Microchip Technology - ATMEGA16M1-15MD Datasheet

Details

Product Status

Core Processor

Core Size

Speed

Connectivity

Peripherals

Number of I/O

Program Memory Size
Program Memory Type
EEPROM Size

RAM Size

Voltage - Supply (Vcc/Vdd)
Data Converters
Oscillator Type
Operating Temperature
Mounting Type

Package / Case

Supplier Device Package

Purchase URL

Email: info@E-XFL.COM

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Active

AVR

8-Bit

16MHz

CANbus, LINbus, SPI, UART/USART
Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
16KB (8K x 16)

FLASH

512x8

1K x 8

2.7V ~ 5.5V

A/D 11x10b; D/A 1x10b

Internal

-40°C ~ 150°C (TA)

Surface Mount

32-VQFN Exposed Pad

32-QFN (7x7)

https://www.e-xfl.com/product-detail/microchip-technology/atmegalém1l-15md

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega16m1-15md-4433620
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Figure 3-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using two register
operands is executed, and the result is stored back to the destination register.

Figure 3-5. Single Cycle ALU Operation
T T2 T3 T4

clkepy J__/__/__/__
Total Execution Time —'-<:)

Register Operands Fetch :\‘) : :
ALU Operation Execute E {) E E
Result Write Back : {) : :

1

3.8 Reset and Interrupt Handling

The AVR® provides several different interrupt sources. These interrupts and the separate reset vector each have a separate
program vector in the program memory space. All interrupts are assigned individual enable bits which must be written logic
one together with the global interrupt enable bit in the status register in order to enable the interrupt. Depending on the
program counter value, interrupts may be automatically disabled when boot lock bits BLB02 or BLB12 are programmed. This
feature improves software security. See Section 25. “Memory Programming” on page 255 for details.

The lowest addresses in the program memory space are by default defined as the reset and interrupt vectors. The complete
list of vectors is shown in Section 8. “Interrupts” on page 47. The list also determines the priority levels of the different
interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next is ANACOMPO —
the analog comparator 0 interrupt. The interrupt vectors can be moved to the start of the boot flash section by setting the
IVSEL bit in the MCU control register (MCUCR). Refer to Section 8. “Interrupts” on page 47 for more information. The reset
vector can also be moved to the start of the boot flash section by programming the BOOTRST fuse, see Section 24. “Boot
Loader Support — Read-while-write Self-Programming ATmega16/32/64/M1/C1” on page 241.

3.8.1 Interrupt Behavior

When an interrupt occurs, the global interrupt enable I-bit is cleared and all interrupts are disabled. The user software can
write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine.
The I-bit is automatically set when a return from interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the interrupt flag. For these
interrupts, the program counter is vectored to the actual interrupt vector in order to execute the interrupt handling routine,
and hardware clears the corresponding interrupt flag. Interrupt flags can also be cleared by writing a logic one to the flag bit
position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the interrupt
flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more
interrupt conditions occur while the global interrupt enable bit is cleared, the corresponding interrupt flag(s) will be set and
remembered until the global interrupt enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily
have interrupt flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any
pending interrupt is served.

Note that the status register is not automatically stored when entering an interrupt routine, nor restored when returning from
an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed
after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example shows how this can
be used to avoid interrupts during the timed EEPROM write sequence.

16 ATmegal16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

Assembly Code Example
in rl6, SREG ; store SREG val ue
cli ; disable interrupts during tined sequence
sbi EECR, EEMNAE ; start EEPROM write
sbi EECR, EEWE
out SREG r 16 ; restore SREG value (I-bit)
C Code Example
char cSREG
cSREG = SREG /* store SREG val ue */
/* disable interrupts during timed sequence */
_CLI();
EECR | = (1<<EEMAE); /* start EEPROMwite */
EECR | = (1<<EEVE);
SREG = cSREG /* restore SREG value (Il-bit) */

When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before any pending
interrupts, as shown in this example.

Assembly Code Example

sei ; set dobal Interrupt Enable

sl eep ; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; interrupt(s)

C Code Example

_SEI(); /* set @ obal Interrupt Enable */
_SLEEP(); /* enter sleep, waiting for interrupt */
/* note: will enter sleep before any pending interrupt(s) */

3.8.2 Interrupt Response Time

The interrupt execution response for all the enabled AVR® interrupts is four clock cycles minimum. After four clock cycles the
program vector address for the actual interrupt handling routine is executed. during this four clock cycle period, the program
counter is pushed onto the stack. The vector is normally a jump to the interrupt routine, and this jump takes three clock
cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before the interrupt is
served. If an interrupt occurs when the MCU is in sleep mode, the interrupt execution response time is increased by four
clock cycles. This increase comes in addition to the start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. during these four clock cycles, the program counter (two
bytes) is popped back from the stack, the stack pointer is incremented by two, and the I-bit in SREG is set.

ATmega16/32/64/M1/C1 [DATASHEET] 17
/ItmeL 76470-AVR-01/15

Therefore it is recommended not to take the OSCCAL adjustments to a higher frequency than 8MHz in order to keep the PLL
in the correct operating range.

The internal PLL is enabled only when the PLLE bit in the register PLLCSR is set. The bit PLOCK from the register PLLCSR
is set when PLL is locked.

Both internal 8MHz RC Oscillator, Crystal Oscillator and PLL are switched off in Power-down and Standby sleep
modes.01/15

Table 5-7. Start-up Times when the PLL is selected as system clock

Start-up Time from Power-down and Additional Delay from Reset
CKSEL3..0 SUT1..0 Power-save
00 1K CK 14CK
0011 01 1K CK 14CK + 4ms
RC Osc 10 1K CK 14CK + 64ms
11 16K CK 14CK
00 1K CK 14CK
0101 01 1K CK 14CK + 4ms
Ext Osc 10 16K CK 14CK + 4ms
11 16K CK 14CK + 64ms
00 6 CK(" 14CK
0001 01 6 CK™ 14CK + 4ms
Ext Clk 10 6 CK(" 14CK + 64ms
11 Reserved

Note: 1. This value do not provide a proper restart; do not use PD in this clock scheme.

Figure 5-3. PLL Clocking System

OSCCAL CKSELS3..0 PLLE PLLF
&1 Lock PLOCK
| Detector =
! Y
RC Oscillator | ¢ Divide PLL " Divide CLKp | .
8MHz by 8 64x by 2
Divide
by 4 _|_>
i CKsource
XTAL1 —l—»)
Oscillators >
XTAL2 —»=
30 ATmega16/32/64/M1/C1 [DATASHEET] /ItmeL

76470-AVR-01/15

Table 9-4 and Table 9-5 relates the alternate functions of Port B to the overriding signals shown in Figure 9-5 on page 56.

Table 9-4. Overriding Signals for Alternate Functions in PB7..PB4

PB7/ADC4/ PB6/ADCT7/ PB5/ADC6/
PSCOUTOB/SCK/ PSCOUT1B/ INT2/ACMPN1/ PB4/AMPO+/
Signal Name PCINT7 PCINT6 AMP2-/PCINT5 PCINT4
PUOE SPE x MSTR x SPIPS 0 0 0
PUOV PB7 x PUD x SPIPS 0 0 0
DDOE SIFE nggg:nxofplps * PSCen11 0 0
DDOV PSCen01 1 0 0
PVOE SPE x MSTR x SPIPS PSCen11 0 0
PSCout01 x SPIPS + PSCout01 x
PVOV PSCen01x SPIPS PSCOUT11 0 0
+ PSCout01 x PSCen01 x SPIPS
DIEOE ADC4D ADC7D ADCBD + In2en AMPOND
DIEOV 0 0 In2en 0
DI SCKin x SPIPS x ireset ICP1B INT2
AIO ADC4 ADC7 ADC6 AMPO+

Table 9-5. Overriding Signals for Alternate Functions in PB3..PBO

PB1/MOSI/ PBO/MISO/
PB3/AMPO-/ PB2/ADC5/INT1/ PSCOUT2B/ PSCOUT2A/
Signal Name PCINT3 ACMPNO/PCINT2 PCINT1 PCINTO
PUOE 0 0 - -
PUOV 0 0 — =
DDOE 0 0 - -
DDOV 0 0 — =
PVOE 0 0 - -
PVOV 0 0 — =
DIEOE AMPOND ADCS5D + Inten 0 0
DIEOV 0 In1en 0 0
5 i MOSI_IN x SPIPS x MISO_IN x SPIPS x
ireset ireset
AIO AMPO- ADC5 — -
60 ATmega16/32/64/M1/C1 [DATASHEET] Atmel.

76470-AVR-01/15

12. 8-bit Timer/CounterO with PWM

Timer/Counter0 is a general purpose 8-bit Timer/Counter module, with two independent Output Compare Units, and with
PWM support. It allows accurate program execution timing (event management) and wave generation. The main features
are:

Two independent output compare units

Double buffered output compare registers

Clear timer on compare match (auto reload)

Glitch free, phase correct pulse width modulator (PWM)

Variable PWM period

Frequency generator

Three independent interrupt sources (TOV0O, OCFOA, and OCFOB)

12.1 Overview

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 12-1. For the actual placement of I/O pins, refer to
Section 2.3 “Pin Descriptions” on page 9. CPU accessible I/O registers, including I/O bits and 1/O pins, are shown in bold.
The device-specific I/O Register and bit locations are listed in Section 12.8 “8-bit Timer/Counter Register Description” on
page 86.

The PRTIMO bit in Section 6.6 “Power Reduction Register” on page 36 must be written to zero to enable Timer/Counter0
module.

Figure 12-1. 8-bit Timer/Counter Block Diagram

» TOVn (Int. Req.)
Count
Cl Clock Select
- ea.r Control Logic
Direction
Edge - Tn
__ clky Detector |

A
TOP BOTTOM

Yyvy /_ _\

(from Prescaler)

A Timer/Counter 4 1
TCNTn |
e ‘I =0 |
+ ; + — OCnA (Int. Req.)
]
' _ | Waveform .
= Q o Gen\:aration > OCnA
<—>| OCRnx I 4]
Fixed
@ TOP
a Value —— OCnB (Int. Req.)
<
= .| Waveform _
<D(= "] Generation > OCnB
<—>| OCRnx |
<—>| TCCRnA | | TCCRnB
) ¢ b
Y
ATmega16/32/64/M1/C1 [DATASHEET 77
Atmel 9 [1

76470-AVR-01/15

14.11 PSC Input Mode 11xb: Halt PSC and Wait for Software Action

Figure 14-14. PSC Behavior versus PSCn Input A in Fault Mode 11xb

DT0O OTO0O DT1 OT1 DTO OTO DT0O OTO DT1 OT1
PSCOUTnA | I I I I |
4 4

PSCOUTNB | I ! ! I |

1
|

| \
\ \

\ |

PSC Input \| | I
/
Software Action (1)
Note: Software action is the setting of the PRUNnN bit in PCTLn register.
Used in fault mode 7, PSCn input A or PSCn input B act indifferently on On-TimeO/Dead-Time0 or on On-Time1/Dead-

Time1.

14.12 Analog Synchronization

Each PSC module generates a signal to synchronize the ADC sample and hold; synchronisation is mandatory for
measurements.

This signal can be selected between all falling or rising edge of PSCOUTNA or PSCOUTNB outputs.

In center aligned mode, OCRnRAHI/L is not used, so it can be used to specified the synchronization of the ADC. It this case,
it's minimum value is 1.

14.13 Interrupt Handling

As each PSC module can be dedicated for one function, each PSC has its own interrupt system (vector ..)
List of interrupt sources:

e Counter reload (end of on time 1)

e PSC input event (active edge or at the beginning of level configured event)

e PSC mutual synchronization error

14.14 PSC Clock Sources

Each PSC has two clock inputs:
e CLKPLL from the PLL
e CLKI/O

Figure 14-15. Clock Selection

CLKpLL
CcK

1\|
Prescaler
Q

CLKI/O

4
O

CK/4
CK/32

CKJ/256

01
10

PCLKSEL S =
f«—— PPREN1/0

— CLKpscn

PCLKSELn bit in PSC control register (PCTL) is used to select the clock source.
PPREN1/0 bits in PSC control register (PCTL) are used to select the divide factor of the clock.

126 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 Atmel

Table 14-9. Synchronization Source Description in Centered Mode

PSYNCn1 PSYNCNnO Description

0 0 Send signal on match with OCRnRA (during counting down of PSC). The min value of
OCRNRA must be 1.

0 1 Send signal on match with OCRnRA (during counting up of PSC). The min value of
OCRNRA must be 1.

1 0 no synchronization signal

1 1 no synchronization signal

14.16.3 PSC Output Compare SA Register —- POCRNnSAH and POCRNSAL

Bit 7 6 5 4 3 2 1 0
- | -1 - 1 -1 POCRNSA[11:8] POCRNSAH
POCRNSA[7:0] POCRNSAL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

14.16.4 PSC Output Compare RA Register —- POCRnRAH and POCRnRAL

Bit 7 6 5 4 3 2 1 0
- | -1 - 1 -1 POCRNRA[11:8] POCRNRAH
POCRNRA[7:0] POCRNRAL
Read/Write R/W R/W R/W R/W RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

14.16.5 PSCOutput Compare SB Register - POCRnSBH and POCRnSBL

Bit 7 6 5 4 3 2 1 0
- -7 -1 -1 POCRNSB[11:8] JpocrnsBH
POCRNSBJ[7:0]] ocrnsBL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

14.16.6 PSC Output Compare RB Register - POCR_RBH and POCR_RBL

Bit 7 6 5 4 3 2 1 0
- | -1 - 1 -1 POCRNRB[11:8] POCR_RBH
POCRNRB[7:0] POCR_RBL
Read/Write R/W R/W R/W R/W R/W R/W RIW RIW
Initial Value 0 0 0 0 0 0 0 0
Note: n = 0 to 2 according to module number.

The output compare registers RA, RB, SA and SB contain a 12-bit value that is continuously compared with the PSC counter
value. A match can be used to generate an output compare interrupt, or to generate a waveform output on the associated
pin.

The output compare registers are 16bit and 12-bit in size. To ensure that both the high and low bytes are written
simultaneously when the CPU writes to these registers, the access is performed using an 8-bit temporary high byte register
(TEMP). This temporary register is shared by all the other 16-bit registers.

ATmega16/32/64/M1/C1 [DATASHEET] 129
AtmeL 76470-AVR-01/15

15. Serial Peripheral Interface — SPI

The serial peripheral interface (SPI) allows high-speed synchronous data transfer between the ATmega16/32/64/M1/C1 and
peripheral devices or between several AVR devices.

The ATmega16/32/64/M1/C1 SPI includes the following features:

15.1 Features
e Full-duplex, three-wire synchronous data transfer
Master or slave operation
LSB first or MSB first data transfer
Seven programmable bit rates
End of transmission interrupt flag
Write collision flag protection
Wake-up from idle mode
Double speed (CK/2) master SPI mode

Figure 15-1. SPI Block Diagram®

SPIPS
~—MISO
s MISO
‘ _A
M
MSB LSB M —|
CLK 0 — - MOSI
-4 8 Bit Shift Register [«T—® S °
Read Data Buffer = || MOS!
| _A
Divider y [°
2/4/8/16/32/66/128 1 ‘g
A (&) <+— SCK
=z
YyvYyYvy Clock o SCK
SPI Clock (Master) . *— A
Select Clock [S —
| Logic -\
1 A A la—| SS
) o A A |
Y] |
o aflo —
[n| o A A l«—]SS A
Elwle
0| » noc
YIVY wmsTR = |2
[sPE
SPI Control -
A
[6 é Qlx|a|l<|«| o
52 5 o 2lel8|el8|E|E|E
"’wgw|||||"’ HEEEEE
I SPI Status Register I I SPI Control Register I
o \8 8[-
A)
A
\]

SPI Interrupt Internal
Request Data Bus

Note: 1. Referto Figure 1-1 on page 3, and Table 9-3 on page 58 for SPI pin placement.

ATmega16/32/64/M1/C1 [DATASHEET] 133
/ItmeL 76470-AVR-01/15

16.6.4 Stamping Message

The capture of the timer value is done in the MOb which receives or sends the frame. All managed MOb are stamped, the
stamping of a received (sent) frame occurs on RxOk (TXOK).

16.7 Error Management

16.7.1 Fault Confinement

The CAN channel may be in one of the three following states:

Error active (default):

The CAN channel takes part in bus communication and can send an active error frame when the CAN macro detects
an error.

Error passive:

The CAN channel cannot send an active error frame. It takes part in bus communication, but when an error is
detected, a passive error frame is sent. Also, after a transmission, an error passive unit will wait before initiating
further transmission.

Bus off:

The CAN channel is not allowed to have any influence on the bus.

For fault confinement, a transmit error counter (TEC) and a receive error counter (REC) are implemented. BOFF and ERRP
bits give the information of the state of the CAN channel. Setting BOFF to one may generate an interrupt.

Figure 16-12. Line Error Mode

Note:

Atmel

| Reset |

ERRP =0
BOFF =0

TEC > 127
or
Rec 127

128 occurrences
of 11 consecutive
recessive bit

TEC <127
ERRP = 1 and ERRP = 1
BOFF = 0 Rec <127 BOFF =0
Error
Passive
TEC > 255

Interrupt BOFFIT

More than one REC/TEC change may apply during a given message transfer.

ATmega16/32/64/M1/C1 [DATASHEET] 153
76470-AVR-01/15

16.7.2 Error Types
e BERR: Bit error. The bit value which is monitored is different from the bit value sent.

Note: Exceptions:
- Recessive bit sent monitored as dominant bit during the arbitration field and the acknowledge slot.
- Detecting a dominant bit during the sending of an error frame.

e SERR: Stuff error. Detection of more than five consecutive bit with the same polarity.

e CERR: CRC error (Rx only). The receiver performs a CRC check on every destuffed received message from the start
of frame up to the data field. If this checking does not match with the destuffed CRC field, an CRC error is set.

e FERR: Form error. The form error results from one (or more) violations of the fixed form of the following bit fields:
e CRC delimiter
e acknowledgement delimiter
e end-of-frame
e error delimiter
e overload delimiter

AERR: Acknowledgment error (Tx only). No detection of the dominant bit in the acknowledge slot.

Figure 16-13. Error Detection Procedures in a Data Frame

Arbitration |
Bit error 0'4 -------------
Stuff error
Form error [
Tx
ACK error |
f 2 2
—_— |30F| Identifier |RTR| Control | Message Data | CRC (;I;C ACK ngKI EOF inter.
(<4 (<4
Tx Bit error |
Stuff error
Form error [
CRC error

16.7.3 Error Setting

The CAN channel can detect some errors on the CAN network.
e Intransmission:
The error is set at MOb level.

e |n reception:
e The identified has matched:
e The error is set at MOD level.
e The identified has not or not yet matched:
e The error is set at general level.

After detecting an error, the CAN channel sends an error frame on network. If the CAN channel detects an error frame on
network, it sends its own error frame.

154 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 Atmel

16.11 MODb Registers
The MOD registers has no initial (default) value after RESET.

16.11.1 CAN MOb Status Register - CANSTMOB

Bit 7 6 5 4 3 2 1 0

| bLcw | TXOK | RXOK | BERR | SERR | CERR | FERR | AERR |CANSTMOB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value - - - - - - - -

e Bit 7—- DLCW: Data Length Code Warning

The incoming message does not have the DLC expected. Whatever the frame type, the DLC field of the CANCDMOB
register is updated by the received DLC.

¢ Bit 6 — TXOK: Transmit OK

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The communication enabled by transmission is completed. TxOK rises at the end of EOF field. When the controller is ready
to send a frame, if two or more message objects are enabled as producers, the lower MOb index (0 to 14) is supplied first.

¢ Bit 5 - RXOK: Receive OK

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The communication enabled by reception is completed. RxOK rises at the end of the 6™ bit of EOF field. In case of two or
more message object reception hits, the lower MOb index (0 to 14) is updated first.

« Bit 4 — BERR: Bit Error (Only in Transmission)

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The bit value monitored is different from the bit value sent.

Exceptions: the monitored recessive bit sent as a dominant bit during the arbitration field and the acknowledge slot detecting
a dominant bit during the sending of an error frame.

¢ Bit 3— SERR: Stuff Error

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

Detection of more than five consecutive bits with the same polarity. This flag can generate an interrupt.

* Bit 2 - CERR: CRC Error

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The receiver performs a CRC check on every de-stuffed received message from the start of frame up to the data field. If this
checking does not match with the de-stuffed CRC field, a CRC error is set.

* Bit1-FERR: Form Error

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The form error results from one or more violations of the fixed form in the following bit fields:
e CRC delimiter.
e Acknowledgment delimiter.
e EOF

ATmega16/32/64/M1/C1 [DATASHEET] 167
AtmeL 76470-AVR-01/15

17.4.4 LINJUART Command Overview

Figure 17-5. LIN/UART Command Dependencies

Tx
Response

Rx
Response

Rx Header
or
LIN Abort

DISABLE

Byte
Transfer

RXOK

Automatic

Return

Recommended
Way

Possible
Way

Table 17-1. LIN/JUART Command List

LENA LCMD|2] LCMDI1] LCMDI0] Command Comment
0 X X X Disable peripheral
0 0 Rx Header - LIN abort LIN withdrawal
. 1 Tx Header LCMDJ[2..0]=000 after Tx
: 0 Rx response LCMDI2..0]=000 after Rx
’ 1 Tx response LCMDJ[2..0]=000 after Tx
0 0 Byte transfer
1 0 Rx Byte no CRC, no time out
1 LTXDL=LRXDL=0
0 1 Tx Byte (LINDLR: read only register)
1 1 Full duplex
178 ATmega16/32/64/M1/C1 [DATASHEET] Atmel.

76470-AVR-01/15

Table 19-1. Example of Resistor Values (+5%) for a 8-address System (AV . = 5VV)

Physical Resistor Value Typical Measured | Minimum Reading @ Typical Reading Maximum Reading
Address Rioag (Ohm) Voltage (V) with a 2.56V ref with a 2.56V ref = with a 2.56V ref

0 1000 0.1 40

1 2200 0.22 88

2 3300 0.33 132

3 4700 0.47 188

4 6 800 0.68 272

5 10 000 1 400

6 15 000 1.5 600

7 22 000 2.2 880

Table 19-2. Example of Resistor Values (x1%) for a 16-address System (AVc = 5vY)

Physical Resistor Value Typical Measured 'Minimum Reading | Typical Reading | Miximum Reading
Address Rioag (Ohm) Voltage (V) with a 2.56V ref with a 2.56V ref with a 2.56V ref

0 1000 0.1 38 40 45

1 1200 0.12 46 48 54

2 1500 0.15 57 60 68

3 1800 0.18 69 72 81

4 2200 0.22 84 88 99

5 2700 0.27 104 108 122

6 3300 0.33 127 132 149

7 4700 0.47 181 188 212

8 6 800 0.68 262 272 306

9 8 200 0.82 316 328 369

10 10 000 1.0 386 400 450

11 12 000 1.2 463 480 540

12 15 000 1.5 579 600 675

13 18 000 1.8 694 720 810

14 22 000 22 849 880 989

15 27 000 2.7 1023 1023 1023

Note: 1. 5V range: Max Rj,,q 30KQ
3V range: Max R4 15KQ

19.2.2 Current Source for Low Cost Traducer
An external transducer based on variable resistor can be connected to the current source. This ca be for instance:
e A thermistor, or temperature-sensitive resistor, used as a temperature sensor
e A CdS photoconductive cell, or luminosity-sensitivity resistor, used as a luminosity sensor.

Using the current source with this type of transducer eliminates the need for additional parts otherwise required in resistor
network or Wheatstone bridge.

19.2.3 Voltage Reference for External Devices

An external resistor used in conjunction with the current source can be used as voltage reference for external devices. Using
a resistor in serie with a lower tolerance than the current source accuracy (< 2%) is recommended. Table 19-2 gives an
example of voltage references using standard values of resistors.

ATmega16/32/64/M1/C1 [DATASHEET] 223
Atmel 76470-AVR-01/15

Figure 25-4. Programming the EEPROM Waveforms

K
N

A G B C E B (o3 E L

DATA x 0x11 XADDR. HIGH{ADDR. LOWX DATA X' XX XADDR.LOWX DATA X XX

WR \ /
RDY/BSY \ —_

RESET +12V

OE
PAGEL /\ / \

BS2

25.8.6 Reading the Flash
The algorithm for reading the flash memory is as follows (refer to Section 25.8.4 “Programming the Flash” on page 262 for
details on command and address loading):
1. A: Load command “0000 0010”.
G: Load address High Byte (0x00 - OxFF).
B: Load address Low Byte (0x00 - OxFF).
Set OE to “0”, and BS1 to “0”. The flash word low byte can now be read at DATA.
Set BS1 to “1”. The flash word high byte can now be read at DATA.
Set OE to “1”.

2B

25.8.7 Reading the EEPROM
The algorithm for reading the EEPROM memory is as follows (refer to Section 25.8.4 “Programming the Flash” on page 262
for details on command and address loading):
1. A: Load command “0000 0011”.
G: Load address high byte (0x00 - OxFF).
B: Load address low byte (0x00 - OxFF).
Set OE to “0”, and BS1 to “0”. The EEPROM data byte can now be read at DATA.
Set OE to “1”.

o~ wN

25.8.8 Programming the Fuse Low Bits
The algorithm for programming the fuse low bits is as follows (refer to Section 25.8.4 “Programming the Flash” on page 262
for details on command and data loading):
1. A: Load command “0100 0000”".
2. C:Load data low byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. Give WRa negative pulse and wait for RDY/BSY to go high.

ATmega16/32/64/M1/C1 [DATASHEET] 265
/ItmeL 76470-AVR-01/15

26.9 ADC Characteristics

Table 26-6. ADC Characteristics in Single Ended Mode - T, = —40°C to +125°C, V¢ = 2.7V to 5.5V (unless otherwise noted)

Parameter Condition Symbol Min Typ Max Unit
Resolution Single Ended Conversion 10 Bits
Vee =5V, VReg = 2.56V
ee REF TUE 3.2 5.0 LSB
ADC clock = 1MHz
Absolute accuracy Vo =B\ Yo = 215EY
cc = =% TREF & TUE 3.2 5.0 LSB
ADC clock = 2MHz
Vee =5V, Vreg = 2.56V
e REF INL 0.7 15 LSB
ADC clock = 1MHz
Integral Non-linearity Ve = BY. Vierr = 256V
cc = =% TREF = INL 0.8 2.0 LSB
ADC clock = 2MHz
Vee =5V, Vreg = 2.56V
ce REF DNL 0.5 0.8 LSB
ADC clock = 1MHz
Differential Non-linearity Ve = BY. Vierr = 256V
cc = =% TREF = DNL 0.6 1.4 LSB
ADC clock = 2MHz
Vee =5V, Vreg = 2.56V
e REF -9.0 5.0 0.0 LSB
. ADC clock = 1MHz
Gain error Vo =BV = 256y
cc = =% TREF = -9.0 5.0 0.0 LSB
ADC clock = 2MHz
Vee =5V, Vreg = 2.56V
e REF 2.0 +2.5 +5.0 LSB
ADC clock = 1MHz
Offset error Vo =B\ o = DBEY
cc = =% TREF = -2.0 +2.5 +5.0 LSB
ADC clock = 2MHz
Ref voltage VRer 2.56 AVCC \Y
280 ATmega16/32/64/M1/C1 [DATASHEET
9 [: Atmel

76470-AVR-01/15

Figure 27-33. Calibrated 8MHz RC Oscillator Frequency versus V¢

83
82
[—]
,..-.-—-—'—'_'_'_‘_,_,_,—'—'—'_
|
]
81
¥
I
£ 4
o
o
w
74
78
77
27 32 37 42 47 52
VCe (V)

Figure 27-34. Calibrated 8MHz RC Oscillator Frequency versus OSCCAL Value

12
15

1B

- 12 "_.4
% [} "'/
§ 8 o M/w*--fw#
w - -
) —==r"T
e]

1] B 32 B 64 @0 96 12 1ZE W Ed 176 19X 2@ I 240
OSCCAL (X1)

ATmega16/32/64/M1/C1 [DATASHEET] 295
AtmeL 76470-AVR-01/15

28. Instruction Set Summary

Mnemonics

#Clocks

MULS
MULSU
FMUL
FMULS
FMULSU
Branch Instructi
RJMP
IJMP
JMP(*)
RCALL
ICALL
CALL(*)
RET
RETI
CPSE
CP

Operands

ons

Arithmetic and Logic Instructions

Rd, Rr
Rd, Rr
Rdl,K
Rd, Rr
Rd, K
Rd, Rr
Rd, K
Rdl,K
Rd, Rr
Rd, K
Rd, Rr
Rd, K
Rd, Rr
Rd
Rd
Rd,K
Rd,K
Rd
Rd
Rd
Rd
Rd
Rd, Rr
Rd, Rr
Rd, Rr
Rd, Rr
Rd, Rr
Rd, Rr

Rd,Rr
Rd,Rr
Rd,Rr
Rd,K
Rr, b
Rr, b
P, b

Description

Add two registers
Add with carry two registers
Add immediate to word
Subtract two registers
Subtract constant from register
Subtract with carry two registers
Subtract with carry constant from register
Subtract immediate from word
Logical AND registers
Logical AND register and constant
Logical OR registers
Logical OR register and constant
Exclusive OR registers
One’s complement
Two’s complement
Set bit(s) in register
Clear bit(s) in register
Increment
Decrement
Test for zero or minus
Clear register
Set register
Multiply unsigned
Multiply signed
Multiply signed with unsigned
Fractional multiply unsigned
Fractional multiply signed
Fractional multiply signed with unsigned

Relative jump
Indirect jump to (Z)
Direct jump
Relative subroutine call
Indirect call to (Z)

Direct subroutine call
Subroutine return
Interrupt return
Compare, skip if equal
Compare
Compare with carry
Compare register with immediate
Skip if bit in register cleared
Skip if bit in register is set
Skip if bit in 1/0 register cleared

These Instructions are only available in “16K and 32K parts”

296 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15

Operation

Rd < Rd + Rr
Rd«+ Rd+Rr+C
Rdh:Rdl « Rdh:Rdl + K
Rd «~ Rd - Rr
Rd «+ Rd - K
Rd« Rd-Rr-C
Rd« Rd-K-C
Rdh:Rdl « Rdh:Rdl — K
Rd <« Rd x Rr
Rd « Rd x K
Rd <~ Rd v Rr
Rd «~ Rdv K
Rd < Rd ® Rr
Rd « OxFF —Rd
Rd « 0x00 — Rd
Rd «~ Rdv K
Rd « Rd x (OxFF — K)
Rd « Rd + 1
Rd <« Rd -1
Rd <« Rd x Rd
Rd <« Rd @ Rd
Rd « OxFF
R1:R0 « Rd x Rr
R1:R0 «- Rd x Rr
R1:R0 « Rd x Rr
R1:R0 « (Rd x Rr) << 1
R1:R0 « (Rd x Rr) << 1
R1:R0 « (Rd x Rr) << 1

PC« PC+k+1
PC«2Z
PC « k
PC« PC+k+1
PC«Z
PC « k
PC « STACK
PC « STACK
if (Rd=Rr)PC« PC+2o0r3
Rd — Rr
Rd-Rr-C
Rd - K
if (Rr(b)=0) PC «~ PC+20r3
if (Rr(b)=1) PC < PC +2o0r3
if (P(b)=0) PC < PC + 2 or 3

Flags

Z,C,N,V,H
Z,C,N,V,H
Z,CN,V,S
Z,C,N,V,H
Z,C,N,V,H
Z,C,N,V,H
Z,C,N,V,H
Z,CN,\V,S
ZN\V
ZN\V
ZN\V
ZN,V
ZN\V
Z,CN\V
Z,C,N,V,H
ZN,V
ZN\V
ZN\V
ZN\V
ZN,V
ZN\V
None
ZC
zZC
Z.C
zZC
ZC
zZC

None
None
None
None
None
None
None
|
None
Z,N,V,C,H
Z,N\V,CH
Z,N,V,C,H
None
None
None

NN N N NN 2 A a @ @ @@ D 2 Q@ @ a2 -

ABA WOWWDNDN

1/2/3

1/2/3
1/2/3
1/2/3

Atmel

29. Register Summary (Continued)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0 Page
0x10 (0x30) | Reserved - - - - - - - -
O0xOF (0x2F) | Reserved - - - - - - - -
OxOE (0x2E) | PORTE - - - - - PORTE2 | PORTE1 | PORTEO 69
0x0D (0x2D) DDRE - - - - - DDE2 DDE1 DDEO 69
0x0C (0x2C) PINE - - - - - PINE2 PINE1 PINEO 69
0x0B (0x2B) PORTD PORTD7 | PORTD6 | PORTD5 | PORTD4 PORTD3 PORTD2 PORTD1 PORTDO 69
0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDDO 69
0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PINDO 69
0x08 (0x28) | PORTC PORTC7 | PORTC6 | PORTC5 | PORTC4 | PORTC3 PORTC2 | PORTC1 | PORTCO 68
0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDCA1 DDCO 69
0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO 69
0x05 (0x25) PORTB PORTB7 | PORTB6 | PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTBO 68
0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDBO 68
0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO 68
0x02 (0x22) | Reserved - - - - - - - -
0x01 (0x21) | Reserved - - - - - - - -
0x00 (0x20) | Reserved - - - - - - - -
Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory

addresses should never be written.

2. /O registers within the address range 0x00 - Ox1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags.
The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the 1/0O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing 1/0
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega16/32/64/M1/C1 is a complex microcontroller with more peripheral units than can be supported within the 64
location reserved in Opcode for the IN and OUT instructions. For the Extended 1/O space from 0x60 - OxFF in SRAM,
only the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. These registers are only available on ATmega32/64M1. For other products described in this datasheet, these locations
are reserved.

ATmega16/32/64/M1/C1 [DATASHEET] 305
AtmeL 76470-AVR-01/15

