E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1619-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA0/AN0/C1IN+/DAC1OUT1/	RA0	TTL/ST	CMOS/OD	General purpose I/O.
ICSPDAT	AN0	AN	—	ADC Channel input.
	C1IN+	AN	_	Comparator positive input.
	DAC1OUT1	_	AN	Digital-to-Analog Converter output.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
RA1/AN1/VREF+/C1IN0-/C2IN0-/	RA1	TTL/ST	CMOS/OD	General purpose I/O.
ICSPCLK	AN1	AN	_	ADC Channel input.
	VREF+	AN	—	Voltage Reference input.
	C1IN0-	AN	—	Comparator negative input.
	C2IN0-	AN	CMOS/OD	Comparator negative input.
	ICSPCLK	ST	—	ICSP Programming Clock.
RA2/AN2/T0CKI ⁽¹⁾ /CWG1IN ⁽¹⁾	RA2	TTL/ST	CMOS/OD	General purpose I/O.
ZCD1IN/INT	AN2	AN	—	ADC Channel input.
	TOCKI	TTL/ST	-	Timer0 clock input.
	CWG1IN	TTL/ST	—	CWG complementary input.
	ZCD1IN	AN	_	Zero-Cross Detect input.
	INT	TTL/ST	-	External interrupt.
RA3/VPP/T6IN ⁽¹⁾ /SMTWIN2 ⁽¹⁾ /	RA3	TTL/ST	—	General purpose input with IOC and WPU.
MCLR	VPP	HV	—	Programming voltage.
	T6IN	TTL/ST	-	Timer6 input.
	SMTWIN2	TTL/ST	—	SMT2 window input.
	MCLR	TTL/ST	—	Master Clear with internal pull-up.
RA4/AN3/T1G ⁽¹⁾ /SMTSIG1 ⁽¹⁾ /	RA4	TTL/ST	CMOS/OD	General purpose I/O.
CLKOUT	AN3	AN	—	ADC Channel input.
	T1G	TTL/ST	—	Timer1 Gate input.
	SMTSIG1	TTL/ST	—	SMT1 signal input.
	CLKOUT	—	CMOS	Fosc/4 output.
RA5/CLKIN/T1CKI ⁽¹⁾ /T2IN ⁽¹⁾ /	RA5	TTL/ST	CMOS/OD	General purpose I/O.
SMTWIN10	CLKIN	CMOS	—	External clock input (EC mode).
	T1CKI	TTL/ST	—	Timer1 clock input.
	T2IN	TTL/ST	—	Timer2 input.
	SMTWIN1	TTL/ST	—	SMT1 window input.
RC0/AN4/C2IN+/T5CKI(1)/	RC0	TTL/ST	CMOS/OD	General purpose I/O.
SCK ⁽¹⁾	AN4	AN	_	ADC Channel input.
	C2IN+	AN	_	Comparator positive input.
	T5CKI	TTL/ST	—	Timer5 clock input.
	SCK	ST	CMOS	SPI clock.

TABLE 1-2: PIC16(L)F1615 PINOUT DESCRIPTION

Legend:AN= Analog input or outputCMOS= CMOS compatible input or outputOD=Open-DrainTTL= TTL compatible inputST=Schmitt Trigger input with CMOS levels I^2C^{TM} =Schmitt Trigger input with I^2C^{TM} HV= High VoltageXTAL=Crystallevels

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 13-1.

TABLE 3-6: PIC16(L)F1615/9 MEMORY MAP, BANK 24-31

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	Core Registers (Table 3-1)	C80h	Core Registers (Table 3-1)	D00h	Core Registers (Table 3-1)	D80h	Core Registers (Table 3-1)	E00h	Core Registers (Table 3-1)	E80h	Core Registers (Table 3-1)	F00h	Core Registers (Table 3-1)	F80h	Core Registers (Table 3-1)
C0Bh		C8Bh		D0Bh		D8Bh		E0Bh		E8Bh		F0Bh		F8Bh	
COCh	—	C8Ch	_	D0Ch	—	D8Ch		E0Ch		E8Ch		FOCh		F8Ch	
CODh	—	C8Dh	—	D0Dh	—	D8Dh		E0Dh		E8Dh		F0Dh		F8Dh	
C0Eh	_	C8Eh	—	D0Eh	—	D8Eh		E0Eh		E8Eh		F0Eh		F8Eh	
C0Fh	_	C8Fh	—	D0Fh	—	D8Fh		E0Fh		E8Fh		F0Fh		F8Fh	
C10h	_	C90h	—	D10h	—	D90h		E10h		E90h		F10h		F90h	
C11h	_	C91h	—	D11h	—	D91h		E11h		E91h		F11h		F91h	
C12h	_	C92h	_	D12h	_	D92h		E12h		E92h		F12h		F92h	
C13h	_	C93h	_	D13h	_	D93h		E13h		E93h		F13h		F93h	
C14h	_	C94h	_	D14h	_	D94h		E14h		E94h		F14h		F94h	
C15h	_	C95h	_	D15h	_	D95h		E15h		E95h		F15h		F95h	
C16h	—	C96h	—	D16h	—	D96h		E16h		E96h		F16h		F96h	
C17h	—	C97h	—	D17h	—	D97h	See Table 3-7 for	E17h	See Table 3-8 for	E97h	See Table 3-9	F17h	See Table 3-12	F97h	See Table 3-12
C18h	—	C98h	—	D18h	—	D98h	register mapping	E18h	register mapping	E98h	and Table 3-10	F18h	for register map-	F98h	for register map-
C19h	_	C99h	—	D19h	_	D99h	details	E19h	details	E99h	tor register	F19h	ping details	F99h	ping details
C1Ah	_	C9Ah	—	D1Ah		D9Ah		E1Ah		E9Ah	mapping details	F1Ah		F9Ah	
C1Bh	_	C9Bh	—	D1Bh	—	D9Bh		E1Bh		E9Bh		F1Bh		F9Bh	
C1Ch	_	C9Ch	—	D1Ch	_	D9Ch		E1Ch		E9Ch		F1Ch		F9Ch	
C1Dh	_	C9Dh	—	D1Dh	_	D9Dh		E1Dh		E9Dh		F1Dh		F9Dh	
C1Eh	_	C9Eh	—	D1Eh	_	D9Eh		E1Eh		E9Eh		F1Eh		F9Eh	
C1Fh	—	C9Fh	—	D1Fh	_	D9Fh		E1Fh		E9Fh		F1Fh		F9Fh	
C20h		CA0h		D20h		DA0h		E20h		EA0h		F20h		FA0h	
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'										
C6Fh		CEFh		D6Fh		DEFh		E6Fh		EEFh		F6Fh		FEFh	
C70h		CF0h		D70h		DF0h		E70h		EF0h		F70h		FF0h	
	Accesses 70h – 7Fh														
CFFh		CFFh		D7Fh		DFFh		E7Fh		EFFh		F7Fh		FFFh	

Legend: = Unimplemented data memory locations, read as '0'.

PIC16(L)F1615/9

10.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit RD of the PMCON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

Note:	The two instructions following a program			
	memory read are required to be NOPS.			
	This prevents the user from executing a 2-			
	cycle instruction on the next instruction			
	after the RD bit is set.			

FIGURE 10-1:

FLASH PROGRAM MEMORY READ FLOWCHART

REGISTER 11-3: CRCDATH: CRC DATA HIGH BYTE REGISTER

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			DAT	<15:8>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	,	
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at F	POR and BOR/Valu	ue at all other Reset	ts
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 DAT<15:8>: CRC Input/Output Data bits

REGISTER 11-4: CRCDATL: CRC DATA LOW BYTE REGISTER

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			DAT	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0		
u = Bit is unchanged	ł	x = Bit is unknow	n	-n/n = Value at F	POR and BOR/Valu	e at all other Res	ets

bit 7-0

'1' = Bit is set

DAT<7:0>: CRC Input/Output Data bits Writing to this register fills the shifter.

'0' = Bit is cleared

REGISTER 11-5: CRCACCH: CRC ACCUMULATOR HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ACC	<15:8>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	3	
u = Bit is unchang	ed	x = Bit is unknow	n	-n/n = Value at F	POR and BOR/Valu	ue at all other Res	ets
'1' = Bit is set		'0' = Bit is cleared	1				

bit 7-0 ACC<15:8>: CRC Accumulator Register bits

Writing to this register writes to the CRC accumulator register. Reading from this register reads the CRC accumulator.

REGISTER 11-6: CRCACCL: CRC ACCUMULATOR LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ACC	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0)'	
u = Bit is unchang	led	x = Bit is unknown		-n/n = Value at I	POR and BOR/Val	ue at all other Res	ets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0

ACC<7:0>: CRC Accumulator Register bits Writing to this register writes to the CRC accumulator register through the CRC write bus. Reading from this register reads the CRC accumulator.

REGISTER 11-7: CRCSHIFTH: CRC SHIFT HIGH BYTE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			SHIF	T<15:8>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemer	nted bit, read as '0		
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at F	OR and BOR/Valu	e at all other Res	ets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 SHIFT<15:8>: CRC Shifter Register bits Reading from this register reads the CRC Shifter.

REGISTER 11-8: CRCSHIFTL: CRC SHIFT LOW BYTE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			SHIF	T<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemer	nted bit, read as '0	,	
u = Bit is unchang	ed	x = Bit is unknown		-n/n = Value at F	OR and BOR/Valu	ue at all other Resets	6
'1' = Bit is set		'0' = Bit is cleared					
bit 7-0	SHIFT<7:0>:	CRC Shifter Register bi	ts				

Reading from this register reads the CRC Shifter.

REGISTER 11-9: CRCXORH: CRC XOR HIGH BYTE REGISTER

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			XOR	<15:8>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemer	nted bit, read as '0'		

-n/n = Value at POR and BOR/Value at all other Resets

'1' = Bit is set	'0' = Bit is cleared

x = Bit is unknown

bit 7-0 XOR<15:8>: XOR of Polynomial Term X_N Enable bits

REGISTER 11-10: CRCXORL: CRC XOR LOW BYTE REGISTER

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	U-0
			XOR<7:1>				—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1 XOR<7:1>: XOR of Polynomial Term XN Enable bits

bit 0 Unimplemented: Read as '0'

u = Bit is unchanged

12.3.7 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other functions are selected with the peripheral pin select logic. See **Section13.0** "**Peripheral Pin Select (PPS) Module**" for more information. Analog input functions, such as ADC inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELB register. Digital output functions continue to may continue to control the pin when it is in Analog mode.

15.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference (FVR) is a stable voltage reference, independent of VDD, with a nominal output level (VFVR) of 1.024V. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- Comparator positive input
- · Comparator negative input

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

15.1 Independent Gain Amplifier

The output of the FVR supplied to the peripherals, (listed above), is routed through a programmable gain amplifier. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section17.0 "Analog-to-Digital Converter** (ADC) Module" for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the comparator modules. Reference **Section19.0 "Comparator Module"** for additional information.

To minimize current consumption when the FVR is disabled, the FVR buffers should be turned off by clearing the Buffer Gain Selection bits.

15.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See Figure 36-64: FVR Stabilization Period, PIC16LF1614/8 Only.

FIGURE 15-1: VOLTAGE REFERENCE BLOCK DIAGRAM

ADC Clock Period (TAD)		Device Frequency (Fosc)								
ADC Clock Source	ADCS<2:0 >	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz				
Fosc/2	000	100 ns	125 ns	250 ns	500 ns	2.0 μs				
Fosc/4	100	200 ns	250 ns	500 ns	1.0 μs	4.0 μs				
Fosc/8	001	400 ns	500 ns	1.0 μs	2.0 μs	8.0 μs				
Fosc/16	101	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs				
Fosc/32	010	1.6 μs	2.0 μs	4.0 μs	8.0 μs	32.0 μs				
Fosc/64	110	3.2 μs	4.0 μs	8.0 μs	16.0 μs	64.0 μs				
FRC	x11	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs				

TABLE 17-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

Legend: Shaded cells are outside of recommended range.

Note 1: The FRC source has a typical TAD time of 1.7 ms.

- **2:** When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the conversion will be performed during Sleep.
- 3: The TAD period when using the FRC clock source can fall within a specified range, (see TAD parameter). The TAD period when using the FOSC-based clock source can be configured for a more precise TAD period. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 17-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

FIGURE 19-2: COMPARATOR MODULE SIMPLIFIED BLOCK DIAGRAM

24.2.6 SPI OPERATION IN SLEEP MODE

In SPI Master mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted.

Special care must be taken by the user when the MSSP clock is much faster than the system clock.

In Slave mode, when MSSP interrupts are enabled, after the master completes sending data, an MSSP interrupt will wake the controller from Sleep.

If an exit from Sleep mode is not desired, MSSP interrupts should be disabled.

In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/ reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	160
ANSELC	ANSC7 ⁽²⁾	ANSC6 ⁽²⁾	_		ANSC3	ANSC2	ANSC1	ANSC0	174
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	105
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	106
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	111
RxyPPS	—	—	—		180				
SSPCLKPPS	—	—	—		SS	PCLKPPS<4	:0>		182, 180
SSPDATPPS	—	—	—		SS	PDATPPS<4	:0>		182, 180
SSPSSPPS	—	—	—		S	SPSSPPS<4:)>		182, 180
SSP1BUF	Synchronous	s Serial Port F	Receive Buffe	r/Transmit Re	egister				270*
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	I<3:0>		315
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	314
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	314
TRISA	_	_	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	159
TRISB ⁽²⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	—	—	—	166
TRISC	TRISC7 ⁽²⁾	TRISC6 ⁽²⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	173

TABLE 24-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSP in SPI mode. * Page provides register information.

Note 1: Unimplemented, read as '1'.

2: PIC16(L)F1619 only.

PIC16(L)F1615/9

25.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 5.2.2.3 "Internal Oscillator Frequency Adjustment"** for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 25.4.1 "Auto-Baud Detect"**). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

TABLE 25-9:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
ANSELA	_	_	_	ANSA4	-	ANSA2	ANSA1	ANSA0	160	
ANSELB ⁽¹⁾	_	_	ANSB5	ANSB4	_	_	_	_	167	
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	_	_	ANSC3	ANSC2	ANSC1	ANSC0	174	
BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16		WUE	ABDEN	331	
CKPPS	—	—	—		CKPPS<4:0>					
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	105	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	106	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	111	
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	330	
RXPPS	_	_	_			RXPPS<4:0>			182, 180	
RxyPPS	_	_	_		F	RxyPPS<4:0	>		180	
TRISA	_	_	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	159	
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	_	_	_	166	
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	173	
TX1REG			EUS	ART Transm	it Data Regis	ster			321*	
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	329	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous slave transmission. * Page provides register information.

Note 1: PIC16(L)F1619 only.

2: Unimplemented, read as '1'.

SIMPLIFIED CWG BLOCK DIAGRAM (HALF-BRIDGE MODE)

PIC16(L)F1615/9

TABLE 28-2:	SUMMARY OF REGISTERS ASSOCIATED WITH CW
IADLE ZO-Z.	JUIVIIVIANT OF REGISTERS ASSOCIATED WITH CW

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CWG1AS0	SHUTDOWN	REN	LSBD	<1:0>	LSAC<1:0>		_	_	391
CWG1AS1	—	TMR6AS	TMR4AS	TMR2AS	_	C2AS	C1AS	INAS	392
CWG1CLKCON	—	_	_	_	_	_	_	CS	394
CWG1CON0	EN	LD	_	_	_	MODE<2:0>			393
CWG1CON1	—	_	IN	_	POLD	POLC	POLB	POLA	389
CWG1DBF	_				DBF	<5:0>			390
CWG1DBR	—	_		DBR<5:0>					
CWG1ISM	—	_	— — IS<3:0>					394	
CWG10C0N0	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	393

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by CWG.

FIGURE 30-17: CAPTURE MODE SINGLE ACQUISITION TIMING DIAGRAM

PIC16(L)F1615/9

REGISTER 30-2: SMTxCON1: SMT CONTROL REGISTER 1

R/W/HC-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
SMTxGO	REPEAT	—			MODE	<3:0>		
bit 7							bit 0	
Legend:								
HC = Bit is cle	ared by hardwa	are		HS = Bit is se	et by hardware			
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'		
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	pends on condit	ion		
bit 6 bit 5-4	 1 = Incrementing, acquiring data is enabled 0 = Incrementing, acquiring data is disabled REPEAT: SMT Repeat Acquisition Enable bit 1 = Repeat Data Acquisition mode is enabled 0 = Single Acquisition mode is enabled Unimplemented: Read as '0' 							
bit 3-0	MODE<3:0> 3 1111 = Reset 1011 = Reset 1010 = Winde 1001 = Gatee 1000 = Count 0111 = Captu 0110 = Time 0101 = Gatee 0100 = Winde 0101 = High a 0010 = Perior 0001 = Gatee 0000 = Timer	SMT Operation rved bwed counter d counter ter ure of flight d windowed me bwed measure and low time m d and Duty-Cyo d Timer	a Mode Select easure leasurement cle Acquisition	bits				

REGISTER 31-16: ATXIR1: ANGULAR TIMER INTERRUPT FLAG 1 REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0				
_	—	—	—	_	CC3IF	CC2IF	CC1IF				
bit 7					•		bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets				
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on conditi	ion					
bit 7-3	Unimplemen	ted: Read as '	0'								
bit 2	CC3IF: Captu	ure/Compare In	terrupt 3 Flag	bit							
	If CC3MODE	<u>= 1 (Capture)</u>	<u>- 1 (Capture)</u>								
	1 = Capture interrupt 3 has occurred; captured phase value is in ATxCC3										
	0 = Gapture interrupt 5 has not occurred, of has been clearedIf CC3MODE = 0 (Compare)										
	1 = Compare	1 = Compare interrupt 3 has occurred									
	0 = Compare	e interrupt 3 has	s not occurred	, or has been	cleared						
bit 1	CC2IF: Capture/Compare Interrupt 2 Flag bit										
	If CC2MODE	If CC2MODE = 1 (Capture)									
	1 = Capture	interrupt 2 has	occurred; cap	tured phase va	alue is in ATXCC	;2					
	If CC2MODE	= 0 (Compare)		or has been c	leareu						
	$\frac{1}{1} = Compare interrupt 2 has occurred$										

0 = Compare interrupt 2 has not occurred, or has been cleared

bit 0 CC1IF: Capture/Compare Interrupt 1 Flag bit

If CC1MODE = 1 (Capture)

- 1 = Capture interrupt 1 has occurred; captured phase value is in ATxCC1
- 0 = Capture interrupt 1 has not occurred, or has been cleared

If CC1MODE = 0 (Compare)

- 1 = Compare interrupt 1 has occurred
- 0 = Compare interrupt 1 has not occurred, or has been cleared

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 36-68: VREGPM = 0.

FIGURE 36-69 VREGPM = 1.

FIGURE 36-70: FVR Stabilization Period, PIC16LF1615/9 Only.

FIGURE 36-71: ADC 10-bit Mode, Single-Ended DNL, VDD = 3.0V, $TAD = 1 \ \mu$ S, 25°C.

FIGURE 36-72: ADC 10-bit Mode, Single-Ended DNL, VDD = 3.0V, TAD = 4μ S, 25° C.

37.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
 - MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
- MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

37.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window

Project-Based Workspaces:

- · Multiple projects
- · Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- · Built-in support for Bugzilla issue tracker