
Microchip Technology - ATMEGA16M1-15MD Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity CANbus, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT

Number of I/O -

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 11x10b; D/A 1x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 150°C (TA)

Mounting Type Surface Mount

Package / Case 32-VQFN Exposed Pad

Supplier Device Package 32-QFN (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega16m1-15md

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega16m1-15md-4433620
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Figure 3-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using two register
operands is executed, and the result is stored back to the destination register.

Figure 3-5. Single Cycle ALU Operation

3.8 Reset and Interrupt Handling

The AVR® provides several different interrupt sources. These interrupts and the separate reset vector each have a separate
program vector in the program memory space. All interrupts are assigned individual enable bits which must be written logic
one together with the global interrupt enable bit in the status register in order to enable the interrupt. Depending on the
program counter value, interrupts may be automatically disabled when boot lock bits BLB02 or BLB12 are programmed. This
feature improves software security. See Section 25. “Memory Programming” on page 255 for details.

The lowest addresses in the program memory space are by default defined as the reset and interrupt vectors. The complete
list of vectors is shown in Section 8. “Interrupts” on page 47. The list also determines the priority levels of the different
interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next is ANACOMP0 –
the analog comparator 0 interrupt. The interrupt vectors can be moved to the start of the boot flash section by setting the
IVSEL bit in the MCU control register (MCUCR). Refer to Section 8. “Interrupts” on page 47 for more information. The reset
vector can also be moved to the start of the boot flash section by programming the BOOTRST fuse, see Section 24. “Boot
Loader Support – Read-while-write Self-Programming ATmega16/32/64/M1/C1” on page 241.

3.8.1 Interrupt Behavior

When an interrupt occurs, the global interrupt enable I-bit is cleared and all interrupts are disabled. The user software can
write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine.
The I-bit is automatically set when a return from interrupt instruction – RETI – is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the interrupt flag. For these
interrupts, the program counter is vectored to the actual interrupt vector in order to execute the interrupt handling routine,
and hardware clears the corresponding interrupt flag. Interrupt flags can also be cleared by writing a logic one to the flag bit
position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the interrupt
flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more
interrupt conditions occur while the global interrupt enable bit is cleared, the corresponding interrupt flag(s) will be set and
remembered until the global interrupt enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily
have interrupt flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any
pending interrupt is served.

Note that the status register is not automatically stored when entering an interrupt routine, nor restored when returning from
an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed
after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example shows how this can
be used to avoid interrupts during the timed EEPROM write sequence.

clkCPU

T1

Register Operands Fetch

Result Write Back

ALU Operation Execute

Total Execution Time

T2 T3 T4
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

16

When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before any pending
interrupts, as shown in this example.

3.8.2 Interrupt Response Time

The interrupt execution response for all the enabled AVR® interrupts is four clock cycles minimum. After four clock cycles the
program vector address for the actual interrupt handling routine is executed. during this four clock cycle period, the program
counter is pushed onto the stack. The vector is normally a jump to the interrupt routine, and this jump takes three clock
cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before the interrupt is
served. If an interrupt occurs when the MCU is in sleep mode, the interrupt execution response time is increased by four
clock cycles. This increase comes in addition to the start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. during these four clock cycles, the program counter (two
bytes) is popped back from the stack, the stack pointer is incremented by two, and the I-bit in SREG is set.

Assembly Code Example

in r16, SREG ; store SREG value
cli ; disable interrupts during timed sequence
sbi EECR, EEMWE ; start EEPROM write
sbi EECR, EEWE
out SREG, r16 ; restore SREG value (I-bit)

C Code Example

char cSREG;
cSREG = SREG; /* store SREG value */
/* disable interrupts during timed sequence */
_CLI();
EECR |= (1<<EEMWE); /* start EEPROM write */
EECR |= (1<<EEWE);
SREG = cSREG; /* restore SREG value (I-bit) */

Assembly Code Example

sei ; set Global Interrupt Enable
sleep ; enter sleep, waiting for interrupt
; note: will enter sleep before any pending
; interrupt(s)

C Code Example

_SEI(); /* set Global Interrupt Enable */
_SLEEP(); /* enter sleep, waiting for interrupt */
/* note: will enter sleep before any pending interrupt(s) */
17ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

Therefore it is recommended not to take the OSCCAL adjustments to a higher frequency than 8MHz in order to keep the PLL
in the correct operating range.

The internal PLL is enabled only when the PLLE bit in the register PLLCSR is set. The bit PLOCK from the register PLLCSR
is set when PLL is locked.

Both internal 8MHz RC Oscillator, Crystal Oscillator and PLL are switched off in Power-down and Standby sleep
modes.01/15

Figure 5-3. PLL Clocking System

Table 5-7. Start-up Times when the PLL is selected as system clock

CKSEL3..0 SUT1..0
Start-up Time from Power-down and

Power-save
Additional Delay from Reset

(VCC = 5.0V)

0011

RC Osc

00 1K CK 14CK

01 1K CK 14CK + 4ms

10 1K CK 14CK + 64ms

11 16K CK 14CK

0101

Ext Osc

00 1K CK 14CK

01 1K CK 14CK + 4ms

10 16K CK 14CK + 4ms

11 16K CK 14CK + 64ms

0001

Ext Clk

00 6 CK(1) 14CK

01 6 CK(1) 14CK + 4ms

10 6 CK(1) 14CK + 64ms

11 Reserved

Note: 1. This value do not provide a proper restart; do not use PD in this clock scheme.

RC Oscillator
8MHz

Divide
by 8

PLL
64x

Divide
by 2

Divide
by 4

Oscillators
XTAL1

OSCCAL PLLE

PLOCK

CLKPLL

CKSOURCE

PLLFCKSEL3..0

XTAL2

Lock
Detector
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

30

Table 9-4 and Table 9-5 relates the alternate functions of Port B to the overriding signals shown in Figure 9-5 on page 56.

Table 9-4. Overriding Signals for Alternate Functions in PB7..PB4

Signal Name

PB7/ADC4/

PSCOUT0B/SCK/
PCINT7

PB6/ADC7/

PSCOUT1B/

PCINT6

PB5/ADC6/

INT2/ACMPN1/
AMP2-/PCINT5

PB4/AMP0+/

PCINT4

PUOE SPE MSTR SPIPS 0 0 0

PUOV PB7 PUD SPIPS 0 0 0

DDOE
SPE MSTR SPIPS +

PSCen01
PSCen11 0 0

DDOV PSCen01 1 0 0

PVOE SPE MSTR SPIPS PSCen11 0 0

PVOV
PSCout01 SPIPS + PSCout01

PSCen01 SPIPS
+ PSCout01 PSCen01 SPIPS

PSCOUT11 0 0

DIEOE ADC4D ADC7D ADC6D + In2en AMP0ND

DIEOV 0 0 In2en 0

DI SCKin SPIPS ireset ICP1B INT2

AIO ADC4 ADC7 ADC6 AMP0+

Table 9-5. Overriding Signals for Alternate Functions in PB3..PB0

Signal Name

PB3/AMP0-/

PCINT3

PB2/ADC5/INT1/

ACMPN0/PCINT2

PB1/MOSI/

PSCOUT2B/

PCINT1

PB0/MISO/

PSCOUT2A/

PCINT0

PUOE 0 0 – –

PUOV 0 0 – –

DDOE 0 0 – –

DDOV 0 0 – –

PVOE 0 0 – –

PVOV 0 0 – –

DIEOE AMP0ND ADC5D + In1en 0 0

DIEOV 0 In1en 0 0

DI INT1
MOSI_IN SPIPS

ireset
MISO_IN SPIPS

ireset

AIO AMP0- ADC5 – –
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

60

12. 8-bit Timer/Counter0 with PWM

Timer/Counter0 is a general purpose 8-bit Timer/Counter module, with two independent Output Compare Units, and with
PWM support. It allows accurate program execution timing (event management) and wave generation. The main features
are:

● Two independent output compare units

● Double buffered output compare registers

● Clear timer on compare match (auto reload)

● Glitch free, phase correct pulse width modulator (PWM)

● Variable PWM period

● Frequency generator

● Three independent interrupt sources (TOV0, OCF0A, and OCF0B)

12.1 Overview

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 12-1. For the actual placement of I/O pins, refer to
Section 2.3 “Pin Descriptions” on page 9. CPU accessible I/O registers, including I/O bits and I/O pins, are shown in bold.
The device-specific I/O Register and bit locations are listed in Section 12.8 “8-bit Timer/Counter Register Description” on
page 86.

The PRTIM0 bit in Section 6.6 “Power Reduction Register” on page 36 must be written to zero to enable Timer/Counter0
module.

Figure 12-1. 8-bit Timer/Counter Block Diagram

Control Logic

TCNTn

Timer/Counter

Count
Clear

Direction
clkTn

OCRnx

OCRnx

TCCRnA TCCRnB

=

Edge
Detector

(from Prescaler)

Clock Select

TOP BOTTOM

TOVn (Int. Req.)

OCnA (Int. Req.)

Tn

Waveform
Generation

Fixed
TOP
Value

D
AT

A
B

U
S

=

= = 0

OCnA

OCnB (Int. Req.)

Waveform
Generation OCnB
77ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

14.11 PSC Input Mode 11xb: Halt PSC and Wait for Software Action

Figure 14-14. PSC Behavior versus PSCn Input A in Fault Mode 11xb

Note: Software action is the setting of the PRUNn bit in PCTLn register.

Used in fault mode 7, PSCn input A or PSCn input B act indifferently on On-Time0/Dead-Time0 or on On-Time1/Dead-
Time1.

14.12 Analog Synchronization

Each PSC module generates a signal to synchronize the ADC sample and hold; synchronisation is mandatory for
measurements.

This signal can be selected between all falling or rising edge of PSCOUTnA or PSCOUTnB outputs.

In center aligned mode, OCRnRAH/L is not used, so it can be used to specified the synchronization of the ADC. It this case,
it’s minimum value is 1.

14.13 Interrupt Handling

As each PSC module can be dedicated for one function, each PSC has its own interrupt system (vector ..)

List of interrupt sources:

● Counter reload (end of on time 1)

● PSC input event (active edge or at the beginning of level configured event)

● PSC mutual synchronization error

14.14 PSC Clock Sources

Each PSC has two clock inputs:

● CLK PLL from the PLL

● CLK I/O

Figure 14-15. Clock Selection

PCLKSELn bit in PSC control register (PCTL) is used to select the clock source.

PPREn1/0 bits in PSC control register (PCTL) are used to select the divide factor of the clock.

OT0 DT0OT0

Software Action (1)

OT1 OT1DT1 OT0 DT1DT0 DT0

PSCOUTnA

PSCOUTnB

PSC Input

C
K

/2
56

C
K

/3
2

C
K

/4
01 10 1100

C
K

CK

PCLKSEL
PPREn1/0

Prescaler

CLKPLL

CLKI/O

CLKPSCn

0

1

ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

126

14.16.3 PSC Output Compare SA Register – POCRnSAH and POCRnSAL

14.16.4 PSC Output Compare RA Register – POCRnRAH and POCRnRAL

14.16.5 PSCOutput Compare SB Register – POCRnSBH and POCRnSBL

14.16.6 PSC Output Compare RB Register – POCR_RBH and POCR_RBL

Note: n = 0 to 2 according to module number.

The output compare registers RA, RB, SA and SB contain a 12-bit value that is continuously compared with the PSC counter
value. A match can be used to generate an output compare interrupt, or to generate a waveform output on the associated
pin.

The output compare registers are 16bit and 12-bit in size. To ensure that both the high and low bytes are written
simultaneously when the CPU writes to these registers, the access is performed using an 8-bit temporary high byte register
(TEMP). This temporary register is shared by all the other 16-bit registers.

Table 14-9. Synchronization Source Description in Centered Mode

PSYNCn1 PSYNCn0 Description

0 0
Send signal on match with OCRnRA (during counting down of PSC). The min value of
OCRnRA must be 1.

0 1
Send signal on match with OCRnRA (during counting up of PSC). The min value of
OCRnRA must be 1.

1 0 no synchronization signal

1 1 no synchronization signal

Bit 7 6 5 4 3 2 1 0

– – – – POCRnSA[11:8] POCRnSAH

POCRnSA[7:0] POCRnSAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – POCRnRA[11:8] POCRnRAH

POCRnRA[7:0] POCRnRAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – POCRnSB[11:8] POCRnSBH

POCRnSB[7:0] OCRnSBL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – POCRnRB[11:8] POCR_RBH

POCRnRB[7:0] POCR_RBL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
129ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

15. Serial Peripheral Interface – SPI

The serial peripheral interface (SPI) allows high-speed synchronous data transfer between the ATmega16/32/64/M1/C1 and
peripheral devices or between several AVR devices.

The ATmega16/32/64/M1/C1 SPI includes the following features:

15.1 Features
● Full-duplex, three-wire synchronous data transfer

● Master or slave operation

● LSB first or MSB first data transfer

● Seven programmable bit rates

● End of transmission interrupt flag

● Write collision flag protection

● Wake-up from idle mode

● Double speed (CK/2) master SPI mode

Figure 15-1. SPI Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 3, and Table 9-3 on page 58 for SPI pin placement.

Read Data Buffer

SPI Control Register

Clock

SPE

MSTR

SPI Clock (Master)

8 Bit Shift Register
LSBMSB

M

S

S

M

8

8

8

S

M

Internal
Data Bus

SPI Interrupt
Request

CLKI/O

SPI Control

Select Clock
Logic

Divider
2/4/8/16/32/66/128

S
P

IE

S
P

E

D
O

R
D

M
S

TR

C
P

O
L

C
P

H
A

W
C

O
L

S
P

IF

S
P

I2
X

S
P

I2
X

S
P

R
1

S
P

R
0

S
P

R
1

S
P

R
0

M
S

TR

D
O

R
D

P
IN

 C
on

tro
l L

og
ic

S
P

E

MISO

SPIPS

MISO
_A

SPI Status Register

MOSI

MOSI
_A

SCK

SCK
_A

SS

SS_A
133ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

16.6.4 Stamping Message

The capture of the timer value is done in the MOb which receives or sends the frame. All managed MOb are stamped, the
stamping of a received (sent) frame occurs on RxOk (TXOK).

16.7 Error Management

16.7.1 Fault Confinement

The CAN channel may be in one of the three following states:

● Error active (default):
The CAN channel takes part in bus communication and can send an active error frame when the CAN macro detects
an error.

● Error passive:
The CAN channel cannot send an active error frame. It takes part in bus communication, but when an error is
detected, a passive error frame is sent. Also, after a transmission, an error passive unit will wait before initiating
further transmission.

● Bus off:
The CAN channel is not allowed to have any influence on the bus.

For fault confinement, a transmit error counter (TEC) and a receive error counter (REC) are implemented. BOFF and ERRP
bits give the information of the state of the CAN channel. Setting BOFF to one may generate an interrupt.

Figure 16-12. Line Error Mode

Note: More than one REC/TEC change may apply during a given message transfer.

Reset

Interrupt BOFFIT

ERRP = 0
BOFF = 0

ERRP = 1
BOFF = 0

ERRP = 1
BOFF = 0

Error
Active

Error
Passive

Bus
Off

TEC > 255

TEC > 127
or

Rec 127

TEC ≤ 127
and

Rec ≤ 127

128 occurrences
of 11 consecutive

recessive bit
153ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

16.7.2 Error Types

● BERR: Bit error. The bit value which is monitored is different from the bit value sent.

Note: Exceptions:
- Recessive bit sent monitored as dominant bit during the arbitration field and the acknowledge slot.
- Detecting a dominant bit during the sending of an error frame.

● SERR: Stuff error. Detection of more than five consecutive bit with the same polarity.

● CERR: CRC error (Rx only). The receiver performs a CRC check on every destuffed received message from the start
of frame up to the data field. If this checking does not match with the destuffed CRC field, an CRC error is set.

● FERR: Form error. The form error results from one (or more) violations of the fixed form of the following bit fields:

● CRC delimiter

● acknowledgement delimiter

● end-of-frame

● error delimiter

● overload delimiter

● AERR: Acknowledgment error (Tx only). No detection of the dominant bit in the acknowledge slot.

Figure 16-13. Error Detection Procedures in a Data Frame

16.7.3 Error Setting

The CAN channel can detect some errors on the CAN network.

● In transmission:
The error is set at MOb level.

● In reception:

● The identified has matched:

● The error is set at MOb level.

● The identified has not or not yet matched:

● The error is set at general level.

After detecting an error, the CAN channel sends an error frame on network. If the CAN channel detects an error frame on
network, it sends its own error frame.

Tx

Tx

ACK EOF inter.CRC
del.

ACK
del.

SOF

Bit error

Stuff error

Form error

ACK error

Bit error

Stuff error

Form error

CRC error

RTRIdentifier Control

Arbitration

Message Data CRC
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

154

16.11 MOb Registers

The MOb registers has no initial (default) value after RESET.

16.11.1 CAN MOb Status Register - CANSTMOB

• Bit 7 – DLCW: Data Length Code Warning

The incoming message does not have the DLC expected. Whatever the frame type, the DLC field of the CANCDMOB
register is updated by the received DLC.

• Bit 6 – TXOK: Transmit OK

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The communication enabled by transmission is completed. TxOK rises at the end of EOF field. When the controller is ready
to send a frame, if two or more message objects are enabled as producers, the lower MOb index (0 to 14) is supplied first.

• Bit 5 – RXOK: Receive OK

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The communication enabled by reception is completed. RxOK rises at the end of the 6th bit of EOF field. In case of two or
more message object reception hits, the lower MOb index (0 to 14) is updated first.

• Bit 4 – BERR: Bit Error (Only in Transmission)

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The bit value monitored is different from the bit value sent.

Exceptions: the monitored recessive bit sent as a dominant bit during the arbitration field and the acknowledge slot detecting
a dominant bit during the sending of an error frame.

• Bit 3 – SERR: Stuff Error

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

Detection of more than five consecutive bits with the same polarity. This flag can generate an interrupt.

• Bit 2 – CERR: CRC Error

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The receiver performs a CRC check on every de-stuffed received message from the start of frame up to the data field. If this
checking does not match with the de-stuffed CRC field, a CRC error is set.

• Bit 1 – FERR: Form Error

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The form error results from one or more violations of the fixed form in the following bit fields:

● CRC delimiter.

● Acknowledgment delimiter.

● EOF

Bit 7 6 5 4 3 2 1 0

DLCW TXOK RXOK BERR SERR CERR FERR AERR CANSTMOB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value - - - - - - - -
167ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

17.4.4 LIN/UART Command Overview

Figure 17-5. LIN/UART Command Dependencies

Table 17-1. LIN/UART Command List

LENA LCMD[2] LCMD[1] LCMD[0] Command Comment

0 x x x Disable peripheral

1

0

0
0 Rx Header - LIN abort LIN withdrawal

1 Tx Header LCMD[2..0]=000 after Tx

1
0 Rx response LCMD[2..0]=000 after Rx

1 Tx response LCMD[2..0]=000 after Tx

1

0 0 Byte transfer
no CRC, no time out
LTXDL=LRXDL=0

(LINDLR: read only register)

1 0 Rx Byte

0 1 Tx Byte

1 1 Full duplex

Rx Header
or

LIN Abort

Byte
Transfer

DISABLE
LIN

UART

Rx
Response

IDOK

Recommended
Way

TXOK

RXOK

Rx
Byte

Tx
Response

Tx
Byte

Tx
Header

Full
Duplex

Possible
Way

Automatic
Return
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

178

Note: 1. 5V range: Max Rload 30K
3V range: Max Rload 15K

19.2.2 Current Source for Low Cost Traducer

An external transducer based on variable resistor can be connected to the current source. This ca be for instance:

● A thermistor, or temperature-sensitive resistor, used as a temperature sensor

● A CdS photoconductive cell, or luminosity-sensitivity resistor, used as a luminosity sensor.

Using the current source with this type of transducer eliminates the need for additional parts otherwise required in resistor
network or Wheatstone bridge.

19.2.3 Voltage Reference for External Devices

An external resistor used in conjunction with the current source can be used as voltage reference for external devices. Using
a resistor in serie with a lower tolerance than the current source accuracy (≤ 2%) is recommended. Table 19-2 gives an
example of voltage references using standard values of resistors.

Table 19-1. Example of Resistor Values (±5%) for a 8-address System (AVCC = 5V(1))

Physical
Address

Resistor Value
Rload (Ohm)

Typical Measured
Voltage (V)

Minimum Reading
with a 2.56V ref

Typical Reading
with a 2.56V ref

Maximum Reading
with a 2.56V ref

0 1 000 0.1 40

1 2 200 0.22 88

2 3 300 0.33 132

3 4 700 0.47 188

4 6 800 0.68 272

5 10 000 1 400

6 15 000 1.5 600

7 22 000 2.2 880

Table 19-2. Example of Resistor Values (±1%) for a 16-address System (AVCC = 5V1))

Physical
Address

Resistor Value
Rload (Ohm)

Typical Measured
Voltage (V)

Minimum Reading
with a 2.56V ref

Typical Reading
with a 2.56V ref

Miximum Reading
with a 2.56V ref

0 1 000 0.1 38 40 45

1 1 200 0.12 46 48 54

2 1500 0.15 57 60 68

3 1800 0.18 69 72 81

4 2200 0.22 84 88 99

5 2700 0.27 104 108 122

6 3300 0.33 127 132 149

7 4700 0.47 181 188 212

8 6 800 0.68 262 272 306

9 8 200 0.82 316 328 369

10 10 000 1.0 386 400 450

11 12 000 1.2 463 480 540

12 15 000 1.5 579 600 675

13 18 000 1.8 694 720 810

14 22 000 2.2 849 880 989

15 27 000 2.7 1023 1023 1023
223ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

Figure 25-4. Programming the EEPROM Waveforms

25.8.6 Reading the Flash

The algorithm for reading the flash memory is as follows (refer to Section 25.8.4 “Programming the Flash” on page 262 for
details on command and address loading):

1. A: Load command “0000 0010”.

2. G: Load address High Byte (0x00 - 0xFF).

3. B: Load address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The flash word low byte can now be read at DATA.

5. Set BS1 to “1”. The flash word high byte can now be read at DATA.

6. Set OE to “1”.

25.8.7 Reading the EEPROM

The algorithm for reading the EEPROM memory is as follows (refer to Section 25.8.4 “Programming the Flash” on page 262
for details on command and address loading):

1. A: Load command “0000 0011”.

2. G: Load address high byte (0x00 - 0xFF).

3. B: Load address low byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The EEPROM data byte can now be read at DATA.

5. Set OE to “1”.

25.8.8 Programming the Fuse Low Bits

The algorithm for programming the fuse low bits is as follows (refer to Section 25.8.4 “Programming the Flash” on page 262
for details on command and data loading):

1. A: Load command “0100 0000”.

2. C: Load data low byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

0x11

A G

DATA

XA1

XA0

BS1

BS2

XTAL1

WR

PAGEL

RDY/BSY

OE

RESET +12V

B C

ADDR. LOW ADDR. LOW

B

DATA XX

C E

K

XXDATA

E L

ADDR. HIGH
265ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

26.9 ADC Characteristics

Table 26-6. ADC Characteristics in Single Ended Mode - TA = –40°C to +125°C, VCC = 2.7V to 5.5V (unless otherwise noted)

Parameter Condition Symbol Min Typ Max Unit

Resolution Single Ended Conversion 10 Bits

Absolute accuracy

VCC = 5V, VREF = 2.56V

ADC clock = 1MHz
TUE 3.2 5.0 LSB

VCC = 5V, VREF = 2.56V

ADC clock = 2MHz
TUE 3.2 5.0 LSB

Integral Non-linearity

VCC = 5V, VREF = 2.56V

ADC clock = 1MHz
INL 0.7 1.5 LSB

VCC = 5V, VREF = 2.56V

ADC clock = 2MHz
INL 0.8 2.0 LSB

Differential Non-linearity

VCC = 5V, VREF = 2.56V

ADC clock = 1MHz
DNL 0.5 0.8 LSB

VCC = 5V, VREF = 2.56V

ADC clock = 2MHz
DNL 0.6 1.4 LSB

Gain error

VCC = 5V, VREF = 2.56V

ADC clock = 1MHz
–9.0 -5.0 0.0 LSB

VCC = 5V, VREF = 2.56V

ADC clock = 2MHz
–9.0 -5.0 0.0 LSB

Offset error

VCC = 5V, VREF = 2.56V

ADC clock = 1MHz
–2.0 +2.5 +5.0 LSB

VCC = 5V, VREF = 2.56V

ADC clock = 2MHz
–2.0 +2.5 +5.0 LSB

Ref voltage VREF 2.56 AVCC V
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

280

Figure 27-33. Calibrated 8MHz RC Oscillator Frequency versus VCC

Figure 27-34. Calibrated 8MHz RC Oscillator Frequency versus OSCCAL Value
295ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

28. Instruction Set Summary

Mnemonics Operands Description Operation Flags #Clocks

Arithmetic and Logic Instructions

ADD Rd, Rr Add two registers Rd Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with carry two registers Rd Rd + Rr + C Z,C,N,V,H 1

ADIW Rdl,K Add immediate to word Rdh:Rdl Rdh:Rdl + K Z,C,N,V,S 2

SUB Rd, Rr Subtract two registers Rd Rd – Rr Z,C,N,V,H 1

SUBI Rd, K Subtract constant from register Rd Rd – K Z,C,N,V,H 1

SBC Rd, Rr Subtract with carry two registers Rd Rd – Rr – C Z,C,N,V,H 1

SBCI Rd, K Subtract with carry constant from register Rd Rd – K – C Z,C,N,V,H 1

SBIW Rdl,K Subtract immediate from word Rdh:Rdl Rdh:Rdl – K Z,C,N,V,S 2

AND Rd, Rr Logical AND registers Rd Rd Rr Z,N,V 1

ANDI Rd, K Logical AND register and constant Rd Rd K Z,N,V 1

OR Rd, Rr Logical OR registers Rd Rd v Rr Z,N,V 1

ORI Rd, K Logical OR register and constant Rd Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR registers Rd Rd Rr Z,N,V 1

COM Rd One’s complement Rd 0xFF – Rd Z,C,N,V 1

NEG Rd Two’s complement Rd 0x00 – Rd Z,C,N,V,H 1

SBR Rd,K Set bit(s) in register Rd Rd v K Z,N,V 1

CBR Rd,K Clear bit(s) in register Rd Rd (0xFF – K) Z,N,V 1

INC Rd Increment Rd Rd + 1 Z,N,V 1

DEC Rd Decrement Rd Rd – 1 Z,N,V 1

TST Rd Test for zero or minus Rd Rd Rd Z,N,V 1

CLR Rd Clear register Rd Rd Rd Z,N,V 1

SER Rd Set register Rd 0xFF None 1

MUL Rd, Rr Multiply unsigned R1:R0 Rd Rr Z,C 2

MULS Rd, Rr Multiply signed R1:R0 Rd Rr Z,C 2

MULSU Rd, Rr Multiply signed with unsigned R1:R0 Rd Rr Z,C 2

FMUL Rd, Rr Fractional multiply unsigned R1:R0 (Rd x Rr) << 1 Z,C 2

FMULS Rd, Rr Fractional multiply signed R1:R0 (Rd x Rr) << 1 Z,C 2

FMULSU Rd, Rr Fractional multiply signed with unsigned R1:R0 (Rd x Rr) << 1 Z,C 2

Branch Instructions

RJMP k Relative jump PC PC + k + 1 None 2

IJMP Indirect jump to (Z) PC Z None 2

JMP(*) k Direct jump PC k None 3

RCALL k Relative subroutine call PC PC + k + 1 None 3

ICALL Indirect call to (Z) PC Z None 3

CALL(*) k Direct subroutine call PC k None 4

RET Subroutine return PC STACK None 4

RETI Interrupt return PC STACK I 4

CPSE Rd,Rr Compare, skip if equal if (Rd = Rr) PC PC + 2 or 3 None 1/2/3

CP Rd,Rr Compare Rd – Rr Z, N,V,C,H 1

CPC Rd,Rr Compare with carry Rd – Rr – C Z, N,V,C,H 1

CPI Rd,K Compare register with immediate Rd - K Z, N,V,C,H 1

SBRC Rr, b Skip if bit in register cleared if (Rr(b)=0) PC PC + 2 or 3 None 1/2/3

SBRS Rr, b Skip if bit in register is set if (Rr(b)=1) PC PC + 2 or 3 None 1/2/3

SBIC P, b Skip if bit in I/O register cleared if (P(b)=0) PC PC + 2 or 3 None 1/2/3

Note: 1. These Instructions are only available in “16K and 32K parts”
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

296

0x10 (0x30) Reserved – – – – – – – –

0x0F (0x2F) Reserved – – – – – – – –

0x0E (0x2E) PORTE – – – – – PORTE2 PORTE1 PORTE0 69

0x0D (0x2D) DDRE – – – – – DDE2 DDE1 DDE0 69

0x0C (0x2C) PINE – – – – – PINE2 PINE1 PINE0 69

0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 69

0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 69

0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 69

0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 68

0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 69

0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 69

0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 68

0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 68

0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 68

0x02 (0x22) Reserved – – – – – – – –

0x01 (0x21) Reserved – – – – – – – –

0x00 (0x20) Reserved – – – – – – – –

29. Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags.
The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega16/32/64/M1/C1 is a complex microcontroller with more peripheral units than can be supported within the 64
location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM,
only the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. These registers are only available on ATmega32/64M1. For other products described in this datasheet, these locations
are reserved.
305ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

