
Atmel - ATMEGA32M1-15MZ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity CANbus, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT

Number of I/O -

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 11x10b; D/A 1x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 32-VQFN Exposed Pad

Supplier Device Package 32-QFN (7x7)

Purchase URL https://www.e-xfl.com/product-detail/atmel/atmega32m1-15mz

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega32m1-15mz-4419281
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

9.2.2 Toggling the Pin

Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn. Note that the SBI instruction
can be used to toggle one single bit in a port.

9.2.3 Switching Between Input and Output

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn} = 0b11), an intermediate
state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output low ({DDxn, PORTxn} = 0b10) must occur. Normally, the
pull-up enabled state is fully acceptable, as a high-impedant environment will not notice the difference between a strong high
driver and a pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user must use either the tri-state
({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn} = 0b11) as an intermediate step.

Table 9-1 summarizes the control signals for the pin value.

9.2.4 Reading the Pin Value

Independent of the setting of data direction bit DDxn, the port pin can be read through the PINxn register bit. As shown in
Figure 9-2, the PINxn register bit and the preceding latch constitute a synchronizer. This is needed to avoid metastability if
the physical pin changes value near the edge of the internal clock, but it also introduces a delay. Figure 9-3 shows a timing
diagram of the synchronization when reading an externally applied pin value. The maximum and minimum propagation
delays are denoted tpd,max and tpd,min respectively.

Figure 9-3. Synchronization when Reading an Externally Applied Pin Value

Consider the clock period starting shortly after the first falling edge of the system clock. The latch is closed when the clock is
low, and goes transparent when the clock is high, as indicated by the shaded region of the “SYNC LATCH” signal. The signal
value is latched when the system clock goes low. It is clocked into the PINxn register at the succeeding positive clock edge.
As indicated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed between ½ and 1½
system clock period depending upon the time of assertion.

Table 9-1. Port Pin Configurations

DDxn PORTxn
PUD

(in MCUCR) I/O Pull-up Comment

0 0 X Input No
Default configuration after reset.

Tri-state (Hi-Z)

0 1 0 Input Yes Pxn will source current if ext. pulled low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output low (sink)

1 1 X Output No Output high (source)

SYSTEM CLK

INSTRUCTIONS

SYNC LATCH

PINxn

r17

XXX XXX

0x00 0xFF

in r17, PINx

tpd, max

tpd, min
53ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

9.3.2 Alternate Functions of Port B

The Port B pins with alternate functions are shown in Table 9-3.

The alternate pin configuration is as follows:

• ADC4/PSCOUT0B/SCK/PCINT7 – Bit 7

PSCOUT0B, output 0B of PSC.

ADC4, analog to digital converter, input channel 4.

SCK, master clock output, slave clock input pin for SPI channel. When the SPI is enabled as a slave, this pin is configured as
an input regardless of the setting of DDB7. When the SPI is enabled as a master, the data direction of this pin is controlled
by DDB7. When the pin is forced to be an input, the pull-up can still be controlled by the PORTB7 bit.

PCINT7, pin change interrupt 7.

• ADC7/PSCOUT1B/PCINT6 – Bit 6

ADC7, analog to digital converter, input channel 7.

PSCOUT1B, output 1B of PSC.

PCINT6, pin change interrupt 6.

Table 9-3. Port B Pins Alternate Functions

Port Pin Alternate Functions

PB7

PSCOUT0B (PSC output 0B)

ADC4 (Analog Input Channel 4)

SCK (SPI Bus Serial Clock)

PCINT7 (Pin Change Interrupt 7)

PB6

ADC7 (Analog Input Channel 7)

PSCOUT1B (PSC output 1B)

PCINT6 (Pin Change Interrupt 6)

PB5

ADC6 (Analog Input Channel 6)

INT2 (External Interrupt 2)

ACMPN1 (analog comparator 1 Negative Input)

AMP2- (Analog Differential Amplicator 2 Negative Input)

PCINT5 (Pin Change Interrupt 5)

PB4
AMP0+ (Analog Differential Amplifier 0 Positive Input)

PCINT4 (Pin Change Interrupt 4)

PB3
AMP0- (Analog Differential Amplifier 0 Negative Input)

PCINT3 (Pin Change Interrupt 3)

PB2

ADC5 (Analog Input Channel5)

INT1 (External Interrupt 1)

ACMPN0 (analog comparator 0 Negative Input)

PCINT2 (Pin Change Interrupt 2)

PB1

MOSI (SPI Master Out Slave In)

PSCOUT2B (PSC output 2B)

PCINT1 (Pin Change Interrupt 1)

PB0

MISO (SPI Master In Slave Out)

PSCOUT2A (PSC output 2A)

PCINT0 (Pin Change Interrupt 0)
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

58

Table 9-13 relates the alternate functions of Port E to the overriding signals shown in Figure 9-5 on page 56.

9.4 Register Description for I/O-Ports

9.4.1 Port B Data Register – PORTB

9.4.2 Port B Data Direction Register – DDRB

9.4.3 Port B Input Pins Address – PINB

9.4.4 Port C Data Register – PORTC

Table 9-13. Overriding Signals for Alternate Functions in PE2..PE0

Signal Name

PE2/ADC0/XTAL2/

PCINT26

PE1/XTAL1/OC0B/

PCINT25

PE0/RESET/

OCD/PCINT24

PUOE 0 0 0

PUOV 0 0 0

DDOE 0 0 0

DDOV 0 0 0

PVOE 0 OC0Ben 0

PVOV 0 OC0B 0

DIEOE ADC0D 0 0

DIEOV 0 0 0

DI

AIO
Osc Output

ADC0
Osc / Clock input

Bit 7 6 5 4 3 2 1 0

PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 PORTC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

68

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC0x to toggle its logical
level on each compare match (COM0x1:0 = 1). The waveform generated will have a maximum frequency of fOC0 = fclk_I/O/2
when OCR0A is set to zero. This feature is similar to the OC0A toggle in CTC mode, except the double buffer feature of the
output compare unit is enabled in the fast PWM mode.

12.6.4 Phase Correct PWM Mode

The phase correct PWM mode (WGM02:0 = 1 or 5) provides a high resolution phase correct PWM waveform generation
option. The phase correct PWM mode is based on a dual-slope operation. The counter counts repeatedly from BOTTOM to
TOP and then from TOP to BOTTOM. TOP is defined as 0xFF when WGM2:0 = 1, and OCR0A when WGM2:0 = 5. In non-
inverting Compare Output mode, the Output Compare (OC0x) is cleared on the compare match between TCNT0 and
OCR0x while upcounting, and set on the compare match while downcounting. In inverting output compare mode, the
operation is inverted. The dual-slope operation has lower maximum operation frequency than single slope operation.
However, due to the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP. When the counter reaches
TOP, it changes the count direction. The TCNT0 value will be equal to TOP for one timer clock cycle. The timing diagram for
the phase correct PWM mode is shown on Figure 12-7. The TCNT0 value is in the timing diagram shown as a histogram for
illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line
marks on the TCNT0 slopes represent compare matches between OCR0x and TCNT0.

Figure 12-7. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter overflow flag (TOV0) is set each time the counter reaches BOTTOM. The interrupt flag can be used to
generate an interrupt each time the counter reaches the BOTTOM value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OC0x pins. Setting the
COM0x1:0 bits to two will produce a non-inverted PWM. An inverted PWM output can be generated by setting the
COM0x1:0 to three: Setting the COM0A0 bits to one allows the OC0A pin to toggle on compare matches if the WGM02 bit is
set. This option is not available for the OC0B pin (see Table 12-7 on page 88). The actual OC0x value will only be visible on
the port pin if the data direction for the port pin is set as output. The PWM waveform is generated by clearing (or setting) the
OC0x register at the compare match between OCR0x and TCNT0 when the counter increments, and setting (or clearing) the
OC0x register at compare match between OCR0x and TCNT0 when the counter decrements. The PWM frequency for the
output when using phase correct PWM can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

1 2 3

TCNTn

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCnx

OCnx

Period

TOVn Interrupt
Flag Set

OCRnx Update

OCnx Interrupt
Flag Set

fOCnxPCPWM

fclk_I/O

N 510
-----------------=
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

84

13.10 16-bit Timer/Counter Register Description

13.10.1 Timer/Counter1 Control Register A – TCCR1A

• Bit 7:6 – COMnA1:0: Compare Output Mode for Channel A

• Bit 5:4 – COMnB1:0: Compare Output Mode for Channel B

The COMnA1:0 and COMnB1:0 control the output compare pins (OCnA and OCnB respectively) behavior. If one or both of
the COMnA1:0 bits are written to one, the OCnA output overrides the normal port functionality of the I/O pin it is connected
to. If one or both of the COMnB1:0 bit are written to one, the OCnB output overrides the normal port functionality of the I/O
pin it is connected to. However, note that the Data Direction Register (DDR) bit corresponding to the OCnA or OCnB pin
must be set in order to enable the output driver.

When the OCnA or OCnB is connected to the pin, the function of the COMnx1:0 bits is dependent of the WGMn3:0 bits
setting. Table 13-1 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to a Normal or a CTC mode (non-
PWM).

Table 13-2 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the fast PWM mode.

Note: 1. A special case occurs when OCRnA/OCRnB equals TOP and COMnA1/COMnB1 is set. In this case the com-
pare match is ignored, but the set or clear is done at TOP. See Section 13.8.3 “Fast PWM Mode” on page 103
for more details.

Bit 7 6 5 4 3 2 1 0

COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 TCCR1A

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 13-1. Compare Output Mode, non-PWM

COMnA1/COMnB1 COMnA0/COMnB0 Description

0 0 Normal port operation, OCnA/OCnB disconnected.

0 1 Toggle OCnA/OCnB on compare match.

1 0 Clear OCnA/OCnB on compare match (set output to low level).

1 1 Set OCnA/OCnB on compare match (set output to high level).

Table 13-2. Compare Output Mode, Fast PWM(1)

COMnA1/COMnB1 COMnA0/COMnB0 Description

0 0 Normal port operation, OCnA/OCnB disconnected.

0 1
WGMn3:0 = 14 or 15: Toggle OC1A on compare match, OC1B
disconnected (normal port operation). For all other WGM1
settings, normal port operation, OC1A/OC1B disconnected.

1 0 Clear OCnA/OCnB on compare match, set OCnA/OCnB at TOP

1 1 Set OCnA/OCnB on compare match, clear OCnA/OCnB at TOP
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

110

• Bit 4:3:2 – SWAPn: SWAP Funtion Select (not implemented in ATmega32M1 up to revision C)

When this bit is set; the channels PSCOUTnA and PSCOUTnB are exchanged. This allows to invert the waveforms of both
channels at one time.

• Bit 1 – PCCYC: PSC Complete Cycle

When this bit is set, the PSC completes the entire waveform cycle before halt operation requested by clearing PRUN.

• Bit 0 – PRUN: PSC Run

Writing this bit to one starts the PSC.

14.16.9 PSC Module n Input Control Register – PMICn

The input control registers are used to configure the 2 PSC’s Retrigger/Fault block A and B. The 2 blocks are identical, so
they are configured on the same way.

• Bit 7 – POVENn: PSC Module n Overlap Enable

Set this bit to disactivate the overlap protection. See Section 14.7 “Overlap Protection” on page 122.

• Bit 6 – PISELn: PSC Module n Input Select

Clear this bit to select PSCINn as module n input.

Set this bit to select comparator n output as module n input.

• Bit 5 –PELEVn: PSC Module n Input Level Selector

When this bit is clear, the low level of selected input generates the significative event for fault function.

When this bit is set, the high level of selected input generates the significative event for fault function.

• Bit 4 – PFLTEn: PSC Module n Input Filter Enable

Setting this bit (to one) activates the input noise canceler. When the noise canceler is activated, the input from the input pin
is filtered. The filter function requires four successive equal valued samples of the input pin for changing its output. The input
is therefore delayed by four oscillator cycles when the noise canceler is enabled.

• Bit 3 – PAOCn: PSC Module n 0 Asynchronous Output Control

When this bit is clear, fault input can act directly to PSC module n outputs A and B. See Section 14.9.1 “PSC Input
Configuration” on page 124.

• Bit 2:0 – PRFMn2:0: PSC Module n Input Mode

These three bits define the mode of operation of the PSC inputs.

Bit 7 6 5 4 3 2 1 0

POVENn PISELn PELEVn PFLTEn PAOCn PRFMn2 PRFMn1 PRFMn0 PMICn

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 14-12. Input Mode Operation

PRFMn2:0 Description

000b No action, PSC input is ignored

001b Disactivate module n outputs A

010b Disactivate module n output B

011b Disactivate module n output A and B

10x Disactivate all PSC output

11xb Halt PSC and wait for software action
131ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

15.2 SS Pin Functionality

15.2.1 Slave Mode

When the SPI is configured as a slave, the slave select (SS) pin is always input. When SS is held low, the SPI is activated,
and MISO becomes an output if configured so by the user. All other pins are inputs. When SS is driven high, all pins are
inputs, and the SPI is passive, which means that it will not receive incoming data. Note that the SPI logic will be reset once
the SS pin is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous with the master clock
generator. When the SS pin is driven high, the SPI slave will immediately reset the send and receive logic, and drop any
partially received data in the shift register.

15.2.2 Master Mode

When the SPI is configured as a master (MSTR in SPCR is set), the user can determine the direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI system. Typically, the pin will be
driving the SS pin of the SPI slave.

If SS is configured as an input, it must be held high to ensure master SPI operation. If the SS pin is driven low by peripheral
circuitry when the SPI is configured as a master with the SS pin defined as an input, the SPI system interprets this as
another master selecting the SPI as a slave and starting to send data to it. To avoid bus contention, the SPI system takes the
following actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a slave. As a result of the SPI becoming a slave,
the MOSI and SCK pins become inputs.

2. The SPIF flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is set, the interrupt routine
will be executed.

Thus, when interrupt-driven SPI transmission is used in master mode, and there exists a possibility that SS is driven low, the
interrupt should always check that the MSTR bit is still set. If the MSTR bit has been cleared by a slave select, it must be set
by the user to re-enable SPI master mode.

15.2.3 MCU Control Register – MCUCR

• Bit 7– SPIPS: SPI Pin Redirection

● Thanks to SPIPS (SPI pin select) in MCUCR Sfr, SPI pins can be redirected.

● When the SPIPS bit is written to zero, the SPI signals are directed on pins MISO,MOSI, SCK and SS.

● When the SPIPS bit is written to one, the SPI signals are directed on alternate SPI pins, MISO_A, MOSI_A, SCK_A
and SS_A.

Note that programming port are always located on alternate SPI port.

Bit 7 6 5 4 3 2 1 0

SPIPS – – PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
137ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

16.2.3 CAN Bit Timing

To ensure correct sampling up to the last bit, a CAN node needs to re-synchronize throughout the entire frame. This is done
at the beginning of each message with the falling edge SOF and on each recessive to dominant edge.

16.2.3.1 Bit Construction

One CAN bit time is specified as four non-overlapping time segments. Each segment is constructed from an integer multiple
of the time quantum. The time quantum or TQ is the smallest discrete timing resolution used by a CAN node.

Figure 16-3. CAN Bit Construction

16.2.3.2 Synchronization Segment

The first segment is used to synchronize the various bus nodes.

On transmission, at the start of this segment, the current bit level is output. If there is a bit state change between the previous
bit and the current bit, then the bus state change is expected to occur within this segment by the receiving nodes.

16.2.3.3 Propagation Time Segment

This segment is used to compensate for signal delays across the network.

This is necessary to compensate for signal propagation delays on the bus line and through the transceivers of the bus
nodes.

16.2.3.4 Phase Segment 1

Phase Segment 1 is used to compensate for edge phase errors.

This segment may be lengthened during re-synchronization.

16.2.3.5 Sample Point

The sample point is the point of time at which the bus level is read and interpreted as the value of the respective bit. Its
location is at the end of phase segment 1 (between the two phase segments).

16.2.3.6 Phase Segment 2

This segment is also used to compensate for edge phase errors.

This segment may be shortened during re-synchronization, but the length has to be at least as long as the information
processing time (IPT) and may not be more than the length of phase segment 1.

16.2.3.7 Information Processing Time

It is the time required for the logic to determine the bit level of a sampled bit.

The IPT begins at the sample point, is measured in TQ and is fixed at 2TQ for the Atmel CAN. Since phase segment 2 also
begins at the sample point and is the last segment in the bit time, PS2 minimum shall not be less than the IPT.

Nominal CAN Bit Time

SYNC_SEG PROP_SEG

CAN Frame
(producer)

Time Quantum
(producer)

Segments
(producer)

Segments
(consumer)

Transmission Point
(producer)

PHASE_SEG_1 PHASE_SEG_2

SYNC_SEG

Propagation
delay

PROP_SEG PHASE_SEG_1

Sample Point

PHASE_SEG_2
143ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

16.10.7 CAN Status Interrupt MOb Registers - CANSIT2 and CANSIT1

• Bits 5:0 - SIT5:0: Status of Interrupt by MOb

● 0 - no interrupt.

● 1- MOb interrupt.

Note: Example: CANSIT2 = 0010 0001b: MOb 0 and 5 interrupts.

• Bit 15:6 – Reserved Bits

These bits are reserved for future use.

16.10.8 CAN Bit Timing Register 1 - CANBT1

• Bit 7– Reserved Bit

This bit is reserved for future use. For compatibility with future devices, it must be written to zero when CANBT1 is written.

• Bit 6:1 – BRP5:0: Baud Rate Prescaler

The period of the CAN controller system clock Tscl is programmable and determines the individual bit timing.

If ‘BRP[5..0]=0’, see Section 16.4.3 “Baud Rate” on page 148 and Section • “Bit 0 – SMP: Sample Point(s)” on page 164.

• Bit 0 – Reserved Bit

This bit is reserved for future use. For compatibility with future devices, it must be written to zero when CANBT1 is written.

16.10.9 CAN Bit Timing Register 2 - CANBT2

• Bit 7– Reserved Bit

This bit is reserved for future use. For compatibility with future devices, it must be written to zero when CANBT2 is written.

Bit 7 6 5 4 3 2 1 0

- - SIT5 SIT4 SIT3 SIT2 SIT1 SIT0 CANSIT2

- - - - - - - - CANSIT1

Bit 15 14 13 12 11 10 9 8

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

- BRP5 BRP4 BRP3 BRP2 BRP1 BRP0 - CANBT1

Read/Write - R/W R/W R/W R/W R/W R/W -

Initial Value - 0 0 0 0 0 0 -

Tscl
BRP[5:0] 1+

clkIOfrequency
------------------------------------=

Bit 7 6 5 4 3 2 1 0

- SJW1 SJW0 - PRS2 PRS1 PRS0 - CANBT2

Read/Write - R/W R/W - R/W R/W R/W -

Initial Value - 0 0 - 0 0 0 -
163ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

17.5.4 Configuration

Depending on the mode (LIN or UART), LCONF[1..0] bits of the LINCR register set the controller in the following
configuration (Table 17-3):

The LIN configuration is independent of the programmed LIN protocol.

The listening mode connects the internal Tx LIN and the internal Rx LIN together. In this mode, the TXLIN output pin is
disabled and the RXLIN input pin is always enabled. The same scheme is available in UART mode.

Figure 17-6. Listening Mode

17.5.5 Busy Signal

LBUSY bit flag in LINSIR register is the image of the BUSY signal. It is set and cleared by hardware. It signals that the
controller is busy with LIN or UART communication.

17.5.5.1 Busy Signal in LIN Mode

Figure 17-7. Busy Signal in LIN Mode

Table 17-3. Configuration Table versus Mode

Mode LCONF[1..0] Configuration

LIN

00 b LIN standard configuration (default)

01 b No CRC field detection or transmission

10 b Frame_Time_Out disable

11 b Listening mode

UART

00 b 8-bit data, no parity and 1 stop-bit

01 b 8-bit data, even parity and 1 stop-bit

10 b 8-bit data, odd parity and 1 stop-bit

11 b Listening mode, 8-bit data, no parity and 1 stop-bit

TXLIN
internal
Tx LIN

internal
Rx LIN

LISTEN

1

0
RXLIN

Field Field
SYNC

Node providing the master task

Node providing a slave task

HEADER

LIN Bus

1) LBUSY

2) LBUSY

3) LBUSY

FRAME SLOT

RESPONSE

LCMD = Tx Header LIDOK LCMD = Tx or Rx Response LTXOK or LRXOK

BREAK
Field

PROTECTED
IDENTIFIER

Field
DATA-0

Field
DATA-n CHECKSUM

Field

Node providing neither the master task, neither a slave task
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

182

When the busy signal is set, some registers are locked, user writing is not allowed:

● “LIN Control Register” - LINCR - except LCMD[2..0], LENA and LSWRES,

● “LIN Baud Rate Registers” - LINBRRL and LINBRRH,

● “LIN Data Length Register” - LINDLR,

● “LIN Identifier Register” - LINIDR,

● “LIN Data Register” - LINDAT.

If the busy signal is set, the only available commands are:

● LCMD[1..0] = 00 b, the abort command is taken into account at the end of the byte,

● LENA = 0 and/or LCMD[2] = 0, the kill command is taken into account immediately,

● LSWRES = 1, the reset command is taken into account immediately.

Note that, if another command is entered during busy signal, the new command is not validated and the LOVRERR bit flag of
the LINERR register is set. The on-going transfer is not interrupted.

17.5.5.2 Busy Signal in UART Mode

During the byte transmission, the busy signal is set. This locks some registers from being written:

● “LIN Control Register” - LINCR - except LCMD[2..0], LENA and LSWRES,

● “LIN Data Register” - LINDAT.

The busy signal is not generated during a byte reception.

17.5.6 Bit Timing

17.5.6.1 Baud rate Generator

The baud rate is defined to be the transfer rate in bits per second (bps):

● BAUD: Baud rate (in bps),

● fclki/o: System I/O clock frequency,

● LDIV[11..0]: Contents of LINBRRH & LINBRRL registers - (0-4095), the pre-scaler receives clki/o as input clock.

● LBT[5..0]: Least significant bits of - LINBTR register- (0-63) is the number of samplings in a LIN or UART bit (default
value 32).

Equation for calculating baud rate:
BAUD = fclki/o / LBT[5..0] x (LDIV[11..0] + 1)

Equation for setting LINDIV value:
LDIV[11..0] = (fclki/o / LBT[5..0] x BAUD) - 1

Note that in reception a majority vote on three samplings is made.

17.5.6.2 Re-synchronization in LIN Mode

When waiting for Rx Header, LBT[5..0] = 32 in LINBTR register. The re-synchronization begins when the BREAK is
detected. If the BREAK size is not in the range (11 bits min., 28 bits max. — 13 bits nominal), the BREAK is refused. The re-
synchronization is done by adjusting LBT[5..0] value to the SYNCH field of the received header (0x55). Then the
PROTECTED IDENTIFIER is sampled using the new value of LBT[5..0]. The re-synchronization implemented in the
controller tolerates a clock deviation of ±20% and adjusts the baud rate in a ±2% range.

The new LBT[5..0] value will be used up to the end of the response. Then, the LBT[5..0] will be reset to 32 for the next
header.

The LINBTR register can be used to re-calibrate the clock oscillator.

The re-synchronization is not performed if the LIN node is enabled as a master.
183ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

17.5.6.3 Handling LBT[5..0]

LDISR bit of LINBTR register is used to:

● To enable the setting of LBT[5..0] (to manually adjust the baud rate especially in the case of UART mode). A minimum
of 8 is required for LBT[5..0] due to the sampling operation.

● Disable the re-synchronization in LIN Slave Mode for test purposes.

Note that the LENA bit of LINCR register is important for this handling (see Figure 17-8).

Figure 17-8. Handling LBT[5..0]

17.5.7 Data Length

Section 17.4.6 “LIN Commands” on page 179 describes how to set or how are automatically set the LRXDL[3..0] or
LTXDL[3..0] fields of LINDLR register before receiving or transmitting a response.

In the case of Tx Response the LRXDL[3..0] will be used by the hardware to count the number of bytes already successfully
sent.

In the case of Rx Response the LTXDL[3..0] will be used by the hardware to count the number of bytes already successfully
received.

If an error occurs, this information is useful to the programmer to recover the LIN messages.

17.5.7.1 Data Length in LIN 2.1

● If LTXDL[3..0]=0 only the CHECKSUM will be sent,

● If LRXDL[3..0]=0 the first byte received will be interpreted as the CHECKSUM,

● If LTXDL[3..0] or LRXDL[3..0] >8, values will be forced to 8 after the command setting and before sending or receiving
of the first byte.

17.5.7.2 Data Length in LIN 1.3

● LRXDL and LTXDL fields are both hardware updated before setting LIDOK by decoding the data length code
contained in the received PROTECTED IDENTIFIER (LRXDL = LTXDL).

● Via the above mechanism, a length of 0 or >8 is not possible.

LENA ?
(LINCR bit4)

LDISR
to write

= 1

= 1

= 0

= 0

Write in LINBTR register

LBT[5..0] forced to 0x20
LDISR forced to 0

Enable re-synch. in LIN mode

LBT[5..0] = LBT[5..0] to write
(LBT[5..0] min = 8)

LDISR forced to 1
Disable re-synch. in LIN mode
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

184

Figure 18-14. Temperature Sensor Block Diagram

The measured voltage has a linear relationship to the temperature as described in Table 18-3. The voltage sensitivity is
approximately 2.5mV/°C and the accuracy of the temperature measurement is ±10°C after bandgap calibration.

The values described in Table 18-3 on page 209 are typical values. However, due to the process variation the temperature
sensor output voltage varies from one chip to another. To be capable of achieving more accurate results, the temperature
measurement can be calibrated in the application software.

18.8.1 User Calibration

The software calibration requires that a calibration value is measured and stored in a register or EEPROM for each chip. The
software calibration can be done utilizing the formula:

T = {[(ADCH << 8) | ADC] – TOS} / k

where ADCH and ADCL are the ADC data registers, k is a fixed coefficient and TOS is the temperature sensor offset value
determined and stored into EEPROM.

18.8.2 Manufacturing Calibration

One can also use the calibration values available in the signature row (see Section 24.7.10 “Reading the Signature Row
from Software” on page 249).

The calibration values are determined from values measured during test at room temperature which is approximately +25°C
and during test at hot temperature which is approximately +125°C. Calibration measures are done at VCC = 3V and with ADC
in internal Vref (2.56V) mode.

There are two algorithms for determining the Centigrade Temperature

formula 1 for ATmega32 up to rev B

formula 2 for ATmega16/64 and ATmega32 rev C.

formula 1: Temp_C = (((ADC_ts – 273) TS_Gain) / 128) + TS_Offset [Applicable to devices with 0xFF or 0x42 ('B') in the
signature memory at address 0x003F]

formula 2: Temp_C = ((((ADC_ts – (298 – TS_Offset)) TS_Gain) / 128) + 25 [Applicable to devices with 0x43 ('C') in the
signature memory at address 0x003F]

Where:

Temp_C is the result temperature in degrees centigrade.

ADC_ts is the 10 bit result the ADC returns from reading the temperature sensor.

TS_Gain is the unsigned fixed point 8-bit temperature sensor gain factor in 1/128th units stored as previously in the
signature row at address 0x0007.

Table 18-3. Temperature versus Sensor Output Voltage (Typical Case)

Temperature/°C –40°C +25°C +125°C

Voltage/mV 600mV 762mv 1012mV

Temperature
Sensor

ADC Input
Multiplexer

Enable when
ADMUX = Temp. Sensor input

ADMUX

to sampling
and hold

G = 1
209ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

19.2.4 Threshold Reference for Internal analog comparator

An external resistor used in conjunction with the Current Source can be used as threshold reference for internal analog
comparator (see Section 20. “Analog Comparator” on page 225). This can be connected to AIN0 (negative analog compare
input pin) as well as AIN1 (positive analog compare input pin). Using a resistor in series with a lower tolerance than the
current source accuracy (≤ 2%) is recommended. Table 19-2 gives an example of threshold references using standard
values of resistors.

19.3 Control Register

19.3.1 ADC control and status register B– ADCSRB

• Bit 6 – ISRCEN: Current Source Enable

Set this bit to source a 100µA current to the AREF pin.
Clear this bit to disconnect.

• Bit 5 – AREFEN: Analog Reference pin Enable

Set this bit to connect the internal AREF circuit to the AREF pin.
Clear this bit to disconnect the internal AREF circuit from the AREF pin.

Bit 7 6 5 4 3 2 1 0

ADHSM ISRCEN AREFEN - ADTS3 ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

224

24.6 Addressing the Flash during Self-Programming

The Z-pointer is used to address the SPM commands.

Since the flash is organized in pages (see Table 25-12 on page 260), the program counter can be treated as having two
different sections. One section, consisting of the least significant bits, is addressing the words within a page, while the most
significant bits are addressing the pages. This is1 shown in Figure 24-3. Note that the page erase and page write operations
are addressed independently. Therefore it is of major importance that the boot loader software addresses the same page in
both the page erase and page write operation. Once a programming operation is initiated, the address is latched and the
Z-pointer can be used for other operations.

The only SPM operation that does not use the Z-pointer is setting the boot loader lock bits. The content of the Z-pointer is
ignored and will have no effect on the operation. The LPM instruction does also use the Z-pointer to store the address. Since
this instruction addresses the flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Figure 24-3. Addressing the Flash during SPM(1)

Note: 1. The different variables used in Figure 24-3 are listed in Table 24-9 on page 252.

24.7 Self-programming the Flash

The program memory is updated in a page by page fashion. Before programming a page with the data stored in the
temporary page buffer, the page must be erased. The temporary page buffer is filled one word at a time using SPM and the
buffer can be filled either before the page erase command or between a page erase and a page write operation:

Alternative 1, fill the buffer before a page erase

● Fill temporary page buffer

● Perform a page erase

● Perform a page write

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0

BIT

PAGEMSBPCMSB

ZPAGEMSBZPCMSB 0115
Z-register

Program
counter

Word address
within page

Page address
within the flash

0

PCWORDPCPAGE

02

01

00

PAGEEND

PCWORD[PAGEMSB : 0]
Page

Program Memory

Instructions Word

Page
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

246

Alternative 2, fill the buffer after page erase

● Perform a page erase

● Fill temporary page buffer

● Perform a page write

If only a part of the page needs to be changed, the rest of the page must be stored (for example in the temporary page
buffer) before the erase, and then be rewritten. When using alternative 1, the boot loader provides an effective read-modify-
write feature which allows the user software to first read the page, do the necessary changes, and then write back the
modified data. If alternative 2 is used, it is not possible to read the old data while loading since the page is already erased.
The temporary page buffer can be accessed in a random sequence. It is essential that the page address used in both the
page erase and page write operation is addressing the same page. See Section 24.7.13 “Simple Assembly Code Example
for a Boot Loader” on page 250 for an assembly code example.

24.7.1 Performing Page Erase by SPM

To execute page erase, set up the address in the Z-pointer, write “X0000011” to SPMCSR and execute SPM within four
clock cycles after writing SPMCSR. The data in R1 and R0 is ignored. The page address must be written to PCPAGE in the
Z-register. Other bits in the Z-pointer will be ignored during this operation.

● Page erase to the RWW section: The NRWW section can be read during the page erase.

● Page erase to the NRWW section: The CPU is halted during the operation.

24.7.2 Filling the Temporary Buffer (Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write “00000001” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The content of PCWORD in the Z-register is used to address
the data in the temporary buffer. The temporary buffer will auto-erase after a page write operation or by writing the
RWWSRE bit in SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than one time to
each address without erasing the temporary buffer.

If the EEPROM is written in the middle of an SPM page load operation, all data loaded will be lost.

24.7.3 Performing a Page Write

To execute page write, set up the address in the Z-pointer, write “X0000101” to SPMCSR and execute SPM within four clock
cycles after writing SPMCSR. The data in R1 and R0 is ignored. The page address must be written to PCPAGE. Other bits
in the Z-pointer must be written to zero during this operation.

● Page write to the RWW section: The NRWW section can be read during the page write.

● Page write to the NRWW section: The CPU is halted during the operation.

24.7.4 Using the SPM Interrupt

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the SPMEN bit in SPMCSR is
cleared. This means that the interrupt can be used instead of polling the SPMCSR register in software. When using the SPM
interrupt, the interrupt vectors should be moved to the BLS section to avoid that an interrupt is accessing the RWW section
when it is blocked for reading.

24.7.5 Consideration While Updating BLS

Special care must be taken if the user allows the boot loader section to be updated by leaving boot lock bit11
unprogrammed. An accidental write to the boot loader itself can corrupt the entire boot loader, and further software updates
might be impossible. If it is not necessary to change the boot loader software itself, it is recommended to program the boot
lock bit11 to protect the boot loader software from any internal software changes.

24.7.6 Prevent Reading the RWW Section during Self-programming

During self-programming (either page erase or page write), the RWW section is always blocked for reading. The user
software itself must prevent that this section is addressed during the self programming operation. The RWWSB in the
SPMCSR will be set as long as the RWW section is busy. During self-programming the Interrupt vector table should be
moved to the BLS or the interrupts must be disabled. Before addressing the RWW section after the programming is
completed, the user software must clear the RWWSB by writing the RWWSRE. See Section 24.7.13 “Simple Assembly
Code Example for a Boot Loader” on page 250 for an example.
247ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

25.8.12 Reading the Fuse and Lock Bits

The algorithm for reading the fuse and lock bits is as follows (refer to Section 25.8.4 “Programming the Flash” on page 262
for details on command loading):

1. A: Load command “0000 0100”.

2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the fuse low bits can now be read at DATA (“0” means
programmed).

3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the fuse high bits can now be read at DATA (“0” means
programmed).

4. Set OE to “0”, BS2 to “1”, and BS1 to “0”. The status of the extended fuse bits can now be read at DATA (“0”
means programmed).

5. Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be read at DATA (“0” means
programmed).

6. Set OE to “1”.

Figure 25-6. Mapping Between BS1, BS2 and the Fuse and Lock Bits during Read

25.8.13 Reading the Signature Bytes

The algorithm for reading the signature bytes is as follows (refer to Section 25.8.4 “Programming the Flash” on page 262 for
details on command and address loading):

1. A: Load command “0000 1000”.

2. B: Load address low byte (0x00 - 0x02).

3. Set OE to “0”, and BS1 to “0”. The selected signature byte can now be read at DATA.

4. Set OE to “1”.

25.8.14 Reading the Calibration Byte

The algorithm for reading the calibration byte is as follows (refer to Section 25.8.4 “Programming the Flash” on page 262 for
details on command and address loading):

1. A: Load command “0000 1000”.

2. B: Load address low byte, 0x00.

3. Set OE to “0”, and BS1 to “1”. The calibration byte can now be read at DATA.

4. Set OE to “1”.

Extended Fuse Byte

0

1

Fuse Low Byte

BS2

Fuse High Byte

0

1

Lock Bits

BS2

BS1

DATA

0

1

267ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

4. The flash is programmed one page at a time. The memory page is loaded one byte at a time by supplying the 6
LSB of the address and data together with the load program memory page instruction. To ensure correct loading
of the page, the data low byte must be loaded before data high byte is applied for a given address. The program
memory page is stored by loading the write program memory page instruction with the 8 MSB of the address. If
polling is not used, the user must wait at least tWD_FLASH before issuing the next page. (See Table 25-16.) Access-
ing the serial programming interface before the flash write operation completes can result in incorrect
programming.

5. The EEPROM array is programmed one byte at a time by supplying the address and data together with the appro-
priate write instruction. An EEPROM memory location is first automatically erased before new data is written. If
polling is not used, the user must wait at least tWD_EEPROM before issuing the next byte. (See Table 25-16.) In a chip
erased device, no 0xFFs in the data file(s) need to be programmed.

6. Any memory location can be verified by using the Read instruction which returns the content at the selected
address at serial output MISO.

7. At the end of the programming session, RESET can be set high to commence normal operation.

8. Power-off sequence (if needed): Set RESET to “1”. Turn VCC power off.

25.9.2 Data Polling Flash

When a page is being programmed into the flash, reading an address location within the page being programmed will give
the value 0xFF. At the time the device is ready for a new page, the programmed value will read correctly. This is used to
determine when the next page can be written. Note that the entire page is written simultaneously and any address within the
page can be used for polling. Data polling of the flash will not work for the value 0xFF, so when programming this value, the
user will have to wait for at least tWD_FLASH before programming the next page. As a chip-erased device contains 0xFF in all
locations, programming of addresses that are meant to contain 0xFF, can be skipped. See Table 25-16 for tWD_FLASH value.

25.9.3 Data Polling EEPROM

When a new byte has been written and is being programmed into EEPROM, reading the address location being
programmed will give the value 0xFF. At the time the device is ready for a new byte, the programmed value will read
correctly. This is used to determine when the next byte can be written. This will not work for the value 0xFF, but the user
should have the following in mind: As a chip-erased device contains 0xFF in all locations, programming of addresses that
are meant to contain 0xFF, can be skipped. This does not apply if the EEPROM is re-programmed without chip erasing the
device. In this case, data polling cannot be used for the value 0xFF, and the user will have to wait at least tWD_EEPROM before
programming the next byte. See
Table 25-16 for tWD_EEPROM value.

Figure 25-11. Serial Programming Waveforms

Table 25-16. Minimum Wait Delay Before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay

tWD_FLASH 4.5ms

tWD_EEPROM 3.6ms

tWD_ERASE 9.0ms

Serial data input
(MOSI)

Serial data output
(MISO)

Serial clock input
(SCK)

Sample

MSB LSB

MSB LSB
271ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

0x33 (0x53) SMCR – – – – SM2 SM1 SM0 SE 34

0x32 (0x52) MSMCR Monitor Stop Mode Control Register Reserved

0x31 (0x51) MONDR Monitor Data Register Reserved

0x30 (0x50) ACSR AC3IF AC2IF AC1IF AC0IF AC3O AC2O AC1O AC0O 231

0x2F (0x4F) Reserved – – – – – – – –

0x2E (0x4E) SPDR SPD7 SPD6 SPD5 SPD4 SPD3 SPD2 SPD1 SPD0 139

0x2D (0x4D) SPSR SPIF WCOL – – – – – SPI2X 139

0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 138

0x2B (0x4B) Reserved – – – – – – – –

0x2A (0x4A) Reserved – – – – – – – –

0x29 (0x49) PLLCSR – – – – – PLLF PLLE PLOCK 31

0x28 (0x48) OCR0B OCR0B7 OCR0B6 OCR0B5 OCR0B4 OCR0B3 OCR0B2 OCR0B1 OCR0B0 90

0x27 (0x47) OCR0A OCR0A7 OCR0A6 OCR0A5 OCR0A4 OCR0A3 OCR0A2 OCR0A1 OCR0A0 90

0x26 (0x46) TCNT0 TCNT07 TCNT06 TCNT05 TCNT04 TCNT03 TCNT02 TCNT01 TCNT00 90

0x25 (0x45) TCCR0B FOC0A FOC0B – – WGM02 CS02 CS01 CS00 89

0x24 (0x44) TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00 86

0x23 (0x43) GTCCR TSM ICPSEL1 – – – – – PSRSYNC 76

0x22 (0x42) EEARH – – – – – – EEAR9 EEAR8 20

0x21 (0x41) EEARL EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 20

0x20 (0x40) EEDR EEDR7 EEDR6 EEDR5 EEDR4 EEDR3 EEDR2 EEDR1 EEDR0 20

0x1F (0x3F) EECR – – – – EERIE EEMWE EEWE EERE 21

0x1E (0x3E) GPIOR0 GPIOR07 GPIOR06 GPIOR05 GPIOR04 GPIOR03 GPIOR02 GPIOR01 GPIOR00 24

0x1D (0x3D) EIMSK – – – – INT3 INT2 INT1 INT0 71

0x1C (0x3C) EIFR – – – – INTF3 INTF2 INTF1 INTF0 72

0x1B (0x3B) PCIFR – – – – PCIF3 PCIF2 PCIF1 PCIF0 73

0x1A (0x3A) GPIOR2 GPIOR27 GPIOR26 GPIOR25 GPIOR24 GPIOR23 GPIOR22 GPIOR21 GPIOR20 24

0x19 (0x39) GPIOR1 GPIOR17 GPIOR16 GPIOR15 GPIOR14 GPIOR13 GPIOR12 GPIOR11 GPIOR10 24

0x18 (0x38) Reserved – – – – – – – –

0x17 (0x37) Reserved – – – – – – – –

0x16 (0x36) TIFR1 – – ICF1 – – OCF1B OCF1A TOV1 115

0x15 (0x35) TIFR0 – – – – – OCF0B OCF0A TOV0 91

0x14 (0x34) Reserved – – – – – – – –

0x13 (0x33) Reserved – – – – – – – –

0x12 (0x32) Reserved – – – – – – – –

0x11 (0x31) Reserved – – – – – – – –

29. Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags.
The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega16/32/64/M1/C1 is a complex microcontroller with more peripheral units than can be supported within the 64
location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM,
only the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. These registers are only available on ATmega32/64M1. For other products described in this datasheet, these locations
are reserved.
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

304

30. Errata

30.1 Errata Summary

30.1.1 ATmega16M1/16C1/32M1/32C1 Rev. C (Mask Revision)

● LIN break delimiter

● ADC with PSC2-synchronized

● ADC amplifier measurement is unstable

30.1.2 ATmega16M1/16C1/32M1/32C1 Rev. B (Mask Revision)

● The AMPCMPx bits return 0

● No comparison when amplifier is used as comparator input and ADC input

● CRC calculation of diagnostic frames in LIN 2.x.

● Wrong TSOFFSET manufacturing calibration value

● PD0-PD3 set to outputs and PD4 pulled down following power-on with external reset active.

● LIN break delimiter

● ADC with PSC2-synchronized

● ADC amplifier measurement is unstable

● PSC emulation

● PSC OCRxx register update according to PLOCK2 usage

● Read/Write instructions of MUXn and REFS1:0

30.1.3 ATmega16M1/16C1/32M1/32C1 Rev. A (Mask Revision)

● Inopportune reset of the CANIDM registers

● The AMPCMPx bits return 0

● No comparison when amplifier is used as comparator input and ADC input

● CRC calculation of diagnostic frames in LIN 2.x

● PD0-PD3 set to outputs and PD4 pulled down following power-on with external reset active

● LIN break delimiter

● ADC with PSC2-synchronized

● ADC amplifier measurement is unstable

● PSC emulation

● Read/Write instructions of MUXn and REFS1:0

30.1.4 Errata Description

1. Inopportune reset of the CANIDM registers
After the reception of a CAN frame in a MOb, the ID mask registers are reset.
Problem fix / workaround
Before enabling a MOb in reception, re-initialize the ID mask registers - CANIDM[4..1].

2. The AMPCMPx bits return 0
When they are read the AMPCMPx bits in AMPxCSR registers return 0.
Problem fix / workaround
If the reading of the AMPCMPx bits is required, store the AMPCMPx value in a variable in memory before writing
in the AMPxCSR register and read the variable when necessary.

3. No comparison when amplifier is used as comparator input and ADC input
When it is selected as ADC input, an amplifier receives no clock signal when the ADC is stopped. In that case, if
the amplifier is also used as comparator input, no analog signal is propagated and no comparison is done.
Problem fix / workaround
Select another ADC channel rather than the working amplified channel.
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

306

