
Microchip Technology - ATMEGA64C1-15AD Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity CANbus, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT

Number of I/O -

Program Memory Size 64KB (32K x 16)

Program Memory Type FLASH

EEPROM Size 2K x 8

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 11x10b; D/A 1x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 150°C (TA)

Mounting Type Surface Mount

Package / Case 32-TQFP

Supplier Device Package 32-TQFP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega64c1-15ad

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega64c1-15ad-4433632
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Six of the 32 registers can be used as three 16-bit indirect address register pointers for data space addressing – enabling
efficient address calculations. One of the these address pointers can also be used as an address pointer for look up tables in
Flash program memory. These added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register
operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated to reflect
information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the whole
address space. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16- or
32-bit instruction.

Program flash memory space is divided in two sections, the boot program section and the application program section. Both
sections have dedicated Lock bits for write and read/write protection. The SPM (store program memory) instruction that
writes into the application flash memory section must reside in the boot program section.

during interrupts and subroutine calls, the return address program counter (PC) is stored on the stack. The stack is
effectively allocated in the general data SRAM, and consequently the stack size is only limited by the total SRAM size and
the usage of the SRAM. All user programs must initialize the SP in the reset routine (before subroutines or interrupts are
executed). The stack pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed through
the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR® architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in the status
register. All interrupts have a separate interrupt vector in the interrupt vector table. The interrupts have priority in accordance
with their interrupt vector position. The lower the interrupt vector address, the higher is the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as control registers, SPI, and other I/O functions.
The I/O memory can be accessed directly, or as the data space locations following those of the register file, 0x20 - 0x5F. In
addition, the Atmel ATmega16/32/64/M1/C1 has extended I/O space from 0x60 - 0xFF in SRAM where only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

3.3 ALU – Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a
single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are
executed. The ALU operations are divided into three main categories – arithmetic, logical, and bit-functions. Some
implementations of the architecture also provide a powerful multiplier supporting both signed/unsigned multiplication and
fractional format. See the “Instruction Set” section for a detailed description.

3.4 Status Register

The status register contains information about the result of the most recently executed arithmetic instruction. This
information can be used for altering program flow in order to perform conditional operations. Note that the status register is
updated after all ALU operations, as specified in the Instruction Set Reference. This will in many cases remove the need for
using the dedicated compare instructions, resulting in faster and more compact code.

The status register is not automatically stored when entering an interrupt routine and restored when returning from an
interrupt. This must be handled by software.

The AVR Status Register – SREG – is defined as:

• Bit 7 – I: Global Interrupt Enable

The global interrupt enable bit must be set to enabled the interrupts. The individual interrupt enable control is then performed
in separate control registers. If the global interrupt enable register is cleared, none of the interrupts are enabled independent
of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the
RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by the application with the SEI and
CLI instructions, as described in the instruction set reference.

Bit 7 6 5 4 3 2 1 0

I T H S V N Z C SREG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

12

5. System Clock

5.1 Clock Systems and their Distribution

Figure 5-1 presents the principal clock systems in the AVR® and their distribution. All of the clocks need not be active at a
given time. In order to reduce power consumption, the clocks to unused modules can be halted by using different sleep
modes, as described in Section 6. “Power Management and Sleep Modes” on page 34. The clock systems are detailed
below.

Figure 5-1. Clock Distribution

5.1.1 CPU Clock – clkCPU

The CPU clock is routed to parts of the system concerned with operation of the AVR core. Examples of such modules are
the General Purpose Register File, the Status Register and the data memory holding the Stack Pointer. Halting the CPU
clock inhibits the core from performing general operations and calculations.

5.1.2 I/O Clock – clkI/O

The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, UART. The I/O clock is also used by the
External Interrupt module, but note that some external interrupts are detected by asynchronous logic, allowing such
interrupts to be detected even if the I/O clock is halted.

5.1.3 Flash Clock – clkFLASH

The Flash clock controls operation of the Flash interface. The flash clock is usually active simultaneously with the CPU clock.

Flash and
EEPROM

Calibrated RC
Oscillator

Crystal
Oscillator

Watchdog
Oscillator

General I/O
Modules

AVR Clock
Control Unit

ADCFast Peripherals

PLL

External Clock

CPU Core

Source Clock Watchdog Clock

RAM

Reset Logic Watchdog Timer

clkI/O

clkPLL

clkCPU

clkADC

clkFLASH

Clock
Multiplexer

PLL Input
Multiplexer
25ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

When the BOD is enabled, and VCC decreases to a value below the trigger level (VBOT- in Figure 7-5 on page 41), the brown-
out reset is immediately activated. When VCC increases above the trigger level (VBOT+ in Figure 7-5 on page 41), the delay
counter starts the MCU after the Time-out period tTOUT has expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level for longer than tBOD given in
Table 7-3.

Figure 7-5. Brown-out Reset during Operation

7.2.4 Watchdog Reset

When the watchdog times out, it will generate a short reset pulse of one CK cycle duration. On the falling edge of this pulse,
the delay timer starts counting the time-out period tTOUT. Refer to Section 7.4 “Watchdog Timer” on page 43 for details on
operation of the watchdog timer.

Figure 7-6. Watchdog Reset during Operation

VBOT-

VBOT+

tTOUT

VCC

RESET

INTERNAL
RESET

TIME-OUT

1 CK Cycle

VCC

RESET

INTERNAL
RESET

RESET
Time-OUT

WDT
TIME-OUT

tTOUT
41ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

13.7.1 Compare Output Mode and Waveform Generation

The waveform generator uses the COMnx1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the
COMnx1:0 = 0 tells the waveform generator that no action on the OCnx register is to be performed on the next compare
match. For compare output actions in the non-PWM modes refer to Table 13-1 on page 110. For fast PWM mode refer to
Table 13-2 on page 110, and for phase correct and phase and frequency correct PWM refer to Table 13-3 on page 111.

A change of the COMnx1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM
modes, the action can be forced to have immediate effect by using the FOCnx strobe bits.

13.8 Modes of Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the output compare pins, is defined by the combination of
the Waveform Generation mode (WGMn3:0) and Compare Output mode (COMnx1:0) bits. The Compare Output mode bits
do not affect the counting sequence, while the waveform generation mode bits do. The COMnx1:0 bits control whether the
PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes the COMnx1:0 bits
control whether the output should be set, cleared or toggle at a compare match (see Section 13.7 “Compare Match Output
Unit” on page 101). For detailed timing information refer to Section 13.9 “Timer/Counter Timing Diagrams” on page 108.

13.8.1 Normal Mode

The simplest mode of operation is the Normal mode (WGMn3:0 = 0). In this mode the counting direction is always up
(incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 16-bit value
(MAX = 0xFFFF) and then restarts from the BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag
(TOVn) will be set in the same timer clock cycle as the TCNTn becomes zero. The TOVn flag in this case behaves like a 17th
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the
TOVn flag, the timer resolution can be increased by software. There are no special cases to consider in the normal mode, a
new counter value can be written anytime.

The input capture unit is easy to use in normal mode. However, observe that the maximum interval between the external
events must not exceed the resolution of the counter. If the interval between events are too long, the timer overflow interrupt
or the prescaler must be used to extend the resolution for the capture unit.

The output compare units can be used to generate interrupts at some given time. Using the output compare to generate
waveforms in normal mode is not recommended, since this will occupy too much of the CPU time.

13.8.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGMn3:0 = 4 or 12), the OCRnA or ICRn register are used to manipulate the
counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNTn) matches either the OCRnA
(WGMn3:0 = 4) or the ICRn (WGMn3:0 = 12). The OCRnA or ICRn define the top value for the counter, hence also its
resolution. This mode allows greater control of the compare match output frequency. It also simplifies the operation of
counting external events.

The timing diagram for the CTC mode is shown in Figure 13-6. The counter value (TCNTn) increases until a compare match
occurs with either OCRnA or ICRn, and then counter (TCNTn) is cleared.

Figure 13-6. CTC Mode, Timing Diagram

1 2

TCNTn

(COMnA1:0 = 1)OCnA
(Toggle)

Period
3

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set

(Interrupt on TOP)

4

ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

102

The extreme values for the OCRnx register represents special cases when generating a PWM waveform output in the phase
correct PWM mode. If the OCRnx is set equal to BOTTOM the output will be continuously low and if set equal to TOP the
output will be set to high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. If
OCR1A is used to define the TOP value (WGM13:0 = 9) and COM1A1:0 = 1, the OC1A output will toggle with a 50% duty
cycle.

13.9 Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkTn) is therefore shown as a clock enable signal in the
following figures. The figures include information on when Interrupt Flags are set, and when the OCRnx register is updated
with the OCRnx buffer value (only for modes utilizing double buffering). Figure 13-10 shows a timing diagram for the setting
of OCFnx.

Figure 13-10.Timer/Counter Timing Diagram, Setting of OCFnx, no Prescaling

Figure 13-11 shows the same timing data, but with the prescaler enabled.

Figure 13-11.Timer/Counter Timing Diagram, Setting of OCFnx, with Prescaler (fclk_I/O/8)

OCRnx - 1

clkI/O

(clkI/O/1)

TCNTn

OCRnx

OCFnx

clkTn

OCRnx

OCRnx Value

OCRnx + 1 OCRnx + 2

OCRnx - 1

clkI/O

(clkI/O/8)

TCNTn

OCRnx

OCFnx

clkTn

OCRnx OCRnx + 1

OCRnx Value

OCRnx + 2
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

108

Figure 14-3. Cycle Presentation in Centered Mode

Figure 14-2 on page 118 and Figure 14-3 graphically illustrate the values held in the PSC counter. Centered Mode is like one
ramp mode which counts down and then up.

Notice that the update of the waveform generator registers is done regardless of ramp mode at the end of the PSC cycle.

14.5.3 Operation Mode Descriptions

Waveforms and duration of output signals are determined by parameters held in the registers (POCRnSA, POCRnRA,
POCRnSB, POCR_RB) and by the running mode. Two modes are possible:

● One ramp mode: In this mode, all the 3 PSCOUTnB outputs are edge-aligned and the 3 PSCOUTnA can be also
edge-aligned when setting the same values in the dedicated registers.
In this mode, the PWM frequency is twice the center aligned mode PWM frequency.

● Center aligned mode: In this mode, all the 6 PSC outputs are aligned at the center of the period. Except when using
the same duty cycles on the 3 modules, the edges of the outputs are not aligned. So the PSC outputs do not commute
at the same time, thus the system which is driven by these outputs will generate less commutation noise.
In this mode, the PWM frequency is twice slower than in one ramp mode.

14.5.3.1 One Ramp Mode (Edge-Aligned)

The following figure shows the resultant outputs PSCOUTnA and PSCOUTnB operating in one ramp mode over a PSC
cycle.

Figure 14-4. PSCOUTnA and PSCOUTnB Basic Waveforms in One Ramp Mode

PSC Counter Value

Update

One PSC Cycle

On Time A

Dead Time A Dead Time B

PSC Cycle

On Time B

POCRnRB

POCRnSB
POCRnRA

POCRnSA

PSCOUTnA

PSC Counter

PSCOUTnB

0

119ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

14.16.10 PSC Interrupt Mask Register – PIM

• Bit 7:4 – not use

not use.

• Bit 3 – PEVE2: PSC External Event 2 Interrupt Enable

When this bit is set, an external event which can generates a a fault on module 2 generates also an interrupt.

• Bit 2 – PEVE1: PSC External Event 1 Interrupt Enable

When this bit is set, an external event which can generates a fault on module 1 generates also an interrupt.

• Bit 1 – PEVE0: PSC External Event 0 Interrupt Enable

When this bit is set, an external event which can generates a fault on module 0 generates also an interrupt.

• Bit 0 – PEOPE: PSC End Of Cycle Interrupt Enable

When this bit is set, an interrupt is generated when PSC reaches the end of the whole cycle.

14.16.11 PSC Interrupt Flag Register – PIFR

• Bit 7:4 – not use

not use.

• Bit 3 – PEV2: PSC External Event 2 Interrupt

This bit is set by hardware when an external event which can generates a fault on module 2 occurs.

Must be cleared by software by writing a one to its location.

This bit can be read even if the corresponding interrupt is not enabled (PEVE2 bit = 0).

• Bit 2 – PEV1: PSC External Event 1 Interrupt

This bit is set by hardware when an external event which can generates a fault on module 1 occurs.

Must be cleared by software by writing a one to its location.

This bit can be read even if the corresponding interrupt is not enabled (PEVE1 bit = 0).

• Bit 1 – PEV0: PSC External Event 0 Interrupt

This bit is set by hardware when an external event which can generates a fault on module 0 occurs.

Must be cleared by software by writing a one to its location.

This bit can be read even if the corresponding interrupt is not enabled (PEVE0 bit = 0).

• Bit 0 – PEOP: PSC End Of Cycle Interrupt

This bit is set by hardware when an “end of PSC cycle” occurs.

Must be cleared by software by writing a one to its location.

This bit can be read even if the corresponding interrupt is not enabled (PEOPE bit = 0).

Bit 7 6 5 4 3 2 1 0

- - - - PEVE2 PEVE1 PEVE0 PEOPE PIM

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

- - - - PEV2 PEV1 PEV0 PEOP PIFR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

132

16.6.4 Stamping Message

The capture of the timer value is done in the MOb which receives or sends the frame. All managed MOb are stamped, the
stamping of a received (sent) frame occurs on RxOk (TXOK).

16.7 Error Management

16.7.1 Fault Confinement

The CAN channel may be in one of the three following states:

● Error active (default):
The CAN channel takes part in bus communication and can send an active error frame when the CAN macro detects
an error.

● Error passive:
The CAN channel cannot send an active error frame. It takes part in bus communication, but when an error is
detected, a passive error frame is sent. Also, after a transmission, an error passive unit will wait before initiating
further transmission.

● Bus off:
The CAN channel is not allowed to have any influence on the bus.

For fault confinement, a transmit error counter (TEC) and a receive error counter (REC) are implemented. BOFF and ERRP
bits give the information of the state of the CAN channel. Setting BOFF to one may generate an interrupt.

Figure 16-12. Line Error Mode

Note: More than one REC/TEC change may apply during a given message transfer.

Reset

Interrupt BOFFIT

ERRP = 0
BOFF = 0

ERRP = 1
BOFF = 0

ERRP = 1
BOFF = 0

Error
Active

Error
Passive

Bus
Off

TEC > 255

TEC > 127
or

Rec 127

TEC ≤ 127
and

Rec ≤ 127

128 occurrences
of 11 consecutive

recessive bit
153ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

• Bit 6:5 – SJW1:0: Re-Synchronization Jump Width

To compensate for phase shifts between clock oscillators of different bus controllers, the controller must re-synchronize on
any relevant signal edge of the current transmission. The synchronization jump width defines the maximum number of clock
cycles. A bit period may be shortened or lengthened by a re-synchronization.

• Bit 4 – Reserved Bit

This bit is reserved for future use. For compatibility with future devices, it must be written to zero when CANBT2 is written.

• Bit 3:1 – PRS2:0: Propagation Time Segment

This part of the bit time is used to compensate for the physical delay times within the network. It is twice the sum of the signal
propagation time on the bus line, the input comparator delay and the output driver delay.

• Bit 0 – Reserved Bit

This bit is reserved for future use. For compatibility with future devices, it must be written to zero when CANBT2 is written.

16.10.10 CAN Bit Timing Register 3 - CANBT3

• Bit 7– Reserved Bit

This bit is reserved for future use. For compatibility with future devices, it must be written to zero when CANBT3 is written.

• Bit 6:4 – PHS22:0: Phase Segment 2

This phase is used to compensate for phase edge errors. This segment may be shortened by the re-synchronization jump
width. PHS2[2..0] shall be ≥1 and ≤PHS1[2..0] (c.f. Section 16.2.3 “CAN Bit Timing” on page 143 and Section 16.4.3 “Baud
Rate” on page 148).

Tphs2 = Tscl (PHS2[2:0] + 1)

• Bit 3:1 – PHS12:0: Phase Segment 1

This phase is used to compensate for phase edge errors. This segment may be lengthened by the re-synchronization jump
width.

Tphs1 = Tscl (PHS1[2:0] + 1)

• Bit 0 – SMP: Sample Point(s)

This option allows to filter possible noise on TxCAN input pin.

● 0 - the sampling will occur once at the user configured sampling point - SP.

● 1 - with three-point sampling configuration the first sampling will occur two TclkIO clocks before the user configured
sampling point - SP, again at one TclkIO clock before SP and finally at SP. Then the bit level will be determined by a
majority vote of the three samples.

‘SMP=1’ configuration is not compatible with ‘BRP[5:0]=0’ because TQ = TclkIO.
If BRP = 0, SMP must be cleared.

Tsjw Tscl SJW[1:0] 1+ =

Tprs Tscl PRS[2:0] 1+ =

Bit 7 6 5 4 3 2 1 0

- PHS22 PHS21 PHS20 PHS12 PHS11 PHS10 SMP CANBT3

Read/Write - R/W R/W R/W R/W R/W R/W R/W

Initial Value - 0 0 0 0 0 0 0
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

164

16.10.15 CAN Receive Error Counter Register - CANREC

• Bit 7:0 – REC7:0: Receive Error Count

CAN receive error counter range 0 to 255.

16.10.16 CAN Highest Priority MOb Register - CANHPMOB

• Bit 7:4 – HPMOB3:0: Highest Priority MOb Number

MOb having the highest priority in CANSIT registers.
If CANSIT = 0 (no MOb), the return value is 0xF.

Note: Do not confuse “MOb priority” and “Message ID priority”- <Helv>See “Message Objects” on page 149.

• Bit 3:0 – CGP3:0: CAN General Purpose Bits

These bits can be pre-programmed to match with the wanted configuration of the CANPAGE register (i.e., AINC and
INDX2:0 setting).

16.10.17 CAN Page MOb Register - CANPAGE

• Bit 7:4 – MOBNB3:0: MOb Number

Selection of the MOb number, the available numbers are from 0 to 5.

Note: MOBNB3 always must be written to zero for compatibility with all AVR CAN devices.

• Bit 3 – AINC: Auto Increment of the FIFO CAN Data Buffer Index (Active Low)

● 0 - auto increment of the index (default value).

● 1- no auto increment of the index.

• Bit 2:0 – INDX2:0: FIFO CAN Data Buffer Index

Byte location of the CAN data byte into the FIFO for the defined MOb.

Bit 7 6 5 4 3 2 1 0

REC7 REC6 REC5 REC4 REC3 REC2 REC1 REC0 CANREC

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

HPMOB3 HPMOB2 HPMOB1 HPMOB0 CGP3 CGP2 CGP1 CGP0 CANHPMOB

Read/Write R R R R R/W R/W R/W R/W

Initial Value 1 1 1 1 0 0 0 0

Bit 7 6 5 4 3 2 1 0

MOBNB3 MOBNB2 MOBNB1 MOBNB0 AINC INDX2 INDX1 INDX0 CANPAGE

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

166

18.9.4 ADC Result Data Registers – ADCH and ADCL

When an ADC conversion is complete, the conversion results are stored in these two result data registers.

When the ADCL register is read, the two ADC result data registers can’t be updated until the ADCH register has also been
read.
Consequently, in 10-bit configuration, the ADCL register must be read first before the ADCH.
Nevertheless, to work easily with only 8-bit precision, there is the possibility to left adjust the result thanks to the ADLAR bit
in the ADCSRA register. Like this, it is sufficient to only read ADCH to have the conversion result.

18.9.4.1 ADLAR = 0

18.9.4.2 ADLAR = 1

Table 18-7. ADC Auto Trigger Source Selection

ADTS3 ADTS2 ADTS1 ADTS0 Description

0 0 0 0 Free running mode

0 0 0 1 External interrupt request 0

0 0 1 0 Timer/Counter0 compare match

0 0 1 1 Timer/Counter0 overflow

0 1 0 0 Timer/Counter1 compare match B

0 1 0 1 Timer/Counter1 overflow

0 1 1 0 Timer/Counter1 capture event

0 1 1 1 PSC Module 0 synchronization signal

1 0 0 0 PSC Module 1 synchronization signal

1 0 0 1 PSC Module 2 synchronization signal

1 0 1 0 Analog comparator 0

1 0 1 1 Analog comparator 1

1 1 0 0 Analog comparator 2

1 1 0 1 Analog comparator 3

1 1 1 0 Reserved

1 1 1 1 Reserved

Bit 7 6 5 4 3 2 1 0

- - - - - - ADC9 ADC8 ADCH

ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

ADC1 ADC0 - - - - - - ADCL

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
213ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

20.3 Use of ADC Amplifiers

Thanks to AMPCMP0 configuration bit, comparator 0 positive input can be connected to amplifier O output. In that case, the
clock of comparator 0 is twice the amplifier 0 clock. See Section 18.11.1 “Amplifier 0 control and status register – AMP0CSR”
on page 218.

Thanks to AMPCMP1 configuration bit, comparator 1 positive input can be connected to amplifier 1 output. In that case, the
clock of comparator 1 is twice the amplifier 1 clock. See Section 18.11.2 “Amplifier 1 Control and Status Register –
AMP1CSR” on page 219.

Thanks to AMPCMP2 configuration bit, comparator 2 positive input can be connected to amplifier 2 output. In that case, the
clock of comparator 2 is twice the amplifier 2 clock. See Section 18.11.2 “Amplifier 1 Control and Status Register –
AMP1CSR” on page 219.

20.4 Analog Comparator Register Description

Each analog comparator has its own control register.

A dedicated register has been designed to consign the outputs and the flags of the 4 analog comparators.

20.4.1 Analog Comparator 0 Control Register – AC0CON

• Bit 7– AC0EN: analog comparator 0 Enable Bit

Set this bit to enable the analog comparator 0.
Clear this bit to disable the analog comparator 0.

• Bit 6– AC0IE: analog comparator 0 Interrupt Enable bit

Set this bit to enable the analog comparator 0 interrupt.
Clear this bit to disable the analog comparator 0 interrupt.

• Bit 5, 4– AC0IS1, AC0IS0: analog comparator 0 Interrupt Select bit

These 2 bits determine the sensitivity of the interrupt trigger.
The different setting are shown in Table 18-7.

• Bit 3 – ACCKSEL: Analog Comparator Clock Select

Set this bit to use the 16MHz PLL output as comparator clock. Clear this bit to use the CLKIO as comparator clock.

• Bit 2, 1, 0– AC0M2, AC0M1, AC0M0: Analog Comparator 0 Multiplexer Register

These 3 bits determine the input of the negative input of the analog comparator.
The different setting are shown in Table 20-2 on page 228.

Bit 7 6 5 4 3 2 1 0

AC0EN AC0IE AC0IS1 AC0IS0 ACCKSEL AC0M2 AC0M1 AC0M0 AC0CON

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 20-1. Interrupt Sensitivity Selection

AC0IS1 AC0IS0 Description

0 0 Comparator interrupt on output toggle

0 1 Reserved

1 0 Comparator interrupt on output falling edge

1 1 Comparator interrupt on output rising edge
227ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

23.4 Software Break Points

debugWIRE supports program memory break points by the AVR® break instruction. Setting a break point in AVR Studio® will
insert a BREAK instruction in the program memory. The instruction replaced by the BREAK instruction will be stored. When
program execution is continued, the stored instruction will be executed before continuing from the program memory. A break
can be inserted manually by putting the BREAK instruction in the program.

The flash must be re-programmed each time a break point is changed. This is automatically handled by AVR Studio through
the debugWIRE interface. The use of break points will therefore reduce the flash data retention. Devices used for debugging
purposes should not be shipped to end customers.

23.5 Limitations of debugWIRE

The debugWIRE communication pin (dW) is physically located on the same pin as external reset (RESET). An external reset
source is therefore not supported when the debugWIRE is enabled.

The debugWIRE system accurately emulates all I/O functions when running at full speed, i.e., when the program in the CPU
is running. When the CPU is stopped, care must be taken while accessing some of the I/O registers via the debugger (AVR
Studio).

A programmed DWEN fuse enables some parts of the clock system to be running in all sleep modes. This will increase the
power consumption while in sleep. Thus, the DWEN Fuse should be disabled when debugWire is not used.

23.6 debugWIRE Related Register in I/O Memory

The following section describes the registers used with the debugWire.

23.6.1 debugWire Data Register – DWDR

The DWDR register provides a communication channel from the running program in the MCU to the debugger. This register
is only accessible by the debugWIRE and can therefore not be used as a general purpose register in the normal operations.

Bit 7 6 5 4 3 2 1 0

DWDR[7:0] DWDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

240

Figure 24-2. Memory Sections

Note: 1. The parameters in the figure above are given in Table 24-7 on page 251.

24.4 Boot Loader Lock Bits

If no boot loader capability is needed, the entire flash is available for application code. The boot loader has two separate sets
of Boot Lock bits which can be set independently. This gives the user a unique flexibility to select different levels of
protection.

The user can select:

● To protect the entire flash from a software update by the MCU.

● To protect only the boot loader flash section from a software update by the MCU.

● To protect only the application flash section from a software update by the MCU.

● Allow software update in the entire flash.

See Table 24-2 and Table 24-3 on page 244 for further details. The boot lock bits can be set in software and in serial or
parallel programming mode, but they can be cleared by a chip erase command only. The general write lock (lock bit mode 2)
does not control the programming of the flash memory by SPM instruction. Similarly, the general Read/Write lock (lock bit
mode 1) does not control reading nor writing by LPM/SPM, if it is attempted.

Program Memory
BOOTSZ = ’11’

0x0000

Flashend

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-

W
rit

e
S

ec
tio

n

End RWW
Start NRWW

End Application
Start Boot Loader

Program Memory
BOOTSZ = ’10’

0x0000

Flashend

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-

W
rit

e
S

ec
tio

n

End RWW
Start NRWW

End Application
Start Boot Loader

Program Memory
BOOTSZ = ’01’

0x0000

Flashend

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-

W
rit

e
S

ec
tio

n

End RWW
Start NRWW

End Application
Start Boot Loader

Program Memory
BOOTSZ = ’00’

0x0000

Flashend

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-

W
rit

e
S

ec
tio

n

End RWW, End
Application
Start RWW,
Start Boot Loader

Application Flash Section

Application Flash Section

Boot Loader Flash Section Boot Loader Flash Section

Application Flash Section

Application Flash Section

Boot Loader Flash Section

Application Flash Section

Application Flash Section

Boot Loader Flash Section

Application Flash Section
243ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

Note: 1. “1” means unprogrammed, “0” means programmed.

Note: “1” means unprogrammed, “0” means programmed

24.5 Entering the Boot Loader Program

Entering the boot loader takes place by a jump or call from the application program. This may be initiated by a trigger such
as a command received via UART, or SPI interface. Alternatively, the boot reset fuse can be programmed so that the reset
vector is pointing to the boot flash start address after a reset. In this case, the boot loader is started after a reset. After the
application code is loaded, the program can start executing the application code. Note that the fuses cannot be changed by
the MCU itself. This means that once the boot reset fuse is programmed, the reset vector will always point to the boot loader
reset and the fuse can only be changed through the serial or parallel programming interface.

Note: 1. “1” means unprogrammed, “0” means programmed

24.5.1 Store Program Memory Control and Status Register – SPMCSR

The store program memory control and status register contains the control bits needed to control the boot loader operations.

Table 24-2. Boot Lock Bit0 Protection Modes (Application Section)(1)

BLB0 Mode BLB02 BLB01 Protection

1 1 1 No restrictions for SPM or LPM accessing the application section.

2 1 0 SPM is not allowed to write to the application section.

3 0 0

SPM is not allowed to write to the application section, and LPM executing from the
boot loader section is not allowed to read from the application section. If interrupt
vectors are placed in the boot loader section, interrupts are disabled while executing
from the application section.

4 0 1
LPM executing from the boot loader section is not allowed to read from the application
section. If interrupt vectors are placed in the boot loader section, interrupts are
disabled while executing from the application section.

Table 24-3. Boot Lock Bit1 Protection Modes (Boot Loader Section)(1)

BLB1 Mode BLB12 BLB11 Protection

1 1 1 No restrictions for SPM or LPM accessing the boot loader section.

2 1 0 SPM is not allowed to write to the boot loader section.

3 0 0

SPM is not allowed to write to the boot loader section, and LPM executing from the
application section is not allowed to read from the boot loader section. If Interrupt
vectors are placed in the application section, interrupts are disabled while executing
from the boot loader section.

4 0 1
LPM executing from the application section is not allowed to read from the boot
loader section. If interrupt vectors are placed in the application section, interrupts are
disabled while executing from the boot loader section.

Table 24-4. Boot Reset Fuse(1)

BOOTRST Reset Address

1 Reset vector = Application reset (address 0x0000)

0 Reset vector = Boot loader Reset (see Table 24-7 on page 251)

Bit 7 6 5 4 3 2 1 0

SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN SPMCSR

Read/Write R/W R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

244

25.4 Signature Bytes

All Atmel® microcontrollers have a three-byte signature code which identifies the device. This code can be read in both serial
and parallel mode, also when the device is locked. The three bytes reside in a separate address space.

25.4.1 Signature Bytes

For the ATmega16M1 the signature bytes are:

1. 0x000: 0x1E (indicates manufactured by Atmel).

2. 0x001: 0x94 (indicates 16kB flash memory).

3. 0x002: 0x84 (indicates ATmega16M1 device when 0x001 is 0x94).

For the ATmega32M1 the signature bytes are:

1. 0x000: 0x1E (indicates manufactured by Atmel).

2. 0x001: 0x95 (indicates 32kB flash memory).

3. 0x002: 0x84 (indicates ATmega32M1 device when 0x001 is 0x95).

For the ATmega64M1 the signature bytes are:

1. 0x000: 0x1E (indicates manufactured by Atmel).

2. 0x001: 0x96 (indicates 64kB flash memory).

3. 0x002: 0x84 (indicates ATmega64M1 device when 0x001 is 0x96).

For the ATmega32C1 the signature bytes are:

1. 0x000: 0x1E (indicates manufactured by Atmel).

2. 0x001: 0x95 (indicates 32kB flash memory).

3. 0x002: 0x86 (indicates ATmega32C1 device when 0x001 is 0x95).

For the ATmega64C1 the signature bytes are:

1. 0x000: 0x1E (indicates manufactured by Atmel).

2. 0x001: 0x96 (indicates 32kB flash memory).

3. 0x002: 0x86 (indicates ATmega64C1 device when 0x001 is 0x96).

25.5 Calibration Byte

The ATmega16/32/64/M1/C1 has a byte calibration value for the internal RC oscillator. This byte resides in the high byte of
address 0x000 in the signature address space. during reset, this byte is automatically written into the OSCCAL register to
ensure correct frequency of the calibrated RC oscillator.
ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

258

Figure 25-9. Parallel Programming Timing, Reading Sequence (within the Same Page) with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 25-7 (i.e., tDVXH, tXHXL, and tXLDX) also apply to reading operation.

Notes: 1. tWLRH is valid for the write flash, write EEPROM, write fuse bits and write lock bits commands.

2. tWLRH_CE is valid for the chip erase command.

Table 25-15. Parallel Programming Characteristics, VCC = 5V ±10%

Parameter Symbol Min Typ Max Unit

Programming enable voltage VPP 11.5 12.5 V

Programming enable current IPP 250 A

Data and control valid before XTAL1 high tDVXH 67 ns

XTAL1 low to XTAL1 high tXLXH 200 ns

XTAL1 pulse width high tXHXL 150 ns

Data and control hold after XTAL1 low tXLDX 67 ns

XTAL1 low to WR low tXLWL 0 ns

XTAL1 low to PAGEL high tXLPH 0 ns

PAGEL low to XTAL1 high tPLXH 150 ns

BS1 valid before PAGEL high tBVPH 67 ns

PAGEL pulse width high tPHPL 150 ns

BS1 hold after PAGEL low tPLBX 67 ns

BS2/1 hold after WR low tWLBX 67 ns

PAGEL low to WR low tPLWL 67 ns

BS1 valid to WR low tBVWL 67 ns

WR pulse width low tWLWH 150 ns

WR low to RDY/BSY low tWLRL 0 1 s

WR low to RDY/BSY high(1) tWLRH 3.7 4.5 ms

WR low to RDY/BSY high for chip erase(2) tWLRH_CE 7.5 9 ms

XTAL1 low to OE low tXLOL 0 ns

BS1 valid to DATA valid tBVDV 0 250 ns

OE low to DATA valid tOLDV 250 ns

OE high to DATA tri-stated tOHDZ 250 ns

XTAL1

BS1

OE

DATA

XA0

XA1

tBVDV

tXLOL

tOLDV

tOHDZ

Load Address
(Low Byte)

Read Data
(Low Byte)

Read Data
(High Byte)

Load Address
(Low Byte)

ADDR0 (Low Byte) ADDR1 (Low Byte)DATA (Low Byte) DATA (High Byte)
269ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

26.5 Maximum Speed versus VCC

Maximum frequency is depending on VCC. As shown in Figure 26-2, the maximum frequency equals 8MHz when VCC is
between 2.7V and 4.5V and equals 16MHz when VCC is between 4.5V and 5.5V.

Figure 26-2. Maximum Frequency versus VCC, ATmega16/32/64/M1/C1

26.6 PLL Characteristics

16MHz

8MHz

2.7V 4.5V 5.5V

Safe Operating Area

Table 26-3. PLL Characteristics - VCC = 2.7V to 5.5V (unless otherwise noted)

Parameter Symbol Min. Typ. Max. Unit

Input Frequency PLLIF 0.5 1 2 MHz

PLL Factor PLLF 64

Lock-in Time PLLLT 80 µS

Note: While connected to external clock or external oscillator, PLL input frequency must be selected to provide outputs with
frequency in accordance with driven parts of the circuit (CPU core, PSC...)
277ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

(0xB9)(5) PMIC1 POVEN1 PISEL1 PELEV1 PFLTE1 PAOC1 PRFM12 PRFM11 PRFM10 131

(0xB8)(5) PMIC0 POVEN0 PISEL0 PELEV0 PFLTE0 PAOC0 PRFM02 PRFM01 PRFM00 131

(0xB7)(5) PCTL PPRE1 PPRE0 PCLKSEL – – – PCCYC PRUN 130

(0xB6)(5) POC – – POEN2B POEN2A POEN1B POEN1A POEN0B POEN0A 33

(0xB5)(5) PCNF – – PULOCK PMODE POPB POPA – – 130

(0xB4)(5) PSYNC – – PSYNC21 PSYNC20 PSYNC11 PSYNC10 PSYNC01 PSYNC00 128

(0xB3)(5) POCR_RBH – – – – POCR_RB11 POCR_RB10 POCR_RB9 POCR_RB8 129

(0xB2)(5) POCR_RBL POCR_RB7 POCR_RB6 POCR_RB5 POCR_RB4 POCR_RB3 POCR_RB2 POCR_RB1 POCR_RB0 129

(0xB1)(5) POCR2SBH – – – – POCR2SB11 POCR2SB10 POCR2SB9 POCR2SB8 129

(0xB0)(5) POCR2SBL POCR2SB7 POCR2SB6 POCR2SB5 POCR2SB4 POCR2SB3 POCR2SB2 POCR2SB1 POCR2SB0 129

(0xAF)(5) POCR2RAH – – – – POCR2RA11 POCR2RA10 POCR2RA9 POCR2RA8 129

(0xAE)(5) POCR2RAL POCR2RA7 POCR2RA6 POCR2RA5 POCR2RA4 POCR2RA3 POCR2RA2 POCR2RA1 POCR2RA0 129

(0xAD)(5) POCR2SAH – – – – POCR2SA11 POCR2SA10 POCR2SA9 POCR2SA8 129

(0xAC)(5) POCR2SAL POCR2SA7 POCR2SA6 POCR2SA5 POCR2SA4 POCR2SA3 POCR2SA2 POCR2SA1 POCR2SA0 129

(0xAB)(5) POCR1SBH – – – – POCR1SB11 POCR1SB10 POCR1SB9 POCR1SB8 129

(0xAA)(5) POCR1SBL POCR1SB7 POCR1SB6 POCR1SB5 POCR1SB4 POCR1SB3 POCR1SB2 POCR1SB1 POCR1SB0 129

(0xA9)(5) POCR1RAH – – – – POCR1RA11 POCR1RA10 POCR1RA9 POCR1RA8 129

(0xA8)(5) POCR1RAL POCR1RA7 POCR1RA6 POCR1RA5 POCR1RA4 POCR1RA3 POCR1RA2 POCR1RA1 POCR1RA0 129

(0xA7)(5) POCR1SAH – – – – POCR1SA11 POCR1SA10 POCR1SA9 POCR1SA8 129

(0xA6)(5) POCR1SAL POCR1SA7 POCR1SA6 POCR1SA5 POCR1SA4 POCR1SA3 POCR1SA2 POCR1SA1 POCR1SA0 129

(0xA5)(5) POCR0SBH – – – – POCR0SB11 POCR0SB10 POCR0SB9 POCR0SB8 129

(0xA4)(5) POCR0SBL POCR0SB7 POCR0SB6 POCR0SB5 POCR0SB4 POCR0SB3 POCR0SB2 POCR0SB1 POCR0SB0 129

(0xA3)(5) POCR0RAH – – – – POCR0RA11 POCR0RA10 POCR0RA9 POCR0RA8 129

(0xA2)(5) POCR0RAL POCR0RA7 POCR0RA6 POCR0RA5 POCR0RA4 POCR0RA3 POCR0RA2 POCR0RA1 POCR0RA0 129

(0xA1)(5) POCR0SAH – – – – POCR0SA11 POCR0SA10 POCR0SA9 POCR0SA8 129

(0xA0)(5) POCR0SAL POCR0SA7 POCR0SA6 POCR0SA5 POCR0SA4 POCR0SA3 POCR0SA2 POCR0SA1 POCR0SA0 129

(0x9F) Reserved – – – – – – – –

(0x9E) Reserved – – – – – – – –

(0x9D) Reserved – – – – – – – –

(0x9C) Reserved – – – – – – – –

(0x9B) Reserved – – – – – – – –

(0x9A) Reserved – – – – – – – –

(0x99) Reserved – – – – – – – –

(0x98) Reserved – – – – – – – –

(0x97) AC3CON AC3EN AC3IE AC3IS1 AC3IS0 – AC3M2 AC3M1 AC3M0 229

29. Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags.
The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega16/32/64/M1/C1 is a complex microcontroller with more peripheral units than can be supported within the 64
location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM,
only the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. These registers are only available on ATmega32/64M1. For other products described in this datasheet, these locations
are reserved.
301ATmega16/32/64/M1/C1 [DATASHEET]
7647O–AVR–01/15

XX X XX X
Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2015 Atmel Corporation. / Rev.: 7647O–AVR–01/15

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, and others are registered trademarks or trademarks of Atmel Corporation in U.S.
and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

https://plus.google.com/117391618085377601886/posts
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
http://www.youtube.com/user/AtmelCorporation
https://www.facebook.com/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
www.atmel.com
www.atmel.com

