
Microchip Technology - ATMEGA16M1-15AD Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity CANbus, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT

Number of I/O -

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 11x10b; D/A 1x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 150°C (TA)

Mounting Type Surface Mount

Package / Case 32-TQFP

Supplier Device Package 32-TQFP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega16m1-15ad

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega16m1-15ad-4433619
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVR’s, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.

The I/O and peripherals control registers are explained in later sections.

4.5 General Purpose I/O Registers

The Atmel® ATmega16/32/64/M1/C1 contains four general purpose I/O registers. These registers can be used for storing
any information, and they are particularly useful for storing global variables and status flags.

The general purpose I/O registers, within the address range 0x00 - 0x1F, are directly bit-accessible using the SBI, CBI,
SBIS, and SBIC instructions.

4.5.1 General Purpose I/O Register 0 – GPIOR0

4.5.2 General Purpose I/O Register 1 – GPIOR1

4.5.3 General Purpose I/O Register 2 – GPIOR2

Bit 7 6 5 4 3 2 1 0

GPIOR07 GPIOR06 GPIOR05 GPIOR04 GPIOR03 GPIOR02 GPIOR01 GPIOR00 GPIOR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

GPIOR17 GPIOR16 GPIOR15 GPIOR14 GPIOR13 GPIOR12 GPIOR11 GPIOR10 GPIOR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

GPIOR27 GPIOR26 GPIOR25 GPIOR24 GPIOR23 GPIOR22 GPIOR21 GPIOR20 GPIOR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

24

Therefore it is recommended not to take the OSCCAL adjustments to a higher frequency than 8MHz in order to keep the PLL
in the correct operating range.

The internal PLL is enabled only when the PLLE bit in the register PLLCSR is set. The bit PLOCK from the register PLLCSR
is set when PLL is locked.

Both internal 8MHz RC Oscillator, Crystal Oscillator and PLL are switched off in Power-down and Standby sleep
modes.01/15

Figure 5-3. PLL Clocking System

Table 5-7. Start-up Times when the PLL is selected as system clock

CKSEL3..0 SUT1..0
Start-up Time from Power-down and

Power-save
Additional Delay from Reset

(VCC = 5.0V)

0011

RC Osc

00 1K CK 14CK

01 1K CK 14CK + 4ms

10 1K CK 14CK + 64ms

11 16K CK 14CK

0101

Ext Osc

00 1K CK 14CK

01 1K CK 14CK + 4ms

10 16K CK 14CK + 4ms

11 16K CK 14CK + 64ms

0001

Ext Clk

00 6 CK(1) 14CK

01 6 CK(1) 14CK + 4ms

10 6 CK(1) 14CK + 64ms

11 Reserved

Note: 1. This value do not provide a proper restart; do not use PD in this clock scheme.

RC Oscillator
8MHz

Divide
by 8

PLL
64x

Divide
by 2

Divide
by 4

Oscillators
XTAL1

OSCCAL PLLE

PLOCK

CLKPLL

CKSOURCE

PLLFCKSEL3..0

XTAL2

Lock
Detector
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

30

9.3.5 Alternate Functions of Port E

The Port E pins with alternate functions are shown in Table 9-12.

Note: On the engineering samples (Parts marked AT90PWM324), the ACMPN3 alternate function is not located on
PC4. It is located on PE2.

The alternate pin configuration is as follows:

• PCINT26/XTAL2/ADC0 – Bit 2

XTAL2: Chip clock oscillator pin 2. Used as clock pin for crystal oscillator or low-frequency crystal oscillator. When used as a
clock pin, the pin can not be used as an I/O pin.

ADC0, analog to digital converter, input channel 0.

PCINT26, pin change interrupt 26.

• PCINT25/XTAL1/OC0B – Bit 1

XTAL1: Chip clock oscillator pin 1. Used for all chip clock sources except internal calibrated RC oscillator. When used as a
clock pin, the pin can not be used as an I/O pin.

OC0B, output compare Match B output: This pin can serve as an external output for the Timer/Counter0 output compare B.
The pin has to be configured as an output (DDE1 set “one”) to serve this function. This pin is also the output pin for the PWM
mode timer function.

PCINT25, pin change interrupt 25.

• PCINT24/RESET/OCD – Bit 0

RESET, reset pin: When the RSTDISBL Fuse is programmed, this pin functions as a normal I/O pin, and the part will have to
rely on power-on reset and brown-out reset as its reset sources. When the RSTDISBL Fuse is unprogrammed, the reset
circuitry is connected to the pin, and the pin can not be used as an I/O pin.

If PE0 is used as a reset pin, DDE0, PORTE0 and PINE0 will all read 0.

PCINT24, pin change interrupt 24.

Table 9-12. Port E Pins Alternate Functions

Port Pin Alternate Function

PE2

XTAL2 (XTAL Output)

ADC0 (Analog Input Channel 0)

PCINT26 (Pin Change Interrupt 26)

PE1

XTAL1 (XTAL Input)

OC0B (Timer 0 Output Compare B)

PCINT25 (Pin Change Interrupt 25)

PE0

RESET# (Reset Input)

OCD (On Chip Debug I/O)

PCINT24 (Pin Change Interrupt 24)
67ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

10.2.4 Pin Change Interrupt Flag Register - PCIFR

• Bit 7..4 - Res: Reserved Bits

These bits are unused bits in the ATmega16/32/64/M1/C1, and will always read as zero.

• Bit 3 - PCIF3: Pin Change Interrupt Flag 3

When a logic change on any PCINT26..24 pin triggers an interrupt request, PCIF3 becomes set (one). If the I-bit in SREG
and the PCIE3 bit in PCICR are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

• Bit 2 - PCIF2: Pin Change Interrupt Flag 2

When a logic change on any PCINT23..16 pin triggers an interrupt request, PCIF2 becomes set (one). If the I-bit in SREG
and the PCIE2 bit in PCICR are set (one), the MCU will jump to the corresponding Interrupt vector. The flag is cleared when
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

• Bit 1 - PCIF1: Pin Change Interrupt Flag 1

When a logic change on any PCINT15..8 pin triggers an interrupt request, PCIF1 becomes set (one). If the I-bit in SREG and
the PCIE1 bit in PCICR are set (one), the MCU will jump to the corresponding Interrupt vector. The flag is cleared when the
interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

• Bit 0 - PCIF0: Pin Change Interrupt Flag 0

When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIF0 becomes set (one). If the I-bit in SREG and
the PCIE0 bit in PCICR are set (one), the MCU will jump to the corresponding Interrupt vector. The flag is cleared when the
interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

10.2.5 Pin Change Mask Register 3 – PCMSK3

• Bit 7..3 – Res: Reserved Bit

These bits are unused bits in the ATmega16/32/64/M1/C1, and will always read as zero.

• Bit 2..0 – PCINT26..24: Pin Change Enable Mask 26..24

Each PCINT26..24-bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT26..24 is set
and the PCIE3 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT23..24 is cleared,
pin change interrupt on the corresponding I/O pin is disabled.

10.2.6 Pin Change Mask Register 2 – PCMSK2

• Bit 7..0 – PCINT23..16: Pin Change Enable Mask 23..16

Each PCINT23..16-bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT23..16 is set
and the PCIE2 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT23..16 is cleared,
pin change interrupt on the corresponding I/O pin is disabled.

Bit 7 6 5 4 3 2 1 0

– – – – PCIF3 PCIF2 PCIF1 PCIF0 PCIFR

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

- - - - - PCINT26 PCINT25 PCINT24 PCMSK3

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 PCMSK2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
73ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

The OCR0x registers are double buffered when using any of the pulse width modulation (PWM) modes. For the normal and
clear timer on compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes the
update of the OCR0x compare registers to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR0x register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has
access to the OCR0x buffer register, and if double buffering is disabled the CPU will access the OCR0x directly.

12.4.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to the force
output compare (FOC0x) bit. Forcing compare match will not set the OCF0x flag or reload/clear the timer, but the OC0x pin
will be updated as if a real compare match had occurred (the COM0x1:0 bits settings define whether the OC0x pin is set,
cleared or toggled).

12.4.2 Compare Match Blocking by TCNT0 Write

All CPU write operations to the TCNT0 register will block any compare match that occur in the next timer clock cycle, even
when the timer is stopped. This feature allows OCR0x to be initialized to the same value as TCNT0 without triggering an
interrupt when the Timer/Counter clock is enabled.

12.4.3 Using the Output Compare Unit

Since writing TCNT0 in any mode of operation will block all compare matches for one timer clock cycle, there are risks
involved when changing TCNT0 when using the output compare unit, independently of whether the Timer/Counter is running
or not. If the value written to TCNT0 equals the OCR0x value, the compare match will be missed, resulting in incorrect
waveform generation. Similarly, do not write the TCNT0 value equal to BOTTOM when the counter is downcounting.

The setup of the OC0x should be performed before setting the data direction register for the port pin to output. The easiest
way of setting the OC0x value is to use the force output compare (FOC0x) strobe bits in normal mode. The OC0x registers
keep their values even when changing between waveform generation modes.

Be aware that the COM0x1:0 bits are not double buffered together with the compare value. Changing the COM0x1:0 bits will
take effect immediately.

12.5 Compare Match Output Unit

The compare output mode (COM0x1:0) bits have two functions. The waveform generator uses the COM0x1:0 bits for
defining the output compare (OC0x) state at the next compare match. Also, the COM0x1:0 bits control the OC0x pin output
source. Figure 12-4 shows a simplified schematic of the logic affected by the COM0x1:0 bit setting. The I/O registers, I/O
bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control registers (DDR and PORT)
that are affected by the COM0x1:0 bits are shown. When referring to the OC0x state, the reference is for the internal OC0x
register, not the OC0x pin. If a system reset occur, the OC0x register is reset to “0”.
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

80

Table 12-6 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to fast PWM mode.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 12.6.3 “Fast PWM Mode” on page 83 for more details.

Table 12-7 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to phase correct PWM mode.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 12.6.4 “Phase Correct PWM Mode” on page 84 for
more details.

• Bits 3, 2 – Res: Reserved Bits

These bits are reserved bits in the ATmega16/32/64/M1/C1 and will always read as zero.

• Bits 1:0 – WGM01:0: Waveform Generation Mode

Combined with the WGM02 bit found in the TCCR0B register, these bits control the counting sequence of the counter, the
source for maximum (TOP) counter value, and what type of waveform generation to be used, see Table 12-8. Modes of
operation supported by the Timer/Counter unit are: Normal mode (counter), clear timer on compare match (CTC) mode, and
two types of pulse width modulation (PWM) modes (see Section 12.6 “Modes of Operation” on page 81).

Notes: 1. MAX = 0xFF

2. BOTTOM = 0x00

Table 12-6. Compare Output Mode, Fast PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0 Clear OC0B on compare match, set OC0B at TOP

1 1 Set OC0B on compare match, clear OC0B at TOP

Table 12-7. Compare Output Mode, Phase Correct PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0
Clear OC0B on compare match when up-counting. Set OC0B on compare match
when down-counting.

1 1
Set OC0B on compare match when up-counting. Clear OC0B on compare match
when down-counting.

Table 12-8. Waveform Generation Mode Bit Description

Mode WGM02 WGM01 WGM00
Timer/Counter
Mode of Operation TOP

Update of
OCRx at

TOV Flag
Set on(1)(2)

0 0 0 0 Normal 0xFF Immediate MAX

1 0 0 1 PWM, phase correct 0xFF TOP BOTTOM

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM 0xFF TOP MAX

4 1 0 0 Reserved – – –

5 1 0 1 PWM, phase correct OCRA TOP BOTTOM

6 1 1 0 Reserved – – –

7 1 1 1 Fast PWM OCRA TOP TOP
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

88

13.5.1 Input Capture Trigger Source

The trigger sources for the input capture unit are the Input Capture pin (ICP1A and ICP1B).

Be aware that changing trigger source can trigger a capture. The input capture flag must therefore be cleared after the
change.

The Input Capture pin (ICPn) IS sampled using the same technique as for the Tn pin (Figure 11-1 on page 75). The edge
detector is also identical. However, when the noise canceler is enabled, additional logic is inserted before the edge detector,
which increases the delay by four system clock cycles. Note that the input of the noise canceler and edge detector is always
enabled unless the Timer/Counter is set in a Waveform Generation mode that uses ICRn to define TOP.

An input capture can be triggered by software by controlling the port of the ICPn pin.

13.5.2 Noise Canceler

The noise canceler improves noise immunity by using a simple digital filtering scheme. The noise canceler input is monitored
over four samples, and all four must be equal for changing the output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNCn) bit in Timer/Counter Control Register B
(TCCRnB). When enabled the noise canceler introduces additional four system clock cycles of delay from a change applied
to the input, to the update of the ICRn register. The noise canceler uses the system clock and is therefore not affected by the
prescaler.

13.5.3 Using the Input Capture Unit

The main challenge when using the input capture unit is to assign enough processor capacity for handling the incoming
events. The time between two events is critical. If the processor has not read the captured value in the ICRn register before
the next event occurs, the ICRn will be overwritten with a new value. In this case the result of the capture will be incorrect.

When using the input capture interrupt, the ICRn register should be read as early in the interrupt handler routine as possible.
Even though the input capture interrupt has relatively high priority, the maximum interrupt response time is dependent on the
maximum number of clock cycles it takes to handle any of the other interrupt requests.

Using the input capture unit in any mode of operation when the TOP value (resolution) is actively changed during operation,
is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after each capture. Changing the
edge sensing must be done as early as possible after the ICRn register has been read. After a change of the edge, the input
capture flag (ICFn) must be cleared by software (writing a logical one to the I/O bit location). For measuring frequency only,
the clearing of the ICFn flag is not required (if an interrupt handler is used).

13.5.4 Using the Input Capture Unit as TCNT1 Retrigger Input

TCNT1 counts from BOTTOM to TOP. The TOP value can be a fixed value, ICR1, or OCR1A. When enabled the retrigger
input forces to reach the TOP value. It means that ICF1 output is ored with the TOP signal.

13.6 Output Compare Units

The 16-bit comparator continuously compares TCNTn with the Output Compare Register (OCRnx). If TCNT equals OCRnx
the comparator signals a match. A match will set the Output Compare Flag (OCFnx) at the next timer clock cycle. If enabled
(OCIEnx = 1), the output compare flag generates an output compare interrupt. The OCFnx flag is automatically cleared
when the interrupt is executed. Alternatively the OCFnx flag can be cleared by software by writing a logical one to its I/O bit
location. The waveform generator uses the match signal to generate an output according to operating mode set by the
Waveform Generation mode (WGMn3:0) bits and Compare Output mode (COMnx1:0) bits. The TOP and BOTTOM signals
are used by the waveform generator for handling the special cases of the extreme values in some modes of operation (see
Section 13. “16-bit Timer/Counter1 with PWM” on page 92)

A special feature of output compare unit A allows it to define the Timer/Counter TOP value (i.e., counter resolution). In
addition to the counter resolution, the TOP value defines the period time for waveforms generated by the waveform
generator.

Figure 13-4 shows a block diagram of the output compare unit. The small “n” in the register and bit names indicates the
device number (n = n for Timer/Counter n), and the “x” indicates output compare unit (x). The elements of the block diagram
that are not directly a part of the output compare unit are gray shaded.
99ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

Figure 13-4. Output Compare Unit, Block Diagram

The OCRnx register is double buffered when using any of the twelve Pulse Width Modulation (PWM) modes. For the normal
and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes
the update of the OCRnx compare register to either TOP or BOTTOM of the counting sequence. The synchronization
prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCRnx register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has
access to the OCRnx buffer register, and if double buffering is disabled the CPU will access the OCRnx directly. The content
of the OCR1x (buffer or compare) register is only changed by a write operation (the Timer/Counter does not update this
register automatically as the TCNT1 and ICR1 register). Therefore OCR1x is not read via the high byte temporary register
(TEMP). However, it is a good practice to read the low byte first as when accessing other 16-bit registers. Writing the OCRnx
registers must be done via the TEMP register since the compare of all 16 bits is done continuously. The high byte (OCRnxH)
has to be written first. When the high byte I/O location is written by the CPU, the TEMP register will be updated by the value
written. Then when the low byte (OCRnxL) is written to the lower eight bits, the high byte will be copied into the upper 8-bits
of either the OCRnx buffer or OCRnx compare register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to Section 13.2 “Accessing 16-bit Registers” on page 94.

13.6.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to the Force
Output Compare (FOCnx) bit. Forcing compare match will not set the OCFnx Flag or reload/clear the timer, but the OCnx pin
will be updated as if a real compare match had occurred (the COMn1:0 bits settings define whether the OCnx pin is set,
cleared or toggled).

13.6.2 Compare Match Blocking by TCNTn Write

All CPU writes to the TCNTn register will block any compare match that occurs in the next timer clock cycle, even when the
timer is stopped. This feature allows OCRnx to be initialized to the same value as TCNTn without triggering an interrupt
when the Timer/Counter clock is enabled.

OCRnxL Buf. (8-bit)OCRnxH Buf. (8-bit)

OCRnx Buffer (16-bit Register)

TEMP (8-bit)

OCRnxL (8-bit)

OCFnx (Int. Req.)

OCRnxH (8-bit)

OCRnx (16-bit Register)

= (16-bit Comparator)

WGMn3:0 COMnx1:0

Waveform Generator

TCNTnL (8-bit)TCNTnH (8-bit)

TCNTn (16-bit Counter)

DATA BUS (8-bit)

OCnx
TOP

BOTTOM
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

100

16.4.5 Overload Frame

An overload frame is sent by setting an overload request (OVRQ). After the next reception, the CAN channel sends an
overload frame in accordance with the CAN specification. A status or flag is set (OVRF) as long as the overload frame is
sent.

Figure 16-9. Overload Frame

16.5 Message Objects

The MOb is a CAN frame descriptor. It contains all information to handle a CAN frame. This means that a MOb has been
outlined to allow to describe a CAN message like an object. The set of MObs is the front end part of the “mailbox” where the
messages to send and/or to receive are pre-defined as well as possible to decrease the work load of the software.

The MObs are independent but priority is given to the lower one in case of multi matching. The operating modes are:

● Disabled mode

● Transmit mode

● Receive mode

● Automatic reply

● Frame buffer receive mode

16.5.1 Number of MObs

This device has 6 MObs, they are numbered from 0 up to 5 (i=5).

16.5.2 Operating Modes

There is no default mode after RESET.

Every MOb has its own fields to control the operating mode. Before enabling the CAN peripheral, each MOb must be
configured (ex: disabled mode - CONMOB=00).

16.5.2.1 Disabled

In this mode, the MOb is “free”.

Ident “A”

Setting OVRQ bitInstructions

OVRQ bit

OVFG bit

TXCDAN

Resetting OVRQ bit

Cmd Message Data “A” Ident “B”CRC A Interframe Overload

Overload

Frame

Frame

RXCDAN

Table 16-1. MOb Configuration

MOb Configuration Reply Valid RTR Tag Operating Mode

0 0 x x Disabled

0 1
x 0 Tx Data Frame

x 1 Tx Remote Frame

1 0

x 0 Rx Data Frame

0
1

Rx Remote Frame

1 Rx Remote Frame then, Tx Data Frame (reply)

1 1 x x Frame Buffer Receive Mode
149ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

16.11 MOb Registers

The MOb registers has no initial (default) value after RESET.

16.11.1 CAN MOb Status Register - CANSTMOB

• Bit 7 – DLCW: Data Length Code Warning

The incoming message does not have the DLC expected. Whatever the frame type, the DLC field of the CANCDMOB
register is updated by the received DLC.

• Bit 6 – TXOK: Transmit OK

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The communication enabled by transmission is completed. TxOK rises at the end of EOF field. When the controller is ready
to send a frame, if two or more message objects are enabled as producers, the lower MOb index (0 to 14) is supplied first.

• Bit 5 – RXOK: Receive OK

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The communication enabled by reception is completed. RxOK rises at the end of the 6th bit of EOF field. In case of two or
more message object reception hits, the lower MOb index (0 to 14) is updated first.

• Bit 4 – BERR: Bit Error (Only in Transmission)

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The bit value monitored is different from the bit value sent.

Exceptions: the monitored recessive bit sent as a dominant bit during the arbitration field and the acknowledge slot detecting
a dominant bit during the sending of an error frame.

• Bit 3 – SERR: Stuff Error

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

Detection of more than five consecutive bits with the same polarity. This flag can generate an interrupt.

• Bit 2 – CERR: CRC Error

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The receiver performs a CRC check on every de-stuffed received message from the start of frame up to the data field. If this
checking does not match with the de-stuffed CRC field, a CRC error is set.

• Bit 1 – FERR: Form Error

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The form error results from one or more violations of the fixed form in the following bit fields:

● CRC delimiter.

● Acknowledgment delimiter.

● EOF

Bit 7 6 5 4 3 2 1 0

DLCW TXOK RXOK BERR SERR CERR FERR AERR CANSTMOB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value - - - - - - - -
167ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

17.4.6.3 Rx and TX Response Functions

These functions are initiated by the slave task of a LIN node. They must be used after sending an header (master task) or
after receiving an header (considered as belonging to the slave task). When the TX response order is sent, the transmission
begins. A Rx response order can be sent up to the reception of the last serial bit of the first byte (before the stop-bit).

In LIN 1.3, the header slot configures the LINDLR register. In LIN 2.1, the user must configure the LINDLR register, either
LRXDL[3..0] for Rx Response either LTXDL[3..0] for Tx Response.

When the command starts, the controller checks the LIN13 bit of the LINCR register to apply the right rule for computing the
checksum. Checksum calculation over the DATA bytes and the PROTECTED IDENTIFIER byte is called enhanced
checksum and it is used for communication with LIN 2.1 slaves. Checksum calculation over the DATA bytes only is called
classic checksum and it is used for communication with LIN 1.3 slaves. Note that identifiers 60 (0x3C) to 63 (0x3F) shall
always use classic checksum.

At the end of this reception or transmission, the controller automatically returns to Rx Header / LIN Abort state
(i.e. LCMD[1..0] = 00) after setting the appropriate flags.

If an LIN error occurs, the reception or the transmission is stopped, the appropriate flags are set and the LIN bus is left to
recessive state.

During these functions, the controller is responsible for:

● The initialization of the checksum operator,

● The transmission or the reception of ‘n’ data with the update of the checksum calculation,

● The transmission or the checking of the CHECKSUM field,

● The checking of the Frame_Time_Out,

● The checking of the LIN communication integrity.

While the controller is sending or receiving a response, BREAK and SYNCH fields can be detected and the identifier of this
new header will be recorded. Of course, specific errors on the previous response will be maintained with this identifier
reception.

17.4.6.4 Handling Data of LIN response

A FIFO data buffer is used for data of the LIN response. After setting all parameters in the LINSEL register, repeated
accesses to the LINDAT register perform data read or data write (c.f. Section 17.5.15 “Data Management” on page 189).

Note that LRXDL[3..0] and LTXDL[3..0] are not linked to the data access.

17.4.7 UART Commands

Setting the LCMD[2] bit in LINENR register enables UART commands.

Tx Byte and Rx Byte services are independent as shown in Table 17-1 on page 178.

● Byte transfer: the UART is selected but both Rx and Tx services are disabled,

● Rx Byte: only the Rx service is enable but Tx service is disabled,

● Tx Byte: only the Tx service is enable but Rx service is disabled,

● Full duplex: the UART is selected and both Rx and Tx services are enabled.

This combination of services is controlled by the LCMD[1..0] bits of LINENR register (c.f. Figure 17-5 on page 178).

17.4.7.1 Data Handling

The FIFO used for LIN communication is disabled during UART accesses. LRXDL[3..0] and LTXDL[3..0] values of LINDLR
register are then irrelevant. LINDAT register is then used as data register and LINSEL register is not relevant.

17.4.7.2 Rx Service

Once this service is enabled, the user is warned of an in-coming character by the LRXOK flag of LINSIR register. Reading
LINDAT register automatically clears the flag and makes free the second stage of the buffer. If the user considers that the in-
coming character is irrelevant without reading it, he directly can clear the flag (see specific flag management described in
Section 17.6.2 “LIN Status and Interrupt Register - LINSIR” on page 192). The intrinsic structure of the Rx service offers a 2-
byte buffer. The fist one is used for serial to parallel conversion, the second one receives the result of the conversion. This
second buffer byte is reached reading LINDAT register. If the 2-byte buffer is full, a new in-coming character will overwrite
the second one already recorded. An OVRERR error in LINERR register will then accompany this character when read. A
FERR error in LINERR register will be set in case of framing error.
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

180

17.5.14 Message Filtering

Message filtering based upon the whole identifier is not implemented. Only a status for frame headers having 0x3C, 0x3D,
0x3E and 0x3F as identifier is available in the LINSIR register.

The LIN protocol says that a message with an identifier from 60 (0x3C) up to 63 (0x3F) uses a classic checksum (sum over
the data bytes only). Software will be responsible for switching correctly the LIN13 bit to provide/check this expected
checksum (the insertion of the ID field in the computation of the CRC is set - or not - just after entering the Rx or Tx response
command).

17.5.15 Data Management

17.5.15.1 LIN FIFO Data Buffer

To preserve register allocation, the LIN data buffer is seen as a FIFO (with address pointer accessible). This FIFO is
accessed via the LINDX[2..0] field of LINSEL register through the LINDAT register.

LINDX[2..0], the data index, is the address pointer to the required data byte. The data byte can be read or written. The data
index is automatically incremented after each LINDAT access if the LAINC (active low) bit is cleared. A roll-over is
implemented, after data index=7 it is data index=0. Otherwise, if LAINC bit is set, the data index needs to be written
(updated) before each LINDAT access.

The first byte of a LIN frame is stored at the data index=0, the second one at the data index=1, and so on. Nevertheless,
LINSEL must be initialized by the user before use.

17.5.15.2 UART Data Register

The LINDAT register is the data register (no buffering - no FIFO). In write access, LINDAT will be for data out and in read
access, LINDAT will be for data in.

In UART mode the LINSEL register is unused.

17.5.16 OCD Support

This section describes the behavior of the LIN/UART controller stopped by the OCD (i.e. I/O view behavior in AVR Studio®)

1. LINCR:
- LINCR[6..0] are R/W accessible,
- LSWRES always is a self-reset bit (needs 1 micro-controller cycle to execute)

2. LINSIR:
- LIDST[2..0] and LBUSY are always Read accessible,
- LERR and LxxOK bit are directly accessible (unlike in execution, set or cleared directly by writing 1 or 0).
- Note that clearing LERR resets all LINERR bits and setting LERR sets all LINERR bits.

3. LINENR:
- All bits are R/W accessible.

4. LINERR:
- All bits are R/W accessible,
- Note that LINERR bits are ORed to provide the LERR interrupt flag of LINSIR.

5. LINBTR:
- LBT[5..0] are R/W access only if LDISR is set,
- If LDISR is reset, LBT[5..0] are unchangeable.

Table 17-4. Frame Status

LIDST[2..0] Frame Status

0xx b No specific identifier

100 b 60 (0x3C) identifier

101 b 61 (0x3D) identifier

110 b 62 (0x3E) identifier

111 b 63 (0x3F) identifier
189ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

Using the ADC interrupt flag as a trigger source makes the ADC start a new conversion as soon as the ongoing conversion
has finished. The ADC then operates in free running mode, constantly sampling and updating the ADC data register. The
first conversion must be started by writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform
successive conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not. The free running mode is
not allowed on the amplified channels.

If auto triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to one. ADSC can also be used
to determine if a conversion is in progress. The ADSC bit will be read as one during a conversion, independently of how the
conversion was started.

18.4 Prescaling and Conversion Timing

Figure 18-3. ADC Prescaler

By default, the successive approximation circuitry requires an input clock frequency between 50kHz and 2MHz to get
maximum resolution. If a lower resolution than 10 bits is needed, the input clock frequency to the ADC can be higher than
2MHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency from any CPU frequency above
100kHz. The prescaling is set by the ADPS bits in ADCSRA. The prescaler starts counting from the moment the ADC is
switched on by setting the ADEN bit in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is
continuously reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion starts at the following rising
edge of the ADC clock cycle. See Section 18.5 “Changing Channel or Reference Selection” on page 202 for details on
differential conversion timing.

A normal conversion takes 15.5 ADC clock cycles. The first conversion after the ADC is switched on (ADEN in ADCSRA is
set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

The actual sample-and-hold takes place 3.5 ADC clock cycles after the start of a normal conversion and 13.5 ADC clock
cycles after the start of an first conversion. When a conversion is complete, the result is written to the ADC data registers,
and ADIF is set. In single conversion mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a
new conversion will be initiated on the first rising ADC clock edge.

When auto triggering is used, the prescaler is reset when the trigger event occurs. This assures a fixed delay from the trigger
event to the start of conversion. In this mode, the sample-and-hold takes place two ADC clock cycles after the rising edge on
the trigger source signal. Three additional CPU clock cycles are used for synchronization logic.

In free running mode, a new conversion will be started immediately after the conversion completes, while ADSC remains
high. For a summary of conversion times, see Table 18-1 on page 202.

7-Bit ADC Prescaler

ADC Clock Source

ADEN
START

CK

ADPS0
ADPS1
ADPS2

Reset

C
K

/2

C
K

/4

C
K

/8

C
K

/1
6

C
K

/3
2

C
K

/6
4

C
K

/1
28
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

200

As soon as a conversion is requested thanks to the ADSC bit, the analog to digital conversion is started. In case the amplifier
output is modified during the sample phase of the ADC, the on-going conversion is aborted and restarted as soon as the
output of the amplifier is stable. This ensure a fast response time. The only precaution to take is to be sure that the trig signal
(PSC) frequency is lower than ADCclk/4.

Figure 18-15. Amplifier Synchronization Timing Diagram with Change on Analog Input Signal

4th stable sample
Delta V

Valid sample

ADC
Sampling

ADC
Conv

ADC Result
Ready

ADC
Sampling

Signal to be
measured

AMPLI_clk
(Sync Clock

PSC
Block

Amplifier
Block

ADC

Amplifier Sample
Enable

Amplifier Hold
Value

ADC
Activity

PSCn_ASY

CK ADC

ADSC

ADC
Conv

ADC Result
Ready
215ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

Figure 20-1. Analog Comparator Block Diagram(1)(2)

Notes: 1. ADC multiplexer output: see Table 18-5 on page 211.

2. Refer to Figure 1-1 on page 3 and for analog comparator pin placement.

3. The voltage on Vref is defined in 18-4 “ADC Voltage Reference Selection” on page 210

AMPCMP0

Interrupt Sensitivity Control

AMPCMP0

AMP0

AC0EM AC0IS1 AC0IS0

AC0IE

CLKI/O (/2)

ADC AC0M
1 02

ACMP0

AC0O

AC0IF

Analog
Comparator 0
InterruptACMPN0 -

+

-
+

AMPCMP1

Interrupt Sensitivity Control

AMPCMP1

AMP1

AC1EM AC1IS1 AC1IS0

AC1IE

CLKI/O (/2)

ADC AC1M
1 02

ACMP1

AC1O

AC1IF

Analog
Comparator 1
InterruptACMPN1 -

+

-
+

AC1ICE

T1 Capture
Trigger

AMPCMP2

Internal 2.56V
Reference

Interrupt Sensitivity Control

AMPCMP2

AMP2

AC2EM AC2IS1 AC2IS0

AC2IE

CLKI/O (/2)

ADC AC2M
1 02

ACMP2

AC2O

AC2IF

Analog
Comparator 2
InterruptACMPN2 -

+

-
+

Interrupt Sensitivity Control

AC3EM AC3IS1

/1.60

/2.13

/3.20

/6.40

AC3IS0

AC3IE

CLKI/O (/2)

AC3M
1 02

ACMP3

Aref

AVcc

AC3O

AC3IF

Analog
Comparator 3
InterruptACMPN3

Bandgap

REFS1
REFS0

DAC Result

-

+

ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

226

25. Memory Programming

25.1 Program and Data Memory Lock Bits

The ATmega16/32/64/M1/C1 provides six Lock bits which can be left unprogrammed (“1”) or can be programmed (“0”) to
obtain the additional features listed in Table 25-2. The Lock bits can only be erased to “1” with the chip erase command.

Notes: 1. “1” means unprogrammed, “0” means programmed.

Notes: 1. Program the fuse bits and boot lock bits before programming the LB1 and LB2.

2. “1” means unprogrammed, “0” means programmed.

Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.

2. “1” means unprogrammed, “0” means programmed

Table 25-1. Lock Bit Byte(1)

Lock Bit Byte Bit No Description Default Value

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

BLB12 5 Boot lock bit 1 (unprogrammed)

BLB11 4 Boot lock bit 1 (unprogrammed)

BLB02 3 Boot lock bit 1 (unprogrammed)

BLB01 2 Boot lock bit 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Table 25-2. Lock Bit Protection Modes(1)(2)

Memory Lock Bits

LB Mode LB2 LB1 Protection Type

1 1 1 No memory lock features enabled.

2 1 0
Further programming of the flash and EEPROM is disabled in parallel and
serial programming mode. The fuse bits are locked in both serial and parallel
programming mode(1).

3 0 0
Further programming and verification of the flash and EEPROM is disabled in
parallel and serial programming mode. The boot lock bits and fuse bits are
locked in both serial and parallel programming mode(1).

Table 25-3. Lock Bit Protection Modes(1)(2).

BLB0 Mode BLB02 BLB01

1 1 1 No restrictions for SPM or LPM accessing the Application section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and LPM executing from
the Boot Loader section is not allowed to read from the Application section. If
Interrupt Vectors are placed in the Boot Loader section, interrupts are disabled
while executing from the Application section.

4 0 1
LPM executing from the Boot Loader section is not allowed to read from the
Application section. If Interrupt Vectors are placed in the Boot Loader section,
interrupts are disabled while executing from the Application section.
255ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

25.8.15 Parallel Programming Characteristics

Figure 25-7. Parallel Programming Timing, Including some General Timing Requirements

Figure 25-8. Parallel Programming Timing, Loading Sequence with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 25-7 (i.e., tDVXH, tXHXL, and tXLDX) also apply to loading operation.

XTAL1

PAGEL

WR

Data and Control
(DATA, XA0/1, BS1, BS2)

tXHXL

tDVXH

tBVPH

tXLWL

tXLDX

tPHPL

tPLBX

tPLWL

tBVWL tWLBX

tWLWH

tWLRL

tWLRH

RDY/BSY

XTAL1

BS1

PAGEL

DATA

XA0

XA1

tXLXH tPLXHtXLPH

Load Address
(Low Byte)

Load Data
(Low Byte)

Load Data
(High Byte)

Load Address
(Low Byte)Load Data

ADDR0 (Low Byte) ADDR1 (Low Byte)DATA (Low Byte) DATA (High Byte)
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

268

26. Electrical Characteristics

All DC/AC characteristics contained in this datasheet are based on simulations and characterization of similar devices in the
same process and design methods. These values are preliminary representing design targets, and will be updated after
characterization of actual automotive silicon data.

Note: 1. Maximum current per port = ±30mA

26.1 Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters Min. Typ. Max. Unit

Operating temperature –40 +125 °C

Storage temperature –65 +150 °C

Voltage on any pin except RESET with respect to ground –0.5 VCC + 0.5 V

Voltage on RESET with respect to ground –0.5 +13 V

Maximum operating voltage 6 V

DC current per I/O pin 40 mA

DC current VCC and GND pins 200 mA

Injection current at VCC = 0V to 5V ±5(1) mA

26.2 DC Characteristics
TA = –40°C to +125°C, VCC = 2.7V to 5.5V (unless otherwise noted)

Parameter Condition Symbol Min. Typ. Max. Unit

Input low voltage
Port B, C and D and XTAL1,
XTAL2 pins as I/O

VIL –0.5 0.2VCC
(1) V

Input high voltage
Port B, C and D and XTAL1,
XTAL2 pins as I/O

VIH 0.6VCC
(2) VCC + 0.5 V

Input low voltage
XTAL1 pin, external clock
Selected

VIL1 –0.5 0.1VCC
(1) V

Input high voltage
XTAL1 pin, external clock
selected

VIH1 0.8VCC
(2) VCC + 0.5 V

Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low

2. “Min” means the lowest value where the pin is guaranteed to be read as high

3. Although each I/O port can sink more than the test conditions (10mA at VCC = 5V, 6mA at VCC = 3V) under steady state
conditions (non-transient), the following must be observed:
1] The sum of all IOL, for ports B0 - B1, C2 - C3, D4, E1 - E2 should not exceed 70mA.
2] The sum of all IOL, for ports B6 - B7, C0 - C1, D0 -D3, E0 should not exceed 70mA.
3] The sum of all IOL, for ports B2 - B5, C4 - C7, D5 - D7 should not exceed 70mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current
greater than the listed test condition.

4. Although each I/O port can source more than the test conditions (10mA at VCC = 5V, 8mA at VCC = 3V) under steady
state conditions (non-transient), the following must be observed:
1] The sum of all IOH, for ports B0 - B1, C2 - C3, D4, E1 - E2 should not exceed 100mA.
2] The sum of all IOH, for ports B6 - B7, C0 - C1, D0 -D3, E0 should not exceed 100mA.
3] The sum of all IOH, for ports B2 - B5, C4 - C7, D5 - D7 should not exceed 100mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

5. Minimum VCC for power-down is 2.5V.

6. The analog comparator Propogation Delay equals 1 comparator clock plus 30nS. See Section 20. “Analog Compara-
tor” on page 225 for comparator clock definition.
273ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

4. CRC calculation of diagnostic frames in LIN 2.x.
Diagnostic frames of LIN 2.x use “classic checksum” calculation. Unfortunately, the setting of the checksum model
is enabled when the HEADER is transmitted/received. Usually, in LIN 2.x the LIN/UART controller is initialized to
process “enhanced checksums” and a slave task does not know what kind of frame it will work on before checking
the ID.
Problem fix / workaround
This workaround is to be implemented only in case of transmission/reception of diagnostics frames.

a. Slave task of master node:
Before enabling the HEADER, the master must set the appropriate LIN13 bitvalue in LINCR register.

b. For slaves nodes, the workaround is in 2 parts:

● Before enabling the RESPONSE, use the following function:

void lin_wa_head(void) {
unsigned char temp;

temp = LINBTR;
LINCR = 0x00; // It is not a RESET !
LINBTR = (1<<LDISR)|temp;
LINCR = (1<<LIN13)|(1<<LENA)|(0<<LCMD2)|(0<<LCMD1)|(0<<LCMD0);
LINDLR = 0x88; // If it isn't already done

}
● Once the RESPONSE is received or sent (having RxOK or TxOK as well as LERR), use the following

function:

void lin_wa_tail(void) {
LINCR = 0x00; // It is not a RESET !
LINBTR = 0x00;
LINCR = (0<<LIN13)|(1<<LENA)|(0<<LCMD2)|(0<<LCMD1)|(0<<LCMD0);

}
The time-out counter is disabled during the RESPONSE when the workaround is set.

5. Wrong TSOFFSET manufacturing calibration value.
Erroneous value of TSOFFSET programmed in signature byte.
(TSOFFSET was introduced from REVB silicon).
Problem fix / workaround
To identify RevB with wrong TSOFFSET value, check device signature byte at address 0X3F if value is not 0X42
(Ascii code ‘B’) then use the following formula.
TS_OFFSET(True) = (150*(1-TS_GAIN))+TS_OFFSET.

6. PD0-PD3 set to outputs and PD4 pulled down following power-on with external reset active.
At power-on with the external reset signal active the four I/O lines PD0-PD3 may be forced into an output state.
Normally these lines should be in an input state. PD4 may be pulled down with internal 220k resistor. Following
release of the reset line (whatever is the startup time) with the clock running the I/Os PD0-PD4 will adopt their
intended input state.
Problem fix / workaround
None

7. LIN Break Delimitter
In SLAVE MODE, a BREAK field detection error can occur under following conditions. The problem occurs if 2
conditions occur simultaneously:

a. The DOMINANT part of the BREAK is (N+0.5)*Tbit long with N=13, 14,15, ...

b. The RECESSIVE part of the BREAK (BREAK DELIMITER) is equal to 1*Tbit. (see note below)

The BREAK_high is not detected, and the 2nd bit of the SYNC field is interpreted as the BREAK DELIMITER. The
error is detected as a framing error on the first bits of the PID or on subsequent Data or a Checksum error.
There is no error if BREAK_high is greater than 1*Tbit + 18%. There is no problem in Master mode.

Note: LIN2.1 Protocol Specification paragraph 2.3.1.1 Break field says: “A break field is always generated by the
master task(in the master node) and it shall be at least 13 nominal bit times of dominant value, followed by a
break delimiter, as shown in Figure 30-1 on page 308. The break delimiter shall be at least one nominal bit
time long.”
307ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

Figure 32-1. MA

Package Drawing Contact:
packagedrawings@atmel.com

GPC DRAWING NO. REV. TITLE

MAAUT C

02/29/12

MA, 32 Lds - 0.80mm Pitch, 7x7x1.00mm Body size
Thin Profile Plastic Quad Flat Package (TQFP)

D1

D

E

Drawings not scaled

E1

C

0°~7°

L

32

1.Notes:
2.

3.

This drawing is for general information only. Refer to JEDEC Drawing MS-026, Variation ABA.
Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side.
Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
Lead coplanarity is 0.10mm maximum.

A
A2
A1

1

e

b

COMMON DIMENSIONS
(Unit of Measure = mm)

MIN NOM NOTEMAXSymbol

0.150.05A1

0.200.09C

0.80 TYP.e
32n

0.450.30b
0.750.45L

7.106.90 7.00D1/E1
9.00 9.258.75D/E
1.00 1.050.95A2

1.20A

2

Top View

Side View

Bottom View
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

310

