
Atmel - ATMEGA16M1-15MZ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity CANbus, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT

Number of I/O -

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 11x10b; D/A 1x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 32-VQFN Exposed Pad

Supplier Device Package 32-QFN (7x7)

Purchase URL https://www.e-xfl.com/product-detail/atmel/atmega16m1-15mz

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega16m1-15mz-4419211
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

6.2 Idle Mode

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle mode, stopping the CPU but
allowing SPI, UART, analog comparator, ADC, Timer/Counters, watchdog, and the interrupt system to continue operating.
This sleep mode basically halt clkCPU and clkFLASH, while allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal ones like the timer overflow and
UART transmit complete interrupts. If wake-up from the analog comparator interrupt is not required, the analog comparator
can be powered down by setting the ACD bit in the analog comparator control and status register – ACSR. This will reduce
power consumption in Idle mode. If the ADC is enabled, a conversion starts automatically when this mode is entered.

6.3 ADC noise reduction Mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC noise reduction mode, stopping
the CPU but allowing the ADC, the External Interrupts, Timer/Counter (if their clock source is external - T0 or T1) and the
watchdog to continue operating (if enabled). This sleep mode basically halts clkI/O, clkCPU, and clkFLASH, while allowing the
other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If the ADC is enabled, a
conversion starts automatically when this mode is entered. Apart from the ADC conversion complete interrupt, only an
external reset, a watchdog reset, a brown-out reset, a Timer/Counter interrupt, an SPM/EEPROM ready interrupt, an
external level interrupt on INT3:0 can wake up the MCU from ADC noise reduction mode.

6.4 Power-down Mode

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter power-down mode. In this mode, the
external oscillator is stopped, while the external interrupts and the watchdog continue operating (if enabled). Only an
external reset, a watchdog reset, a brown-out reset, a PSC interrupt, an external level interrupt on INT3:0 can wake up the
MCU. This sleep mode basically halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from power-down mode, the changed level must be held for some
time to wake up the MCU. Refer to Section 10. “External Interrupts” on page 70 for details.

When waking up from power-down mode, there is a delay from the wake-up condition occurs until the wake-up becomes
effective. This allows the clock to restart and become stable after having been stopped. The wake-up period is defined by the
same CKSEL fuses that define the reset time-out period, as described in Section 5.2 “Clock Sources” on page 26.

6.5 Standby Mode

When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected, the SLEEP instruction makes the
MCU enter Standby mode. This mode is identical to Power-down with the exception that the Oscillator is kept running. From
Standby mode, the device wakes up in six clock cycles.

Notes: 1. Only recommended with external crystal or resonator selected as clock source.

2. Only level interrupt.

Table 6-2. Active Clock Domains and Wake-up Sources in the Different Sleep Modes

Active Clock Domains Oscillators Wake-up Sources

Sleep Mode

cl
k

C
P

U

cl
k

F
L

A
S

H

cl
k I

O

cl
k A

D
C

cl
k P

L
L

M
ai

n
 C

lo
ck

S

o
u

rc
e

E
n

ab
le

d

IN
T

3.
.0

P
S

C

S
P

M
/E

E
P

R
O

M
R

ea
d

y

A
D

C

W
D

T

O
th

er
I/O

Idle X X X X X X X X X X

ADC Noise
Reduction

X X X X(2) X X X X

Power-down X(2) X

Standby(1) X X(2) X
35ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

The following code example shows one assembly and one C function for turning off the Watchdog Timer. The example
assumes that interrupts are controlled (e.g. by disabling interrupts globally) so that no interrupts will occur during the
execution of these functions.

Notes: 1. The example code assumes that the part specific header file is included.

2. If the watchdog is accidentally enabled, for example by a runaway pointer or brown-out condition, the device
will be reset and the watchdog timer will stay enabled. If the code is not set up to handle the watchdog, this
might lead to an eternal loop of time-out resets. To avoid this situation, the application software should always
clear the watchdog system reset flag (WDRF) and the WDE control bit in the initialization routine, even if the
watchdog is not in use.

Assembly Code Example(1)

WDT_off:
; Turn off global interrupt
cli
; Reset Watchdog Timer
wdr
; Clear WDRF in MCUSR
in r16, MCUSR
andi r16, (0xff & (0<<WDRF))
out MCUSR, r16
; Write logical one to WDCE and WDE
; Keep old prescaler setting to prevent unintentional time-out
lds r16, WDTCSR
ori r16, (1<<WDCE) | (1<<WDE)
sts WDTCSR, r16
; Turn off WDT
ldi r16, (0<<WDE)
sts WDTCSR, r16
; Turn on global interrupt
sei
ret

C Code Example(1)

void WDT_off(void)
{

__disable_interrupt();
__watchdog_reset();
/* Clear WDRF in MCUSR */
MCUSR &= ~(1<<WDRF);
/* Write logical one to WDCE and WDE */
/* Keep old prescaler setting to prevent unintentional time-out */
WDTCSR |= (1<<WDCE) | (1<<WDE);
/* Turn off WDT */
WDTCSR = 0x00;
__enable_interrupt();

}

ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

44

9.2.5 Digital Input Enable and Sleep Modes

As shown in Figure 9-2, the digital input signal can be clamped to ground at the input of the schmitt-trigger. The signal
denoted SLEEP in the figure, is set by the MCU sleep controller in power-down mode, power-save mode, and standby mode
to avoid high power consumption if some input signals are left floating, or have an analog signal level close to VCC/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt request is not enabled, SLEEP
is active also for these pins. SLEEP is also overridden by various other alternate functions as described in Section 9.3
“Alternate Port Functions” on page 55.

If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as “Interrupt on Rising Edge,
Falling Edge, or Any Logic Change on Pin” while the external interrupt is not enabled, the corresponding external interrupt
flag will be set when resuming from the above mentioned sleep modes, as the clamping in these sleep modes produces the
requested logic change.

9.3 Alternate Port Functions

Most port pins have alternate functions in addition to being general digital I/Os. Figure 9-5 shows how the port pin control
signals from the simplified Figure 9-2 can be overridden by alternate functions. The overriding signals may not be present in
all port pins, but the figure serves as a generic description applicable to all port pins in the AVR® microcontroller family.
55ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

9.3.3 Alternate Functions of Port C

The Port C pins with alternate functions are shown in Table 9-6.

Note: On the engineering samples (Parts marked AT90PWM324), the ACMPN3 alternate function is not located on
PC4. It is located on PE2.

The alternate pin configuration is as follows:

• D2A/AMP2+/PCINT15 – Bit 7

D2A, digital to analog output

AMP2+, analog differential amplifier 2 positive input. Configure the port pin as input with the internal pull-up switched off to
avoid the digital port function from interfering with the function of the amplifier.

PCINT15, pin change interrupt 15.

Table 9-6. Port C Pins Alternate Functions

Port Pin Alternate Function

PC7

D2A (DAC output)

AMP2+ (Analog Differential Amplifier 2 Positive Input)

PCINT15 (Pin Change Interrupt 15)

PC6

ADC10 (Analog Input Channel 10)

ACMP1 (analog comparator 1 Positive Input)

PCINT14 (Pin Change Interrupt 14)

PC5

ADC9 (Analog Input Channel 9)

AMP1+ (Analog Differential Amplifier 1 Input Channel)

ACMP3 (Analog Comparator 3 Positive Input)

PCINT13 (Pin Change Interrupt 13)

PC4

ADC8 (Analog Input Channel 8)

AMP1- (Analog Differential Amplifier 1 Input Channel)

ACMPN3 (Analog Comparator 3 Negative Input)

PCINT12 (Pin Change Interrupt 12)

PC3

T1 (Timer 1 clock input)

RXCAN (CAN Rx Data)

ICP1B (Timer 1 Input Capture Alternate Input)

PCINT11 (Pin Change Interrupt 11)

PC2

T0 (Timer 0 clock input)

TXCAN (CAN Tx Data)

PCINT10 (Pin Change Interrupt 10)

PC1

PSCIN1 (PSC 1 Digital Input)

OC1B (Timer 1 Output Compare B)

SS_A (Alternate SPI Slave Select)

PCINT9 (Pin Change Interrupt 9)

PC0

PSCOUT1A (PSC output 2A)

INT3 (External Interrupt 3)

PCINT8 (Pin Change Interrupt 8)
61ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

10. External Interrupts

The external interrupts are triggered by the INT3:0 pins or any of the PCINT23..0 pins. Observe that, if enabled, the
interrupts will trigger even if the INT3:0 or PCINT23..0 pins are configured as outputs. This feature provides a way of
generating a software interrupt. The pin change interrupt PCI2 will trigger if any enabled PCINT23..16 pin toggles. The pin
change interrupt PCI1 will trigger if any enabled PCINT14..8 pin toggles. The pin change interrupt PCI0 will trigger if any
enabled PCINT7..0 pin toggles. The PCMSK3, PCMSK2, PCMSK1 and PCMSK0 registers control which pins contribute to
the pin change interrupts. Pin change interrupts on PCINT26..0 are detected asynchronously. This implies that these
interrupts can be used for waking the part also from sleep modes other than Idle mode.

The INT3:0 interrupts can be triggered by a falling or rising edge or a low level. This is set up as indicated in the specification
for the external interrupt control register A – EICRA. When the INT3:0 interrupts are enabled and are configured as level
triggered, the interrupts will trigger as long as the pin is held low. Note that recognition of falling or rising edge interrupts on
INT3:0 requires the presence of an I/O clock, described in Section 5.1 “Clock Systems and their Distribution” on page 25.
Low level interrupt on INT3:0 is detected asynchronously. This implies that this interrupt can be used for waking the part also
from sleep modes other than Idle mode. The I/O clock is halted in all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from power-down, the required level must be held long enough for
the MCU to complete the wake-up to trigger the level interrupt. If the level disappears before the end of the Start-up Time,
the MCU will still wake up, but no interrupt will be generated. The start-up time is defined by the SUT and CKSEL Fuses as
described in Section 5.1 “Clock Systems and their Distribution” on page 25.

10.1 Pin Change Interrupt Timing

An example of timing of a pin change interrupt is shown in Figure 10-1

Figure 10-1. Timing of a Pin Change Interrupts

clk

pin_lat

pin_sync

PCINT[i] pin

pcint_in[i]

pcint_sync

pcint_set/flag

PCIFn

pin_lat pin_sync
pcint_sync

clk

0

7

clk

pcint_set/flag

PCINT[i] bit
(of PCMSKn)

PCINT[i]
pin

PCIFn
(interrupt flag)

pcint_in[i]
D Q

LE

D Q D Q D Q D Q
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

70

On-time 0 = 2 POCRnSAH/L 1/Fclkpsc

On-time 1 = 2 (POCRnRBH/L – POCRnSBH/L + 1) 1/Fclkpsc

Dead-time = (POCRnSBH/L – POCRnSAH/L) 1/Fclkpsc

PSC cycle = 2 (POCRnRBH/L + 1) 1/Fclkpsc

Minimal value for PSC cycle = 2 1/Fclkpsc

Note that in center aligned mode, POCRnRAH/L is not required (as it is in one-ramp mode) to control PSC Output waveform
timing. This allows POCRnRAH/L to be freely used to adjust ADC synchronization (See Section 14.12 “Analog
Synchronization” on page 126).

Figure 14-7. Controlled Start and Stop Mechanism in Centered Mode

Note: See Section 14.16.8 “PSC Control Register – PCTL” on page 130 (PCCYC = 1)

14.6 Update of Values

To avoid unasynchronous and incoherent values in a cycle, if an update of one of several values is necessary, all values are
updated at the same time at the end of the cycle by the PSC. The new set of values is calculated by software and the update
is initiated by software.

Figure 14-8. Update at the End of Complete PSC Cycle

The software can stop the cycle before the end to update the values and restart a new PSC cycle.

POCRnRB
POCRnSB
POCRnSA

PSC Counter

Run

PSCOUTnA

PSCOUTnB

Regulation Loop
Calculation

Cycle
with Set i

Cycle
with Set i

Cycle
with Set i

Cycle
with Set i

Cycle
with Set j

End of Cycle

Software

PSC

Writting in
PSC Registers

Request for
an Update
121ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

14.9.1.2 Signal Polarity

One can select the active edge (edge modes) or the active level (level modes). See PELEVnx bit description in Section
14.16.9 “PSC Module n Input Control Register – PMICn” on page 131.

If PELEVnx bit set, the significant edge of PSCn Input A or B is rising (edge modes) or the active level is high (level modes)
and vice versa for unset/falling/low

● In 2- or 4-ramp mode, PSCn Input A is taken into account only during Dead-Time0 and On-Time0 period (respectively
Dead-Time1 and On-Time1 for PSCn input B).

● In 1-ramp-mode PSC Input A or PSC Input B act on the whole ramp.

14.9.1.3 Input Mode Operation

Thanks to 4 configuration bits (PRFM3:0), it’s possible to define the mode of the PSC inputs.

Note: All following examples are given with rising edge or high level active inputs.

14.10 PSC Input Modes 001b to 10xb: Deactivate Outputs without Changing Timing

Figure 14-12. PSC Behavior versus PSCn Input in Mode 001b to 10xb

Figure 14-13. PSC Behavior versus PSCn Input A or Input B in Fault Mode 4

PSCn Input acts indifferently on On-Time0/Dead-Time0 or on On-Time1/Dead-Time1.

Table 14-5. PSC Input Mode Operation

PRFMn2:0 Description

000b No action, PSC input is ignored

001b Disactivate module n outputs A

010b Disactivate module n output B

011b Disactivate module n output A and B

10x Disactivate all PSC output

11xb Halt PSC and wait for software action

OT0 DT0OT0OT1 OT1DT1 OT1 OT0DT1 DT1DT0 DT0

PSCOUTnA

PSCOUTnB

PSC Input

OT0 DT0OT0OT1 OT1DT1 OT1 OT0DT1 DT1DT0 DT0

PSCOUTnA

PSCOUTnB

PSC Input
125ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

14.16.3 PSC Output Compare SA Register – POCRnSAH and POCRnSAL

14.16.4 PSC Output Compare RA Register – POCRnRAH and POCRnRAL

14.16.5 PSCOutput Compare SB Register – POCRnSBH and POCRnSBL

14.16.6 PSC Output Compare RB Register – POCR_RBH and POCR_RBL

Note: n = 0 to 2 according to module number.

The output compare registers RA, RB, SA and SB contain a 12-bit value that is continuously compared with the PSC counter
value. A match can be used to generate an output compare interrupt, or to generate a waveform output on the associated
pin.

The output compare registers are 16bit and 12-bit in size. To ensure that both the high and low bytes are written
simultaneously when the CPU writes to these registers, the access is performed using an 8-bit temporary high byte register
(TEMP). This temporary register is shared by all the other 16-bit registers.

Table 14-9. Synchronization Source Description in Centered Mode

PSYNCn1 PSYNCn0 Description

0 0
Send signal on match with OCRnRA (during counting down of PSC). The min value of
OCRnRA must be 1.

0 1
Send signal on match with OCRnRA (during counting up of PSC). The min value of
OCRnRA must be 1.

1 0 no synchronization signal

1 1 no synchronization signal

Bit 7 6 5 4 3 2 1 0

– – – – POCRnSA[11:8] POCRnSAH

POCRnSA[7:0] POCRnSAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – POCRnRA[11:8] POCRnRAH

POCRnRA[7:0] POCRnRAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – POCRnSB[11:8] POCRnSBH

POCRnSB[7:0] OCRnSBL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – POCRnRB[11:8] POCR_RBH

POCRnRB[7:0] POCR_RBL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
129ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

The interconnection between master and slave CPUs with SPI is shown in Figure 15-2. The system consists of two shift
registers, and a master clock generator. The SPI master initiates the communication cycle when pulling low the slave select
SS pin of the desired slave. Master and slave prepare the data to be sent in their respective shift registers, and the master
generates the required clock pulses on the SCK line to interchange data. Data is always shifted from master to slave on the
master out – slave in, MOSI, line, and from slave to master on the master in – slave out, MISO, line. After each data packet,
the master will synchronize the slave by pulling high the slave select, SS, line.

When configured as a master, the SPI interface has no automatic control of the SS line. This must be handled by user
software before communication can start. When this is done, writing a byte to the SPI data register starts the SPI clock
generator, and the hardware shifts the eight bits into the slave. After shifting one byte, the SPI clock generator stops, setting
the end of transmission flag (SPIF). If the SPI interrupt enable bit (SPIE) in the SPCR register is set, an interrupt is
requested. The master may continue to shift the next byte by writing it into SPDR, or signal the end of packet by pulling high
the slave select, SS line. The last incoming byte will be kept in the buffer register for later use.

When configured as a slave, the SPI interface will remain sleeping with MISO tri-stated as long as the SS pin is driven high.
In this state, software may update the contents of the SPI data register, SPDR, but the data will not be shifted out by
incoming clock pulses on the SCK pin until the SS pin is driven low. As one byte has been completely shifted, the end of
transmission flag, SPIF is set. If the SPI interrupt enable bit, SPIE, in the SPCR register is set, an interrupt is requested. The
slave may continue to place new data to be sent into SPDR before reading the incoming data. The last incoming byte will be
kept in the buffer register for later use.

Figure 15-2. SPI Master-slave Interconnection

The system is single buffered in the transmit direction and double buffered in the receive direction. This means that bytes to
be transmitted cannot be written to the SPI data register before the entire shift cycle is completed. When receiving data,
however, a received character must be read from the SPI data register before the next character has been completely
shifted in. Otherwise, the first byte is lost.

In SPI slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure correct sampling of the clock
signal, the frequency of the SPI clock should never exceed fclkio/4.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden according to Table 15-1. For
more details on automatic port overrides, refer to Section 9.3 “Alternate Port Functions” on page 55.

Note: 1. See Section 9.3.2 “Alternate Functions of Port B” on page 58 for a detailed description of how to define the
direction of the user defined SPI pins.

Table 15-1. SPI Pin Overrides(1)

Pin Direction, Master SPI Direction, Slave SPI

MOSI User defined Input

MISO Input User defined

SCK User defined Input

SS User defined Input

LSBSLAVEMSB
8-bit Shift Register

LSB

Shift
Enable

MASTERMSB

SS

SCK

SS

SCK

MOSIMOSI

MISOMISO
8-bit Shift Register

SPI
Clock Generator
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

134

16.4 CAN Channel

16.4.1 Configuration

The CAN channel can be in:

● Enabled mode

In this mode:

● the CAN channel (internal TxCAN and RxCAN) is enabled,

● the input clock is enabled.

● Standby mode

In standby mode:

● the transmitter constantly provides a recessive level (on internal TxCAN) and the receiver is disabled,

● input clock is enabled,

● the registers and pages remain accessible.

● Listening mode

This mode is transparent for the CAN channel:

● enables a hardware loop back, internal TxCAN on internal RxCAN

● provides a recessive level on TXCAN output pin

● does not disable RXCAN input pin

● freezes TEC and REC error counters

Figure 16-6. Listening Mode

16.4.2 Bit Timing

FSM’s (finite state machine) of the CAN channel need to be synchronous to the time quantum. So, the input clock for bit
timing is the clock used into CAN channel FSM’s.

Field and segment abbreviations:

● BRP: Baud rate prescaler.

● TQ: Time quantum (output of baud rate prescaler).

● SYNS: Synchronization segment is 1 TQ long.

● PRS: Propagation time segment is programmable to be 1, 2, ..., 8 TQ long.

● PHS1: Phase segment 1 is programmable to be 1, 2, ..., 8 TQ long.

● PHS2: Phase segment 2 is programmable to be ≤ PHS1 and ≥ INFORMATION PROCESSING TIME.

● INFORMATION PROCESSING TIME is 2 TQ.

● SJW: (Re) Synchronization jump width is programmable between 1 and min(4, PHS1).

The total number of TQ in a bit time has to be programmed at least from 8 to 25.

Internal
TxCAN

Listen

TXCAN

1

0
RXCANInternal

RxCAN

PD5

PD6
147ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

16.5.4 MOb Page

Every MOb is mapped into a page to save place. The page number is the MOb number. This page number is set in
CANPAGE register. The other numbers are reserved for factory tests.

CANHPMOB register gives the MOb having the highest priority in CANSIT registers. It is formatted to provide a direct entry
for CANPAGE register. Because CANHPMOB codes CANSIT registers, it will be only updated if the corresponding enable
bits (ENRX, ENTX, ENERR) are enabled (c.f. Figure 16-14 on page 155).

16.5.5 CAN Data Buffers

To preserve register allocation, the CAN data buffer is seen such as a FIFO (with address pointer accessible) into a MOb
selection.This also allows to reduce the risks of un-controlled accesses.

There is one FIFO per MOb. This FIFO is accessed into a MOb page thanks to the CAN message register.

The data index (INDX) is the address pointer to the required data byte. The data byte can be read or write. The data index is
automatically incremented after every access if the AINC* bit is reset. A roll-over is implemented, after data index=7 it is data
index=0.

The first byte of a CAN frame is stored at the data index=0, the second one at the data index=1, ...

16.6 CAN Timer

A programmable 16-bit timer is used for message stamping and time trigger communication (TTC).

Figure 16-11. CAN Timer Block Diagram

16.6.1 Prescaler

An 8-bit prescaler is initialized by CANTCON register. It receives the clkIO frequency divided by 8. It provides clkCANTIM
frequency to the CAN timer if the CAN controller is enabled.

TclkCANTIM = TclkIO x 8 x (CANTCON [7:0] + 1)

16.6.2 16-bit Timer

This timer starts counting from 0x0000 when the CAN controller is enabled (ENFG bit). When the timer rolls over from
0xFFFF to 0x0000, an interrupt is generated (OVRTIM).

16.6.3 Time Triggering

Two synchronization modes are implemented for TTC (TTC bit):

● synchronization on start of frame (SYNCTTC=0),

● synchronization on end of frame (SYNCTTC=1).

In TTC mode, a frame is sent once, even if an error occurs.

"EOF"

"SOF"

8 CANTCON

CANTIM

CANTTC

clkIO

TXOK[i]

RXOK[i]

clkCANTIM

ENFG

OVRTIM overrun

CANSTM[i]

TTC SYNCTTC
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

152

16.11 MOb Registers

The MOb registers has no initial (default) value after RESET.

16.11.1 CAN MOb Status Register - CANSTMOB

• Bit 7 – DLCW: Data Length Code Warning

The incoming message does not have the DLC expected. Whatever the frame type, the DLC field of the CANCDMOB
register is updated by the received DLC.

• Bit 6 – TXOK: Transmit OK

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The communication enabled by transmission is completed. TxOK rises at the end of EOF field. When the controller is ready
to send a frame, if two or more message objects are enabled as producers, the lower MOb index (0 to 14) is supplied first.

• Bit 5 – RXOK: Receive OK

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The communication enabled by reception is completed. RxOK rises at the end of the 6th bit of EOF field. In case of two or
more message object reception hits, the lower MOb index (0 to 14) is updated first.

• Bit 4 – BERR: Bit Error (Only in Transmission)

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The bit value monitored is different from the bit value sent.

Exceptions: the monitored recessive bit sent as a dominant bit during the arbitration field and the acknowledge slot detecting
a dominant bit during the sending of an error frame.

• Bit 3 – SERR: Stuff Error

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

Detection of more than five consecutive bits with the same polarity. This flag can generate an interrupt.

• Bit 2 – CERR: CRC Error

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The receiver performs a CRC check on every de-stuffed received message from the start of frame up to the data field. If this
checking does not match with the de-stuffed CRC field, a CRC error is set.

• Bit 1 – FERR: Form Error

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The form error results from one or more violations of the fixed form in the following bit fields:

● CRC delimiter.

● Acknowledgment delimiter.

● EOF

Bit 7 6 5 4 3 2 1 0

DLCW TXOK RXOK BERR SERR CERR FERR AERR CANSTMOB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value - - - - - - - -
167ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

17.6.7 LIN Data Length Register - LINDLR

• Bits 7:4 - LTXDL[3:0]: LIN Transmit Data Length
In LIN mode, this field gives the number of bytes to be transmitted (clamped to 8 Max).

In UART mode this field is unused.

• Bits 3:0 - LRXDL[3:0]: LIN Receive Data Length
In LIN mode, this field gives the number of bytes to be received (clamped to 8 Max).

In UART mode this field is unused.

17.6.8 LIN Identifier Register - LINIDR

• Bits 7:6 - LP[1:0]: Parity
In LIN mode:

LP0 = LID4 ^ LID2 ^ LID1 ^ LID0
LP1 = ! (LID1 ^ LID3 ^ LID4 ^ LID5)

In UART mode this field is unused.

• Bits 5:4 - LDL[1:0]: LIN 1.3 Data Length
In LIN 1.3 mode:

● 00 = 2-byte response,

● 01 = 2-byte response,

● 10 = 4-byte response,

● 11 = 8-byte response.

In UART mode this field is unused.

• Bits 3:0 - LID[3:0]: LIN 1.3 Identifier
In LIN 1.3 mode: 4-bit identifier.

In UART mode this field is unused.

• Bits 5:0 - LID[5:0]: LIN 2.1 Identifier
In LIN 2.1 mode: 6-bit identifier (no length transported).

In UART mode this field is unused.

Bit 7 6 5 4 3 2 1 0

LTXDL3 LTXDL2 LTXDL1 LTXDL0 LRXDL3 LRXDL2 LRXDL1 LRXDL0 LINDLR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

LP1 LP0 LID5 / LDL1 LID4 / LDL0 LID3 LID2 LID1 LID0 LINIDR

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
195ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

18. Analog to Digital Converter - ADC

18.1 Features
● 10-bit resolution

● 0.8 LSB integral non-linearity (at 2Mhz)

● ±3.2 LSB absolute accuracy

● 8 to 250µs conversion time

● Up to 125kSPS at maximum resolution

● 11 multiplexed single ended input channels

● 3 differential input channels with programmable gain 5, 10, 20 and 40

● Optional left adjustment for ADC result readout

● 0 to VCC ADC input voltage range

● Selectable 2.56 V ADC reference voltage

● Free running or single conversion mode

● ADC start conversion by auto triggering on interrupt sources

● Interrupt on ADC conversion complete

● Sleep mode noise canceler

● Temperature sensor

● LIN address sense (ISRC voltage measurement)

● VCC voltage measurement

The ATmega16/32/64/M1/C1 features a 10-bit successive approximation ADC. The ADC is connected to an 15-channel
analog multiplexer which allows eleven single-ended input. The single-ended voltage inputs refer to 0V (GND).

The device also supports 3 differential voltage input amplifiers which are equipped with a programmable gain stage,
providing amplification steps of 14dB (5x), 20dB (10x), 26dB (20x), or 32dB (40x) on the differential input voltage before the
A/D conversion. On the amplified channels, 8-bit resolution can be expected.

The ADC contains a sample and hold circuit which ensures that the input voltage to the ADC is held at a constant level
during conversion. A block diagram of the ADC is shown in Figure 18-1 on page 198.

The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more than ±0.3V from VCC. See Section 18.6
“ADC Noise Canceler” on page 203 on how to connect this pin.

Internal reference voltages of nominally 2.56V or AVCC are provided on-chip. The voltage reference may be externally
decoupled at the AREF pin by a capacitor (e.g., 10nF) for better noise performance. In any case this capacitor shout not be
greater than 10% of the AVCC smoothing capacitor.
197ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

24.7.10 Reading the Signature Row from Software

To read the signature row from software, load the Z-pointer with the signature byte address given in Table 24-5 on page 249
and set the SIGRD and SPMEN bits in SPMCSR. When an LPM instruction is executed within three CPU cycles after the
SIGRD and SPMEN bits are set in SPMCSR, the signature byte value will be loaded in the destination register. The SIGRD
and SPMEN bits will auto-clear upon completion of reading the signature row lock bits or if no LPM instruction is executed
within three CPU cycles. When SIGRD and SPMEN are cleared, LPM will work as described in the instruction set manual.

Note: Before attempting to set SPMEN it is important to test this bit is cleared showing that the hardware is ready for
a new operation.

Note: All other addresses are reserved for future use.

24.7.11 Preventing Flash Corruption

During periods of low VCC, the flash program can be corrupted because the supply voltage is too low for the CPU and the
flash to operate properly. These issues are the same as for board level systems using the flash, and the same design
solutions should be applied.

A flash program corruption can be caused by two situations when the voltage is too low. First, a regular write sequence to
the flash requires a minimum voltage to operate correctly. Secondly, the CPU itself can execute instructions incorrectly, if the
supply voltage for executing instructions is too low.

Flash corruption can easily be avoided by following these design recommendations (one is sufficient):

1. If there is no need for a boot loader update in the system, program the boot loader lock bits to prevent any boot
loader software updates.

2. Keep the AVR® RESET active (low) during periods of insufficient power supply voltage. This can be done by
enabling the internal brown-out detector (BOD) if the operating voltage matches the detection level. If not, an
external low VCC reset protection circuit can be used. If a reset occurs while a write operation is in progress, the
write operation will be completed provided that the power supply voltage is sufficient.

3. Keep the AVR core in power-down sleep mode during periods of low VCC. This will prevent the CPU from attempt-
ing to decode and execute instructions, effectively protecting the SPMCSR register and thus the flash from
unintentional writes.

24.7.12 Programming Time for Flash when Using SPM

The calibrated RC oscillator is used to time flash accesses. Table 24-6 shows the typical programming time for flash
accesses from the CPU.

Table 24-5. Signature Row Addressing

Signature Byte Z-Pointer Address

Device signature byte 1 0x0000

Device signature byte 2 0x0002

Device signature byte 3 0x0004

RC oscillator calibration byte 0x0001

TSOFFSET temp sensor offset 0x0005

TSGAIN temp sensor gain 0x0007

Table 24-6. SPM Programming Time

Symbol Min Programming Time Max Programming Time

Flash write (page erase, page write, and write lock
bits by SPM)

3.7ms 4.5ms
249ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

25.8.9 Programming the Fuse High Bits

The algorithm for programming the fuse high bits is as follows (refer to Section 25.8.4 “Programming the Flash” on page 262
for details on command and data loading):

1. A: Load command “0100 0000”.

2. C: Load data low byte. Bit n = “0” programs and bit n = “1” erases the fuse bit.

3. Set BS1 to “1” and BS2 to “0”. This selects high data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

25.8.10 Programming the Extended Fuse Bits

The algorithm for programming the extended fuse bits is as follows (refer to Section 25.8.4 “Programming the Flash” on page
262 for details on command and data loading):

1. A: Load command “0100 0000”.

2. C: Load data low byte. Bit n = “0” programs and bit n = “1” erases the fuse bit.

3. Set BS1 to “0” and BS2 to “1”. This selects extended data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS2 to “0”. This selects low data byte.

Figure 25-5. Programming the FUSES Waveforms

25.8.11 Programming the Lock Bits

The algorithm for programming the lock bits is as follows (refer to Section 25.8.4 “Programming the Flash” on page 262 for
details on command and data loading):

1. A: Load command “0010 0000”.

2. C: Load data low byte. Bit n = “0” programs the Lock bit. If LB mode 3 is programmed (LB1 and LB2 is pro-
grammed), it is not possible to program the boot lock bits by any external programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

The lock bits can only be cleared by executing chip erase.

0x40

A C

DATA

XA1

XA0

BS1

BS2

XTAL1

WR

PAGEL

RDY/BSY

OE

RESET +12V

0x40 0x40 DATA

A

DATA XX

C

Write Fuse Low byte Write Fuse High byte Write Extended Fuse byte

XXDATA

A

XX

C

ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

266

25.9.4 SPI Serial Programming Characteristics

For characteristics of the SPI module see Section 25.9.4 “SPI Serial Programming Characteristics” on page 272.

Table 25-17. Serial Programming Instruction Set

Instruction

Instruction Format

OperationByte 1 Byte 2 Byte 3 Byte4

Programming enable 1010 1100 0101 0011 xxxx xxxx xxxx xxxx Enable serial programming after RESET goes low.

Chip erase 1010 1100 100x xxxx xxxx xxxx xxxx xxxx Chip erase EEPROM and flash.

Read program memory 0010 H000 000a aaaa bbbb bbbb oooo oooo
Read H (high or low) data o from program memory
at word address a:b.

Load program memory page 0100 H000 000x xxxx bbbb bbbb iiii iiii

Write H (high or low) data i to program memory
page at word address b. Data low byte must be
loaded before Data high byte is applied within the
same address.

Write program memory page 0100 1100 aaaa aaaa bbxx xxxx xxxx xxxx Write program memory page at address a:b.

Read EEPROM memory 1010 0000 000x xxaa bbbb bbbb oooo oooo
Read data o from EEPROM memory at address
a:b.

Write EEPROM memory 1100 0000 000x xxaa bbbb bbbb iiii iiii Write data i to EEPROM memory at address a:b.

Load EEPROM memory
page (page access)

1100 0001 0000 0000 0000 00bb iiii iiii
Load data i to EEPROM memory page buffer. After
data is loaded, program EEPROM page.

Write EEPROM memory
page (page access)

1100 0010 00xx xxaa bbbb bb00 xxxx xxxx Write EEPROM page at address a:b.

Read lock bits 0101 1000 0000 0000 xxxx xxxx xxoo oooo
Read lock bits. “0” = programmed,
“1” = unprogrammed. See Table 25-1 on page 255
for details.

Write lock bits 1010 1100 111x xxxx xxxx xxxx 11ii iiii
Write lock bits. Set bits = “0” to program lock bits.
See Table 25-1 on page 255 for details.

Read signature byte 0011 0000 000x xxxx xxxx xxbb oooo oooo Read signature byte o at address b.

Write fuse bits 1010 1100 1010 0000 xxxx xxxx iiii iiii Set bits = “0” to program, “1” to unprogram.

Write fuse high bits 1010 1100 1010 1000 xxxx xxxx iiii iiii
Set bits = “0” to program, “1” to unprogram. See
Table 25-6 on page 257 for details.

Write extended fuse bits 1010 1100 1010 0100 xxxx xxxx xxii iiii
Set bits = “0” to program, “1” to unprogram. See
Table 25-4 on page 256 for details.

Read fuse bits 0101 0000 0000 0000 xxxx xxxx oooo oooo
Read Fuse bits. “0” = programmed,
“1” = unprogrammed.

Read fuse high bits 0101 1000 0000 1000 xxxx xxxx oooo oooo
Read fuse high bits. “0” = programmed,
“1” = unprogrammed. See Table 25-6 on page 257
for details.

Read extended fuse bits 0101 0000 0000 1000 xxxx xxxx oooo oooo
Read extended fuse bits. “0” = programmed,
“1” = unprogrammed. See Table 25-4 on page
256 for details.

Read calibration byte 0011 1000 000x xxxx 0000 0000 oooo oooo Read calibration byte

Poll RDY/BSY 1111 0000 0000 0000 xxxx xxxx xxxx xxxo
If o = “1”, a programming operation is still busy.
Wait until this bit returns to “0” before applying
another command.

Note: a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

272

Figure 27-21. I/O Pin Input Hysteresis Voltage versus VCC

Figure 27-22. Reset Input Threshold Voltage versus VCC (VIH, Reset Pin Read As '1')

Figure 27-23. Reset Input Threshold Voltage versus VCC (VIL, Reset Pin Read As '0')
291ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

(0x76) AMP1CSR AMP1EN AMP1IS AMP1G1 AMP1G0 AMPCMP1 AMP1TS2 AMP1TS1 AMP1TS0 219

(0x75) AMP0CSR AMP0EN AMP0IS AMP0G1 AMP0G0 AMPCMP0 AMP0TS2 AMP0TS1 AMP0TS0 218

(0x74) Reserved – – – – – – – –

(0x73) Reserved – – – – – – – –

(0x72) Reserved – – – – – – – –

(0x71) Reserved – – – – – – – –

(0x70) Reserved – – – – – – – –

(0x6F) TIMSK1 – – ICIE1 – – OCIE1B OCIE1A TOIE1 114

(0x6E) TIMSK0 – – – – – OCIE0B OCIE0A TOIE0 90

(0x6D) PCMSK3 – – – – – PCINT26 PCINT25 PCINT24 73

(0x6C) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 73

(0x6B) PCMSK1 PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 74

(0x6A) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 74

(0x69) EICRA ISC31 ISC30 ISC21 ISC20 ISC11 ISC10 ISC01 ISC00 71

(0x68) PCICR – – – – PCIE3 PCIE2 PCIE1 PCIE0 72

(0x67) Reserved – – – – – – – –

(0x66) OSCCAL – CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 29

(0x65) Reserved – – – – – – – –

(0x64) PRR – PRCAN PRPSC PRTIM1 PRTIM0 PRSPI PRLIN PRADC 36

(0x63) Reserved – – – – – – – –

(0x62) Reserved – – – – – – – –

(0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 33

(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 45

0x3F (0x5F) SREG I T H S V N Z C 12

0x3E (0x5E) SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 15

0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 15

0x3C (0x5C) Reserved – – – – – – – –

0x3B (0x5B) Reserved – – – – – – – –

0x3A (0x5A) Reserved – – – – – – – –

0x39 (0x59) Reserved – – – – – – – –

0x38 (0x58) Reserved – – – – – – – –

0x37 (0x57) SPMCSR SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN 244

0x36 (0x56) Reserved – – – – – – – –

0x35 (0x55) MCUCR SPIPS – – PUD – – IVSEL IVCE 50, 57

0x34 (0x54) MCUSR – – – – WDRF BORF EXTRF PORF 42

29. Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags.
The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega16/32/64/M1/C1 is a complex microcontroller with more peripheral units than can be supported within the 64
location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM,
only the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. These registers are only available on ATmega32/64M1. For other products described in this datasheet, these locations
are reserved.
303ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

XX X XX X
Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2015 Atmel Corporation. / Rev.: 7647O–AVR–01/15

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, and others are registered trademarks or trademarks of Atmel Corporation in U.S.
and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

https://plus.google.com/117391618085377601886/posts
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
http://www.youtube.com/user/AtmelCorporation
https://www.facebook.com/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
www.atmel.com
www.atmel.com

