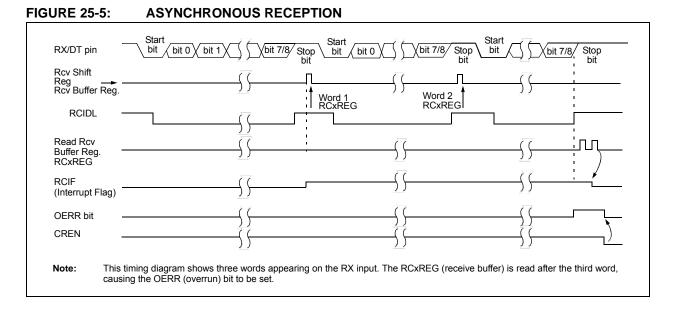
2: Unimplemented, read as '1'.

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXxSTA)
- · Receive Status and Control (RCxSTA)
- Baud Rate Control (BAUDxCON)

These registers are detailed in Register 25-1, Register 25-2 and Register 25-3, respectively.

The RX and CK input pins are selected with the RXPPS and CKPPS registers, respectively. TX, CK, and DT output pins are selected with each pin's RxyPPS register. Since the RX input is coupled with the DT output in Synchronous mode, it is the user's responsibility to select the same pin for both of these functions when operating in Synchronous mode. The EUSART control logic will control the data direction drivers automatically.

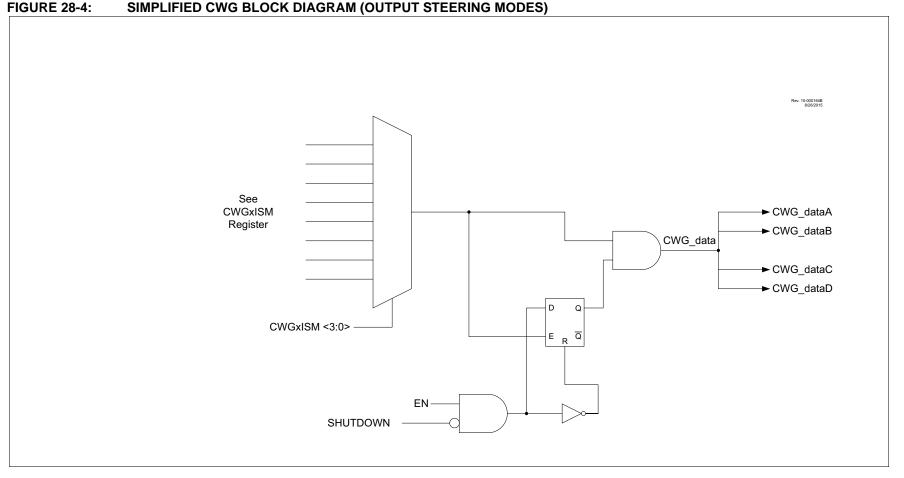

25.1.2.8 Asynchronous Reception Set-up

- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 25.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RCxSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCxREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

25.1.2.9 9-bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 25.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Enable reception by setting the CREN bit.
- 8. The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 9. Read the RCxSTA register to get the error flags. The ninth data bit will always be set.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCxREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.



25.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 5.2.2.3 "Internal Oscillator Frequency Adjustment"** for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 25.4.1 "Auto-Baud Detect"**). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

FIGURE 28-4: SIMPLIFIED CWG BLOCK DIAGRAM (OUTPUT STEERING MODES)

28.2 Clock Source

The CWG module allows the following clock sources to be selected:

- Fosc (system clock)
- HFINTOSC (16 MHz only)

The clock sources are selected using the CS bit of the CWGxCLKCON register.

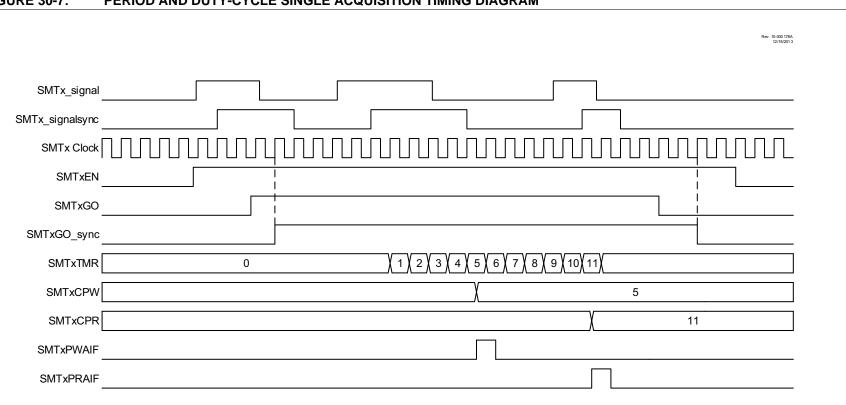
28.3 Selectable Input Sources

The CWG generates the output waveforms from the input sources in Table 28-1.

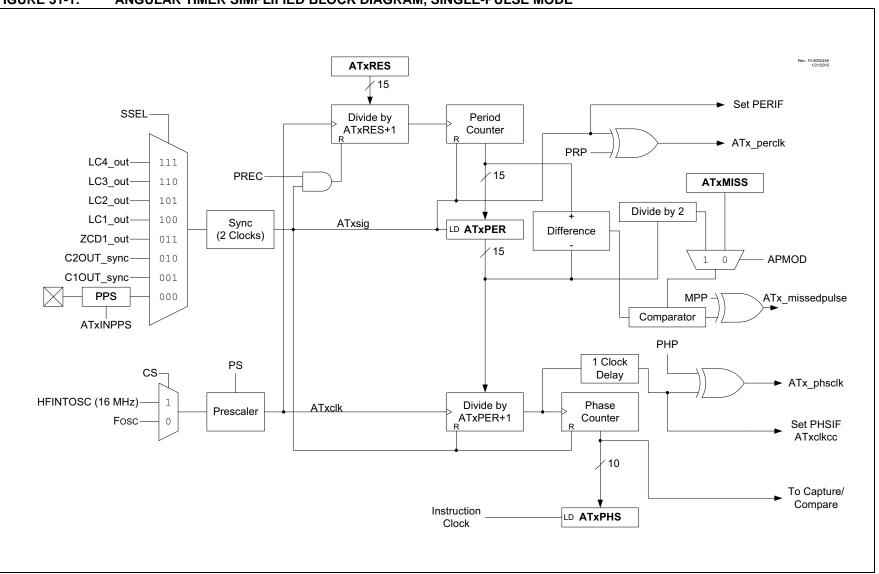
TABLE 28-1: SELECTABLE INPUT SOURCES

Source Peripheral	Signal Name
CWG pin	PPS selection
Comparator C1	C1_OUT_sync
Comparator C2	C2_OUT_sync
CCP1	CCP1_out
CCP2	CCP2_out
CLC1	LC1_out
CLC2	LC2_out
CLC3	LC3_out
CLC4	LC4_out
PWM3	PWM3_out
PWM4	PWM4_out

The input sources are selected using the CWGxISM register.


28.4 Output Control

28.4.1 OUTPUT ENABLES


Each CWG output pin has individual output enable control. Output enables are selected with the Gx1OEx <3:0> bits. When an output enable control is cleared, the module asserts no control over the pin. When an output enable is set, the override value or active PWM waveform is applied to the pin per the port priority selection. The output pin enables are dependent on the module enable bit, EN of the CWGxCON0 register. When EN is cleared, CWG output enables and CWG drive levels have no effect.

28.4.2 POLARITY CONTROL

The polarity of each CWG output can be selected independently. When the output polarity bit is set, the corresponding output is active-high. Clearing the output polarity bit configures the corresponding output as active-low. However, polarity does not affect the override levels. Output polarity is selected with the POLx bits of the CWGxCON1. Auto-shutdown and steering options are unaffected by polarity.

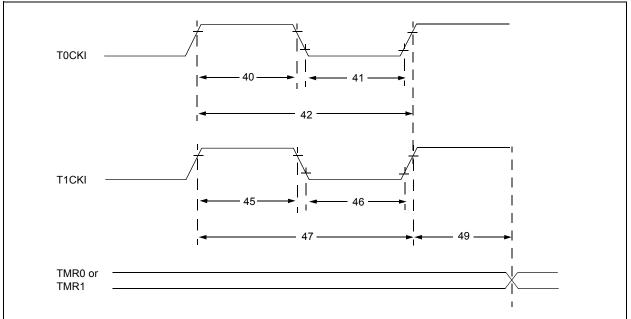
FIGURE 30-7: PERIOD AND DUTY-CYCLE SINGLE ACQUISITION TIMING DIAGRAM

FIGURE 31-1: ANGULAR TIMER SIMPLIFIED BLOCK DIAGRAM, SINGLE-PULSE MODE

PIC16(L)F1615/9

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0			
	—	—	—	—	PHSIE	MISSIE	PERIE			
bit 7							bit 0			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
u = Bit is un	ichanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOF	R/Value at all c	other Resets			
'1' = Bit is set '0' = Bit is cleared				q = Value depends on condition						
bit 7-3	Unimplemen	ted: Read as '	0'							
bit 2	PHSIE: Phas	e Interrupt Ena	ble bit							
	1 = The phas	= The phase interrupt is enabled								
	0 = The phase	se interrupt is d	isabled							
bit 1	MISSIE: Miss	ed Pulse Interr	upt Enable bit	t						
	1 = The miss	1 = The missed pulse interrupt is enabled								
	0 = The miss	ed pulse interr	upt is disabled	ł						
bit 0	PERIE: Perio	d Interrupt Ena	ble bit							
		od interrupt is e								
	0 = The perio	od interrupt is d	isabled							

REGISTER 31-13: ATxIE0: ANGULAR TIMER ENABLE 0 REGISTER


REGISTER 31-14: ATxIR0: ANGULAR TIMER INTERRUPT FLAG 0 REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—	—	PHSIF	MISSIF	PERIF
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-3	Unimplemented: Read as '0'
bit 2	PHSIF: Phase Interrupt Flag bit
	1 = The phase interrupt has occurred
	0 = The phase interrupt has not occurred, or has been cleared
bit 1	MISSIF: Missed Pulse Interrupt Flag bit
	1 = The missed pulse interrupt has occurred
	0 = The missed pulse interrupt has not occurred, or has been cleared
bit 0	PERIF: Period Interrupt Flag bit
	1 = The period interrupt has occurred
	0 = The period interrupt has not occurred, or has been cleared

TABLE 35-12:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
--------------	---

Param. No.	Sym.		Characterist	ic	Min.	Тур†	Max.	Units	Conditions
40* TT0H		TOCKI High Pulse Width No Prescaler			0.5 TCY + 20			ns	
		With Prescaler		10			ns		
41*	T⊤0L	OL TOCKI Low Puls		No Prescaler	0.5 TCY + 20	_		ns	
		With Prescaler		10	_		ns		
42*	TT0P	T0CKI Period	1		Greater of: 20 or <u>Tcy + 40</u> N	_	_	ns	N = prescale value
45* T⊤1H	T⊤1H	T1CKI High Time	Synchronous, No Prescaler		0.5 TCY + 20			ns	
			Synchronous, with Prescaler		15			ns	
			Asynchronous		30			ns	
46*	T⊤1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 TCY + 20	_	_	ns	
			Synchronous, with Prescaler		15	_	_	ns	
			Asynchronous		30			ns	
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value
			Asynchronous		60	_	—	ns	
49*	TCKEZTMR1	Delay from E Increment	ay from External Clock Edge to Timer			_	7 Tosc	—	Timers in Sync mode

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.