
Microchip Technology - ATMEGA32M1-15AD Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity CANbus, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT

Number of I/O -

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 11x10b; D/A 1x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 150°C (TA)

Mounting Type Surface Mount

Package / Case 32-TQFP

Supplier Device Package 32-TQFP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega32m1-15ad

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega32m1-15ad-4409682
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

• Bit 6 – T: Bit Copy Storage

The bit copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit
from a register in the register file can be copied into T by the BST instruction, and a bit in T can be copied into a bit in a
register in the register file by the BLD instruction.

• Bit 5 – H: Half Carry Flag

The half carry flag H indicates a half carry in some arithmetic operations. Half carry Is useful in BCD arithmetic. See the
“Instruction Set Description” for detailed information.

• Bit 4 – S: Sign Bit, S = N V

The S-bit is always an exclusive or between the negative flag N and the two’s complement overflow flag V. See the
“Instruction Set Description” for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag

The two’s complement overflow flag V supports two’s complement arithmetics. See the “Instruction Set Description” for
detailed information.

• Bit 2 – N: Negative Flag

The negative flag N indicates a negative result in an arithmetic or logic operation. See the “Instruction Set Description” for
detailed information.

• Bit 1 – Z: Zero Flag

The zero flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction Set Description” for detailed
information.

• Bit 0 – C: Carry Flag

The carry flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set Description” for detailed
information.

3.5 General Purpose Register File

The register file is optimized for the AVR enhanced RISC instruction set. In order to achieve the required performance and
flexibility, the following input/output schemes are supported by the register file:

● One 8-bit output operand and one 8-bit result input

● Two 8-bit output operands and one 8-bit result input

● Two 8-bit output operands and one 16-bit result input

● One 16-bit output operand and one 16-bit result input
13ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

5. System Clock

5.1 Clock Systems and their Distribution

Figure 5-1 presents the principal clock systems in the AVR® and their distribution. All of the clocks need not be active at a
given time. In order to reduce power consumption, the clocks to unused modules can be halted by using different sleep
modes, as described in Section 6. “Power Management and Sleep Modes” on page 34. The clock systems are detailed
below.

Figure 5-1. Clock Distribution

5.1.1 CPU Clock – clkCPU

The CPU clock is routed to parts of the system concerned with operation of the AVR core. Examples of such modules are
the General Purpose Register File, the Status Register and the data memory holding the Stack Pointer. Halting the CPU
clock inhibits the core from performing general operations and calculations.

5.1.2 I/O Clock – clkI/O

The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, UART. The I/O clock is also used by the
External Interrupt module, but note that some external interrupts are detected by asynchronous logic, allowing such
interrupts to be detected even if the I/O clock is halted.

5.1.3 Flash Clock – clkFLASH

The Flash clock controls operation of the Flash interface. The flash clock is usually active simultaneously with the CPU clock.

Flash and
EEPROM

Calibrated RC
Oscillator

Crystal
Oscillator

Watchdog
Oscillator

General I/O
Modules

AVR Clock
Control Unit

ADCFast Peripherals

PLL

External Clock

CPU Core

Source Clock Watchdog Clock

RAM

Reset Logic Watchdog Timer

clkI/O

clkPLL

clkCPU

clkADC

clkFLASH

Clock
Multiplexer

PLL Input
Multiplexer
25ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

5.3 Default Clock Source

The device is shipped with CKSEL = “0010”, SUT = “10”, and CKDIV8 programmed. The default clock source setting is the
Internal RC Oscillator with longest start-up time and an initial system clock prescaling of 8. This default setting ensures that
all users can make their desired clock source setting using an in-system or parallel programmer.

5.4 Low Power Crystal Oscillator

XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip
oscillator, as shown in Figure 5-2. Either a quartz crystal or a ceramic resonator may be used.

This crystal oscillator is a low power oscillator, with reduced voltage swing on the XTAL2 output. It gives the lowest power
consumption, but is not capable of driving other clock inputs.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the capacitors depends on the
crystal or resonator in use, the amount of stray capacitance, and the electromagnetic noise of the environment. Some initial
guidelines for choosing capacitors for use with crystals are given in Table 5-3. For ceramic resonators, the capacitor values
given by the manufacturer should be used. For more information on how to choose capacitors and other details on Oscillator
operation, refer to the multi-purpose oscillator application note.

Figure 5-2. Crystal Oscillator Connections

The Oscillator can operate in three different modes, each optimized for a specific frequency range. The operating mode is
selected by the fuses CKSEL3..1 as shown in Table 5-3.

Note: 1. This option should not be used with crystals, only with ceramic resonators.

Table 5-3. Crystal Oscillator Operating Modes

CKSEL3..1 Frequency Range (MHz)
Recommended Range for Capacitors C1 and C2 for

Use with Crystals (pF)

100(1) 0.4 - 0.9 –

101 0.9 - 3.0 12 - 22

110 3.0 - 8.0 12 - 22

111 8.0 -16.0 12 - 22

C2

XTAL2

XTAL1

GND

C1
27ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

When this oscillator is selected, start-up times are determined by the SUT fuses as shown in Table 5-6 on page 29.

Notes: 1. If the RSTDISBL fuse is programmed, this start-up time will be increased to
14CK + 4.1 ms to ensure programming mode can be entered.

2. The device is shipped with this option selected.

5.5.1 Oscillator Calibration Register – OSCCAL

• Bits 7..0 – CAL7..0: Oscillator Calibration Value

The oscillator calibration register is used to trim the calibrated internal RC oscillator to remove process variations from the
oscillator frequency. The factory-calibrated value is automatically written to this register during chip reset, giving an oscillator
frequency of 8.0MHz at 25°C. The application software can write this register to change the oscillator frequency. The
oscillator can be calibrated to any frequency in the range 7.3 - 8.1MHz within ±1% accuracy. Calibration outside that range is
not guaranteed.

Note that this oscillator is used to time EEPROM and flash write accesses, and these write times will be affected accordingly.
If the EEPROM or flash are written, do not calibrate to more than 8.8MHz. Otherwise, the EEPROM or flash write may fail.

The CAL7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the lowest frequency range,
setting this bit to 1 gives the highest frequency range. The two frequency ranges are overlapping, in other words a setting of
OSCCAL = 0x7F gives a higher frequency than OSCCAL = 0x80.

The CAL6..0 bits are used to tune the frequency within the selected range. A setting of 0x00 gives the lowest frequency in
that range, and a setting of 0x7F gives the highest frequency in the range. Incrementing CAL6..0 by 1 will give a frequency
increment of less than 2% in the frequency range 7.3 - 8.1MHz.

5.6 PLL

5.6.1 Internal PLL

The internal PLL in the Atmel® ATmega16/32/64/M1/C1 generates a clock frequency that is 64x multiplied from its nominal
1MHz input. The source of the 1MHz PLL input clock can be:

● the output of the internal RC oscillator divided by 8

● the output of the crystal oscillator divided by 8

● the external clock divided by 8

See Figure 5-3 on page 30.

When the PLL is locked on the RC Oscillator, adjusting the RC Oscillator via OSCCAL Register, will also modify the PLL
clock output. However, even if the possibly divided RC Oscillator is taken to a higher frequency than 8MHz, the PLL output
clock frequency saturates at 70MHz (worst case) and remains oscillating at the maximum frequency. It should be noted that
the PLL in this case is not locked any more with its 1MHz source clock.

Table 5-6. Start-up times for the internal calibrated RC Oscillator clock selection

Power Conditions
Start-up Time from Power-down and

Power-save
Additional Delay from Reset

(VCC = 5.0V) SUT1..0

BOD enabled 6 CK 14CK(1) 00

Fast rising power 6 CK 14CK + 4.1ms 01

Slowly rising power 6 CK 14CK + 65ms(2) 10

Reserved 11

Bit 7 6 5 4 3 2 1 0

CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value
29ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

8.1.1 Moving Interrupts Between Application and Boot Space

The MCU control register controls the placement of the interrupt vector table.

8.1.2 MCU Control Register – MCUCR

• Bit 1 – IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the flash memory. When this bit is set
(one), the interrupt vectors are moved to the beginning of the boot loader section of the flash. The actual address of the start
of the boot flash section is determined by the BOOTSZ fuses. Refer to Section 24. “Boot Loader Support – Read-while-write
Self-Programming ATmega16/32/64/M1/C1” on page 241 for details. To avoid unintentional changes of Interrupt vector
tables, a special write procedure must be followed to change the IVSEL bit:

1. Write the interrupt vector change enable (IVCE) bit to one.

2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled in the cycle IVCE is set, and
they remain disabled until after the instruction following the write to IVSEL. If IVSEL is not written, interrupts remain disabled
for four cycles. The I-bit in the status register is unaffected by the automatic disabling.

Note: If interrupt vectors are placed in the boot loader section and boot lock bit BLB02 is programmed, interrupts are
disabled while executing from the application section. If interrupt vectors are placed in the application section
and boot lock bit BLB12 is programed, interrupts are disabled while executing from the boot loader section.
Refer to Section 24. “Boot Loader Support – Read-while-write Self-Programming ATmega16/32/64/M1/C1” on
page 241 for details on boot lock bits.

• Bit 0 – IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by hardware four cycles after it
is written or when IVSEL is written. Setting the IVCE bit will disable interrupts, as explained in the IVSEL description above.
See code example below.

Bit 7 6 5 4 3 2 1 0

SPIPS – – PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Assembly Code Example

Move_interrupts:
; Enable change of Interrupt Vectors
ldi r16, (1<<IVCE)
out MCUCR, r16
; Move interrupts to Boot Flash section
ldi r16, (1<<IVSEL)
out MCUCR, r16
ret

C Code Example

void Move_interrupts(void)
{

/* Enable change of Interrupt Vectors */
MCUCR = (1<<IVCE);
/* Move interrupts to Boot Flash section */
MCUCR = (1<<IVSEL);

}

ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

50

12. 8-bit Timer/Counter0 with PWM

Timer/Counter0 is a general purpose 8-bit Timer/Counter module, with two independent Output Compare Units, and with
PWM support. It allows accurate program execution timing (event management) and wave generation. The main features
are:

● Two independent output compare units

● Double buffered output compare registers

● Clear timer on compare match (auto reload)

● Glitch free, phase correct pulse width modulator (PWM)

● Variable PWM period

● Frequency generator

● Three independent interrupt sources (TOV0, OCF0A, and OCF0B)

12.1 Overview

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 12-1. For the actual placement of I/O pins, refer to
Section 2.3 “Pin Descriptions” on page 9. CPU accessible I/O registers, including I/O bits and I/O pins, are shown in bold.
The device-specific I/O Register and bit locations are listed in Section 12.8 “8-bit Timer/Counter Register Description” on
page 86.

The PRTIM0 bit in Section 6.6 “Power Reduction Register” on page 36 must be written to zero to enable Timer/Counter0
module.

Figure 12-1. 8-bit Timer/Counter Block Diagram

Control Logic

TCNTn

Timer/Counter

Count
Clear

Direction
clkTn

OCRnx

OCRnx

TCCRnA TCCRnB

=

Edge
Detector

(from Prescaler)

Clock Select

TOP BOTTOM

TOVn (Int. Req.)

OCnA (Int. Req.)

Tn

Waveform
Generation

Fixed
TOP
Value

D
AT

A
B

U
S

=

= = 0

OCnA

OCnB (Int. Req.)

Waveform
Generation OCnB
77ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

The assembly code example returns the TCNTn value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt occurs between the two
instructions accessing the 16-bit register, and the interrupt code updates the temporary register by accessing the same or
any other of the 16-bit timer registers, then the result of the access outside the interrupt will be corrupted. Therefore, when
both the main code and the interrupt code update the temporary register, the main code must disable the interrupts during
the 16-bit access.

The following code examples show how to do an atomic read of the TCNTn Register contents. Reading any of the OCRnx or
ICRn registers can be done by using the same principle.

Note: 1. The example code assumes that the part specific header file is included.
For I/O registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must
be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with
“SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example returns the TCNTn value in the r17:r16 register pair.

Assembly Code Example(1)

TIM16_ReadTCNTn:
; Save global interrupt flag
in r18,SREG
; Disable interrupts
cli
; Read TCNTn into r17:r16
in r16,TCNTnL
in r17,TCNTnH
; Restore global interrupt flag
out SREG,r18
ret

C Code Example(1)

unsigned int TIM16_ReadTCNTn(void)
{

unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_CLI();
/* Read TCNTn into i */
i = TCNTn;
/* Restore global interrupt flag */
SREG = sreg;
return i;

}

95ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

Table 13-3 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the phase correct or the phase and
frequency correct, PWM mode.

Note: 1. A special case occurs when OCRnA/OCRnB equals TOP and COMnA1/COMnB1 is set. See Section 13.8.4
“Phase Correct PWM Mode” on page 105 for more details.

• Bit 1:0 – WGMn1:0: Waveform Generation Mode

Combined with the WGMn3:2 bits found in the TCCRnB register, these bits control the counting sequence of the counter, the
source for maximum (TOP) counter value, and what type of waveform generation to be used, see Table 13-4. Modes of
operation supported by the Timer/Counter unit are: normal mode (counter), clear timer on compare match (CTC) mode, and
three types of Pulse Width Modulation (PWM) modes (see Section 13. “16-bit Timer/Counter1 with PWM” on page 92).

Note: 1. The CTCn and PWMn1:0 bit definition names are obsolete. Use the WGMn2:0 definitions. However, the functionality
and location of these bits are compatible with previous versions of the timer.

Table 13-3. Compare Output Mode, Phase Correct and Phase and Frequency Correct PWM(1)

COMnA1/COMnB1 COMnA0/COMnB0 Description

0 0 Normal port operation, OCnA/OCnB disconnected.

0 1
WGMn3:0 = 8, 9 10 or 11: Toggle OCnA on compare match,
OCnB disconnected (normal port operation). For all other WGM1
settings, normal port operation, OC1A/OC1B disconnected.

1 0
Clear OCnA/OCnB on compare match when up-counting. Set
OCnA/OCnB on compare match when downcounting.

1 1
Set OCnA/OCnB on compare match when up-counting. Clear
OCnA/OCnB on compare match when downcounting.

Table 13-4. Waveform Generation Mode Bit Description(1)

Mode WGMn3
WGMn2
(CTCn)

WGMn1
(PWMn1)

WGMn0
(PWMn0) Timer/Counter Mode of Operation TOP

Update of
OCRnx at

TOVn Flag
Set on

0 0 0 0 0 Normal 0xFFFF Immediate MAX

1 0 0 0 1 PWM, phase correct, 8-bit 0x00FF TOP BOTTOM

2 0 0 1 0 PWM, phase correct, 9-bit 0x01FF TOP BOTTOM

3 0 0 1 1 PWM, phase correct, 10-bit 0x03FF TOP BOTTOM

4 0 1 0 0 CTC OCRnA Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF TOP TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF TOP TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF TOP TOP

8 1 0 0 0 PWM, phase and frequency correct ICRn BOTTOM BOTTOM

9 1 0 0 1 PWM, phase and frequency correct OCRnA BOTTOM BOTTOM

10 1 0 1 0 PWM, phase correct ICRn TOP BOTTOM

11 1 0 1 1 PWM, phase correct OCRnA TOP BOTTOM

12 1 1 0 0 CTC ICRn Immediate MAX

13 1 1 0 1 (Reserved) – – –

14 1 1 1 0 Fast PWM ICRn TOP TOP

15 1 1 1 1 Fast PWM OCRnA TOP TOP
111ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

On-time A = (POCRnRAH/L - POCRnSAH/L) 1/Fclkpsc

On-time B = (POCRnRBH/L - POCRnSBH/L) 1/Fclkpsc

Dead-time A = (POCRnSAH/L + 1) 1/Fclkpsc

Dead-time B = (POCRnSBH/L – POCRnRAH/L) 1/Fclkpsc

Minimal value for dead-time A = 1/Fclkpsc

If the overlap protection is disabled, in one-ramp mode, PSCOUTnA and PSCOUTnB outputs can be configured to overlap
each other, though in normal use this is not desirable.

Figure 14-5. Controlled Start and Stop Mechanism in One-Ramp Mode

Note: See Section 14.16.8 “PSC Control Register – PCTL” on page 130 (PCCYC = 1)

14.5.3.2 Center Aligned Mode

In center aligned mode, the center of PSCOUTnA and PSCOUTnB signals are centered.

Figure 14-6. PSCOUTnA and PSCOUTnB Basic Waveforms in Center Aligned Mode

POCRnRB
POCRnSB
POCRnRA
POCRnSA

PSC Counter

Run

PSCOUTnA

PSCOUTnB

POCRnRB
PSC Counter

POCRnSB
POCRnSA

PSCOUTnA

PSCOUTnB

0

On Time 0

Dead Time
PSC Cycle

Dead Time

On
Time 1

On
Time 1
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

120

14.6.1 Value Update Synchronization

New timing values or PSC output configuration can be written during the PSC cycle. Thanks to LOCK configuration bit, the
new whole set of values can be taken into account after the end of the PSC cycle.

When LOCK configuration bit is set, there is no update. The update of the PSC internal registers will be done at the end of
the PSC cycle if the LOCK bit is released to zero.

The registers which update is synchronized thanks to LOCK are POC, POM2, POCRnSAH/L, POCRnRAH/L, POCRnSBH/L
and POCRnRBH/L.

See these register’s description starting on in Section 14.16.7 “PSC Configuration Register – PCNF” on page 130

14.7 Overlap Protection

Thanks to overlap protection two outputs on a same module cannot be active at the same time. So it cannot generate cross
conduction. This feature can be disactivated thanks to POVEn (PSC overlap enable).

For ATmega16/64M1, and ATmega32M1 since rev C, the overlap protection is activated with only one condition:

1. POVENn=0 (PSC module n overlap enable)

Up to rev B of ATmega32M1, the overlap protection was activated with the 2 following conditions:

2. POVENn=0 (PSC module n overlap enable)

3. The two channels A and B of a pwm pair n must be activated (POENnA = POENnB = 1)

This difference can induce some behavior change between rev B and rev C of ATmega32M1, when only one channel of a
PWM pair output is active.

To avoid such behavior, it is recommended in case of using only one channel of a pwm pair, to disable overlap protection bit
(POVENn = 1).

14.8 Signal Description

Figure 14-9. PSC External Block View

12
POCRRB[11:0]

CLKPLL

CLKI/O

PSCOUT0A

PSCOUT0B

PSCOUT1A

PSCOUT1B

PSCOUT2A

PSCOUT2B

AC2O

AC1O

AC0O

PSCIN2

PSCIN1

PSCIN0

IRQPSC PSCASY

POCR0SB[11:0]

POCR0RA[11:0]

POCR0SA[11:0]

POCR1SB[11:0]

POCR1RA[11:0]

POCR1SA[11:0]

POCR2SB[11:0]

POCR2RA[11:0]

POCR2SA[11:0]

1212

1212

1212

1212

1212

1212

1212

1212

12
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

122

16.11 MOb Registers

The MOb registers has no initial (default) value after RESET.

16.11.1 CAN MOb Status Register - CANSTMOB

• Bit 7 – DLCW: Data Length Code Warning

The incoming message does not have the DLC expected. Whatever the frame type, the DLC field of the CANCDMOB
register is updated by the received DLC.

• Bit 6 – TXOK: Transmit OK

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The communication enabled by transmission is completed. TxOK rises at the end of EOF field. When the controller is ready
to send a frame, if two or more message objects are enabled as producers, the lower MOb index (0 to 14) is supplied first.

• Bit 5 – RXOK: Receive OK

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The communication enabled by reception is completed. RxOK rises at the end of the 6th bit of EOF field. In case of two or
more message object reception hits, the lower MOb index (0 to 14) is updated first.

• Bit 4 – BERR: Bit Error (Only in Transmission)

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The bit value monitored is different from the bit value sent.

Exceptions: the monitored recessive bit sent as a dominant bit during the arbitration field and the acknowledge slot detecting
a dominant bit during the sending of an error frame.

• Bit 3 – SERR: Stuff Error

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

Detection of more than five consecutive bits with the same polarity. This flag can generate an interrupt.

• Bit 2 – CERR: CRC Error

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The receiver performs a CRC check on every de-stuffed received message from the start of frame up to the data field. If this
checking does not match with the de-stuffed CRC field, a CRC error is set.

• Bit 1 – FERR: Form Error

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

The form error results from one or more violations of the fixed form in the following bit fields:

● CRC delimiter.

● Acknowledgment delimiter.

● EOF

Bit 7 6 5 4 3 2 1 0

DLCW TXOK RXOK BERR SERR CERR FERR AERR CANSTMOB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value - - - - - - - -
167ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

• Bit 0 – AERR: Acknowledgment Error

This flag can generate an interrupt. It must be cleared using a read-modify-write software routine on the whole CANSTMOB
register.

No detection of the dominant bit in the acknowledge slot.

16.11.2 CAN MOb Control and DLC Register - CANCDMOB

• Bit 7:6 – CONMOB1:0: Configuration of Message Object

These bits set the communication to be performed (no initial value after RESET).

● 00 - disable.

● 01 - enable transmission.

● 10 - enable reception.

● 11 - enable frame buffer reception

These bits are not cleared once the communication is performed. The user must re-write the configuration to enable a new
communication.

● This operation is necessary to be able to reset the BXOK flag.

● This operation also set the corresponding bit in the CANEN registers.

• Bit 5 – RPLV: Reply Valid

Used in the automatic reply mode after receiving a remote frame.

● 0 - reply not ready.

● 1 - reply ready and valid.

• Bit 4 – IDE: Identifier Extension

IDE bit of the remote or data frame to send.
This bit is updated with the corresponding value of the remote or data frame received.

● 0 - CAN standard rev 2.0 A (identifiers length = 11 bits).

● 1 - CAN standard rev 2.0 B (identifiers length = 29 bits).

• Bit 3:0 – DLC3:0: Data Length Code

Number of Bytes in the data field of the message.

DLC field of the remote or data frame to send. The range of DLC is from 0 up to 8. If DLC field >8 then effective DLC=8.

This field is updated with the corresponding value of the remote or data frame received. If the expected DLC differs from the
incoming DLC, a DLC warning appears in the CANSTMOB register.

Bit 7 6 5 4 3 2 1 0

CONMOB
1

CONMOB
0

RPLV IDE DLC3 DLC2 DLC1 DLC0
CANCDMO

B

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value - - - - - - - -
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

168

17.5.7.5 Data Length after Error

Figure 17-11. Tx Response - Error

Note: Information on response (ex: error on byte) is only available at the end of the serialization/de-serialization of
the byte.

17.5.7.6 Data Length in UART Mode

● The UART mode forces LRXDL and LTXDL to 0 and disables the writing in LINDLR register,

● Note that after reset, LRXDL and LTXDL are also forced to 0.

17.5.8 xxOK Flags

There are three xxOK flags in LINSIR register:

● LIDOK: LIN IDentifier OK
It is set at the end of the header, either by the Tx header function or by the Rx header. In LIN 1.3, before generating
LIDOK, the controller updates the LRXDL and LTXDL fields in LINDLR register.
It is not driven in UART mode.

● LRXOK: LIN RX response complete
It is set at the end of the response by the Rx response function in LIN mode and once a character is received in UART
mode.

● LTXOK: LIN TX response complete
It is set at the end of the response by the Tx Response function in LIN mode and once a character has been sent in
UART mode.

These flags can generate interrupts if the corresponding enable interrupt bit is set in the LINENIR register (see Section
17.5.13 “Interrupts” on page 188).

17.5.9 xxERR Flags

LERR bit of the LINSIR register is an logical ‘OR’ of all the bits of LINERR register (see Section 17.5.13 “Interrupts” on page
188). There are eight flags:

● LBERR = LIN Bit ERRor.
A unit that is sending a bit on the bus also monitors the bus. A LIN bit error will be flagged when the bit value that is
monitored is different from the bit value that is sent. After detection of a LIN bit error the transmission is aborted.

● LCERR = LIN Checksum ERRor.
A LIN checksum error will be flagged if the inverted modulo-256 sum of all received data bytes (and the protected
identifier in LIN 2.1) added to the checksum does not result in 0xFF.

DATA-0

LCMD = Tx Response
LCMD2..0 = 000b

4

4 0 1 2

LIN bus

LRXDL

LTXDL

LBUSY

1st Byte 2nd Byte 3rd Byte

DATA-1 DATA-2

ERROR

LERR
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

186

• Bit 7 – SPMIE: SPM Interrupt Enable

When the SPMIE bit is written to one, and the I-bit in the status register is set (one), the SPM ready interrupt will be enabled.
The SPM ready interrupt will be executed as long as the SPMEN bit in the SPMCSR register is cleared.

• Bit 6 – RWWSB: Read-while-write Section Busy

When a self-programming (page erase or page write) operation to the RWW section is initiated, the RWWSB will be set
(one) by hardware. When the RWWSB bit is set, the RWW section cannot be accessed. The RWWSB bit will be cleared if
the RWWSRE bit is written to one after a self-programming operation is completed. Alternatively the RWWSB bit will
automatically be cleared if a page load operation is initiated.

• Bit 5 – SIGRD: Signature Row Read

If this bit is written to one at the same time as SPMEN, the next LPM instruction within three clock cycles will read a byte from
the signature row into the destination register. see Section 24.7.10 “Reading the Signature Row from Software” on page 249
for details. An SPM instruction within four cycles after SIGRD and SPMEN are set will have no effect. This operation is
reserved for future use and should not be used.

• Bit 4 – RWWSRE: Read-while-write Section Read Enable

When programming (page erase or page write) to the RWW section, the RWW section is blocked for reading (the RWWSB
will be set by hardware). To re-enable the RWW section, the user software must wait until the programming is completed
(SPMEN will be cleared). Then, if the RWWSRE bit is written to one at the same time as SPMEN, the next SPM instruction
within four clock cycles re-enables the RWW section. The RWW section cannot be re-enabled while the flash is busy with a
page erase or a page write (SPMEN is set). If the RWWSRE bit is written while the flash is being loaded, the flash load
operation will abort and the data loaded will be lost.

• Bit 3 – BLBSET: Boot Lock Bit Set

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles sets boot lock bits
and memory lock bits, according to the data in R0. The data in R1 and the address in the Z-pointer are ignored. The BLBSET
bit will automatically be cleared upon completion of the lock bit set, or if no SPM instruction is executed within four clock
cycles.

An LPM instruction within three cycles after BLBSET and SPMEN are set in the SPMCSR register, will read either the Lock
bits or the fuse bits (depending on Z0 in the Z-pointer) into the destination register. See Section 24.7.9 “Reading the Fuse
and Lock Bits from Software” on page 248 for details.

• Bit 2 – PGWRT: Page Write

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles executes page write,
with the data stored in the temporary buffer. The page address is taken from the high part of the Z-pointer. The data in R1
and R0 are ignored. The PGWRT bit will auto-clear upon completion of a page write, or if no SPM instruction is executed
within four clock cycles. The CPU is halted during the entire page write operation if the NRWW section is addressed.

• Bit 1 – PGERS: Page Erase

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles executes page
erase. The page address is taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The PGERS bit will
auto-clear upon completion of a page erase, or if no SPM instruction is executed within four clock cycles. The CPU is halted
during the entire Page Write operation if the NRWW section is addressed.

• Bit 0 – SPMEN: Self Programming Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one together with either RWWSRE, BLBSET,
PGWRT or PGERS, the following SPM instruction will have a special meaning, see description above. If only SPMEN is
written, the following SPM instruction will store the value in R1:R0 in the temporary page buffer addressed by the Z-pointer.
The LSB of the Z-pointer is ignored. The SPMEN bit will auto-clear upon completion of an SPM instruction, or if no SPM
instruction is executed within four clock cycles. during page erase and page write, the SPMEN bit remains high until the
operation is completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower five bits will have no effect.
245ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

24.6 Addressing the Flash during Self-Programming

The Z-pointer is used to address the SPM commands.

Since the flash is organized in pages (see Table 25-12 on page 260), the program counter can be treated as having two
different sections. One section, consisting of the least significant bits, is addressing the words within a page, while the most
significant bits are addressing the pages. This is1 shown in Figure 24-3. Note that the page erase and page write operations
are addressed independently. Therefore it is of major importance that the boot loader software addresses the same page in
both the page erase and page write operation. Once a programming operation is initiated, the address is latched and the
Z-pointer can be used for other operations.

The only SPM operation that does not use the Z-pointer is setting the boot loader lock bits. The content of the Z-pointer is
ignored and will have no effect on the operation. The LPM instruction does also use the Z-pointer to store the address. Since
this instruction addresses the flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Figure 24-3. Addressing the Flash during SPM(1)

Note: 1. The different variables used in Figure 24-3 are listed in Table 24-9 on page 252.

24.7 Self-programming the Flash

The program memory is updated in a page by page fashion. Before programming a page with the data stored in the
temporary page buffer, the page must be erased. The temporary page buffer is filled one word at a time using SPM and the
buffer can be filled either before the page erase command or between a page erase and a page write operation:

Alternative 1, fill the buffer before a page erase

● Fill temporary page buffer

● Perform a page erase

● Perform a page write

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0

BIT

PAGEMSBPCMSB

ZPAGEMSBZPCMSB 0115
Z-register

Program
counter

Word address
within page

Page address
within the flash

0

PCWORDPCPAGE

02

01

00

PAGEEND

PCWORD[PAGEMSB : 0]
Page

Program Memory

Instructions Word

Page
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

246

For details about these two section, see Section 24.3.2 “NRWW – No Read-while-write Section” on page 242 and Section
24.3.1 “RWW – Read-while-write Section” on page 242.

Note: 1. Z15:Z13: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See Section 24.6 “Addressing the Flash during Self-Programming” on page 246 for details about the use of
Z-pointer during self-programming.

Table 24-14. Read-while-write Limit

Section Pages Address

Read-while-write section (RWW) 224 0x0000 - 0x6FFF

No read-while-write section (NRWW) 32 0x7000 - 0x7FFF

Table 24-15. Explanation of Different Variables used in Figure 24-3 and the Mapping to the Z-pointer

Variable
Corresponding

Z-value(1) Description

PCMSB 14
Most significant bit in the program counter (the program counter
is 15 bits PC[14:0]).

PAGEMSB 7
Most significant bit which is used to address the words within
one page (128 words in a page requires seven bits PC [6:0]).

ZPCMSB Z15
Bit in Z-register that is mapped to PCMSB. Because Z0 is not
used, the ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z8
Bit in Z-register that is mapped to PAGEMSB. Because Z0 is not
used, the ZPAGEMSB equals PAGEMSB + 1.

PCPAGE PC[14:7] Z15:Z8
Program counter page address: Page select, for page erase and
page write

PCWORD PC[6:0] Z7:Z1
Program counter word address: Word select, for filling temporary
buffer (must be zero during page write operation)
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

254

27. ATmega16/32/64/M1/C1 Typical Characteristics

All DC characteristics contained in this datasheet are based on simulations and characterization of similar devices in the
same process and design methods. These values are preliminary representing design targets, and will be updated after
characterization of actual automotive silicon data.

The following charts show typical behavior. These figures are not tested during manufacturing. All current consumption
measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. A sine wave generator
with rail-to-rail output is used as clock source.

All active- and idle current consumption measurements are done with all bits in the PRR register set and thus, the
corresponding I/O modules are turned off. Also the analog comparator is disabled during these measurements. Table 27-1
on page 287 shows the additional current consumption compared to ICC active and ICC idle for every I/O module controlled by
the power reduction register. See Section 6.6 “Power Reduction Register” on page 36 for details.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating frequency, loading of I/O pins,
switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and
frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as CL VCCf where CL = load capacitance,
VCC = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to function properly at
frequencies higher than the ordering code indicates.

The difference between current consumption in power-down mode with watchdog timer enabled and power-down mode with
watchdog timer disabled represents the differential current drawn by the watchdog timer.

27.1 Active Supply Current

Figure 27-1. Active Supply Current versus Frequency (0.1 to 1.0MHz)

Figure 27-2. Active Supply Current versus Frequency (1 to 24MHz)
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

284

(0xDC) CANEN2 – – ENMOB5 ENMOB4 ENMOB3 ENMOB2 ENMOB1 ENMOB0 162

(0xDB) CANGIE ENIT ENBOFF ENRX ENTX ENERR ENBX ENERG ENOVRT 161

(0xDA) CANGIT CANIT BOFFIT OVRTIM BXOK SERG CERG FERG AERG 160

(0xD9) CANGSTA – OVRG – TXBSY RXBSY ENFG BOFF ERRP 159

(0xD8) CANGCON ABRQ OVRQ TTC SYNTTC LISTEN TEST ENA/STB SWRES 158

(0xD7) Reserved – – – – – – – –

(0xD6) Reserved – – – – – – – –

(0xD5) Reserved – – – – – – – –

(0xD4) Reserved – – – – – – – –

(0xD3) Reserved – – – – – – – –

(0xD2) LINDAT LDATA7 LDATA6 LDATA5 LDATA4 LDATA3 LDATA2 LDATA1 LDATA0 196

(0xD1) LINSEL – – – – /LAINC LINDX2 LINDX1 LINDX0 196

(0xD0) LINIDR LP1 LP0 LID5 / LDL1 LID4 / LDL0 LID3 LID2 LID1 LID0 195

(0xCF) LINDLR LTXDL3 LTXDL2 LTXDL1 LTXDL0 LRXDL3 LRXDL2 LRXDL1 LRXDL0 195

(0xCE) LINBRRH – – – – LDIV11 LDIV10 LDIV9 LDIV8 194

(0xCD) LINBRRL LDIV7 LDIV6 LDIV5 LDIV4 LDIV3 LDIV2 LDIV1 LDIV0 194

(0xCC) LINBTR LDISR – LBT5 LBT4 LBT3 LBT2 LBT1 LBT0 194

(0xCB) LINERR LABORT LTOERR LOVERR LFERR LSERR LPERR LCERR LBERR 193

(0xCA) LINENIR – – – – LENERR LENIDOK LENTXOK LENRXOK 193

(0xC9) LINSIR LIDST2 LIDST1 LIDST0 LBUSY LERR LIDOK LTXOK LRXOK 192

(0xC8) LINCR LSWRES LIN13 LCONF1 LCONF0 LENA LCMD2 LCMD1 LCMD0 191

(0xC7) Reserved – – – – – – – –

(0xC6) Reserved – – – – – – – –

(0xC5) Reserved – – – – – – – –

(0xC4) Reserved – – – – – – – –

(0xC3) Reserved – – – – – – – –

(0xC2) Reserved – – – – – – – –

(0xC1) Reserved – – – – – – – –

(0xC0) Reserved – – – – – – – –

(0xBF) Reserved – – – – – – – –

(0xBE) Reserved – – – – – – – –

(0xBD) Reserved – – – – – – – –

(0xBC)(5) PIFR – – – – PEV2 PEV1 PEV0 PEOP 132

(0xBB)(5) PIM – – – – PEVE2 PEVE1 PEVE0 PEOPE 132

(0xBA)(5) PMIC2 POVEN2 PISEL2 PELEV2 PFLTE2 PAOC2 PRFM22 PRFM21 PRFM20 131

29. Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags.
The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega16/32/64/M1/C1 is a complex microcontroller with more peripheral units than can be supported within the 64
location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM,
only the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. These registers are only available on ATmega32/64M1. For other products described in this datasheet, these locations
are reserved.
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

300

30. Errata

30.1 Errata Summary

30.1.1 ATmega16M1/16C1/32M1/32C1 Rev. C (Mask Revision)

● LIN break delimiter

● ADC with PSC2-synchronized

● ADC amplifier measurement is unstable

30.1.2 ATmega16M1/16C1/32M1/32C1 Rev. B (Mask Revision)

● The AMPCMPx bits return 0

● No comparison when amplifier is used as comparator input and ADC input

● CRC calculation of diagnostic frames in LIN 2.x.

● Wrong TSOFFSET manufacturing calibration value

● PD0-PD3 set to outputs and PD4 pulled down following power-on with external reset active.

● LIN break delimiter

● ADC with PSC2-synchronized

● ADC amplifier measurement is unstable

● PSC emulation

● PSC OCRxx register update according to PLOCK2 usage

● Read/Write instructions of MUXn and REFS1:0

30.1.3 ATmega16M1/16C1/32M1/32C1 Rev. A (Mask Revision)

● Inopportune reset of the CANIDM registers

● The AMPCMPx bits return 0

● No comparison when amplifier is used as comparator input and ADC input

● CRC calculation of diagnostic frames in LIN 2.x

● PD0-PD3 set to outputs and PD4 pulled down following power-on with external reset active

● LIN break delimiter

● ADC with PSC2-synchronized

● ADC amplifier measurement is unstable

● PSC emulation

● Read/Write instructions of MUXn and REFS1:0

30.1.4 Errata Description

1. Inopportune reset of the CANIDM registers
After the reception of a CAN frame in a MOb, the ID mask registers are reset.
Problem fix / workaround
Before enabling a MOb in reception, re-initialize the ID mask registers - CANIDM[4..1].

2. The AMPCMPx bits return 0
When they are read the AMPCMPx bits in AMPxCSR registers return 0.
Problem fix / workaround
If the reading of the AMPCMPx bits is required, store the AMPCMPx value in a variable in memory before writing
in the AMPxCSR register and read the variable when necessary.

3. No comparison when amplifier is used as comparator input and ADC input
When it is selected as ADC input, an amplifier receives no clock signal when the ADC is stopped. In that case, if
the amplifier is also used as comparator input, no analog signal is propagated and no comparison is done.
Problem fix / workaround
Select another ADC channel rather than the working amplified channel.
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

306

22. Analog Feature Considerations . 237
22.1 Purpose . 237
22.2 Use of an Amplifier as Comparator Input . 237
22.3 Use of an Amplifier as Comparator Input and ADC Input . 237
22.4 Analog Peripheral Clock Sources . 238

23. debugWIRE On-chip Debug System . 239
23.1 Features . 239
23.2 Overview . 239
23.3 Physical Interface . 239
23.4 Software Break Points . 240
23.5 Limitations of debugWIRE . 240
23.6 debugWIRE Related Register in I/O Memory . 240

24. Boot Loader Support – Read-while-write Self-Programming
ATmega16/32/64/M1/C1 . 241

24.1 Boot Loader Features . 241
24.2 Application and Boot Loader Flash Sections . 241
24.3 Read-while-write and no Read-while-write Flash Sections . 241
24.4 Boot Loader Lock Bits . 243
24.5 Entering the Boot Loader Program . 244
24.6 Addressing the Flash during Self-Programming . 246
24.7 Self-programming the Flash . 246

25. Memory Programming . 255
25.1 Program and Data Memory Lock Bits . 255
25.2 Fuse Bits . 256
25.3 PSC Output Behavior during Reset . 256
25.4 Signature Bytes . 258
25.5 Calibration Byte . 258
25.6 Parallel Programming Parameters, Pin Mapping, and Commands 259
25.7 Serial Programming Pin Mapping . 261
25.8 Parallel Programming . 261
25.9 Serial Downloading . 270

26. Electrical Characteristics . 273
26.1 Absolute Maximum Ratings . 273
26.2 DC Characteristics . 273
26.3 Clock Characteristics . 276
26.4 External Clock Drive Characteristics . 276
26.5 Maximum Speed versus VCC . 277
26.6 PLL Characteristics . 277
26.7 SPI Timing Characteristics . 278
26.8 CAN Physical Layer Characteristics . 279
26.9 ADC Characteristics . 280
26.10 Parallel Programming Characteristics . 282

27. ATmega16/32/64/M1/C1 Typical Characteristics . 284
27.1 Active Supply Current . 284
27.2 Idle Supply Current . 285
27.3 Power-down Supply Current . 287
27.4 Pin Pull-up . 288
27.5 Pin Driver Strength . 289
27.6 Pin Thresholds and Hysteresis . 290
27.7 BOD Thresholds and Analog Comparator Hysteresis . 292
27.8 Analog Reference . 293
27.9 Internal Oscillator Speed . 294
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

316

